首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calibration of clocks to date evolutionary changes is of primary importance for comparative genomics. In the absence of fossil records, the dating of changes during yeast genome evolution can only rely on the properties of the genomes themselves, given the uncertainty of extrapolations using clocks from other organisms. In this work, we use the experimentally determined mutational rate of Saccharomyces cerevisiae to calculate the numbers of successive generations corresponding to observed sequence polymorphism between strains or species of other yeasts. We then examine synteny conservation across the entire subphylum of Saccharomycotina yeasts, and compare this second clock based on chromosomal rearrangements with the first one based on sequence divergence. A non-linear relationship is observed, that interestingly also applies to insects although, for equivalent sequence divergence, their rate of chromosomal rearrangements is higher than that of yeasts.  相似文献   

2.
ABSTRACT: BACKGROUND: The availability of a large number of recently sequenced vertebrate genomes opens new avenues to integrate cytogenetics and genomics in comparative and evolutionary studies. Cytogenetic mapping can offer alternative means to identify conserved synteny shared by distinct genomes and also to define genome regions that are still not fine characterized even after wide-ranging nucleotide sequence efforts. An efficient way to perform comparative cytogenetic mapping is based on BAC clones mapping by fluorescence in situ hybridization. In this report, to address the knowledge gap on the genome evolution in cichlid fishes, BAC clones of an Oreochromis niloticus library covering the linkage groups (LG) 1, 3, 5, and 7 were mapped onto the chromosomes of 9 African cichlid species. The cytogenetic mapping data were also integrated with BAC-end sequences information of O. niloticus and comparatively analyzed against the genome of other fish species and vertebrates. RESULTS: The location of BACs from LG1, 3, 5, and 7 revealed a strong chromosomal conservation among the analyzed cichlid species genomes, which evidenced a synteny of the markers of each LG. Comparative in silico analysis also identified large genomic blocks that were conserved in distantly related fish groups and also in other vertebrates. CONCLUSIONS: Although it has been suggested that fishes contain plastic genomes with high rates of chromosomal rearrangements and probably low rates of synteny conservation, our results evidence that large syntenic chromosome segments have been maintained conserved during evolution, at least for the considered markers. Additionally, our current cytogenetic mapping efforts integrated with genomic approaches conduct to a new perspective to address important questions involving chromosome evolution in fishes.  相似文献   

3.
Bhutkar A  Schaeffer SW  Russo SM  Xu M  Smith TF  Gelbart WM 《Genetics》2008,179(3):1657-1680
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.  相似文献   

4.
Comparative mapping between the human and chicken genomes has revealed a striking conservation of synteny between the genomes of these two species, but the results have been based on low-resolution comparative maps. To address this conserved synteny in much more detail, a high-resolution human-chicken comparative map was constructed from human chromosome 15. Mapping, sequencing, and ordering of specific chicken bacterial artificial chromosomes has improved the comparative map of chromosome 15 (Hsa15) and the homologous regions in chicken with almost 100 new genes and/or expressed sequence tags. A comparison of Hsa15 with chicken identified seven conserved chromosomal segments between the two species. In chicken, these were on chromosome 1 (Gga1; two segments), Gga5 (two segments), and Gga10 (three segments). Although four conserved segments were also observed between Hsa15 and mouse, only one of the underlying rearrangement breakpoints was located at the same position as in chicken, indicating that the rearrangements generating the other three breakpoints occurred after the divergence of the rodent and the primate lineages. A high-resolution comparison of Gga10 with Hsa15 identified 19 conserved blocks, indicating the presence of at least 16 intrachromosomal rearrangement breakpoints in the bird lineage after the separation of birds and mammals. These results improve our knowledge of the evolution and dynamics of the vertebrate genomes and will aid in the clarification of the mechanisms that underlie the differentiation between the vertebrate species.  相似文献   

5.
Horizontal gene transfer has been occasionally mentioned in eukaryotic genomes, but such events appear much less numerous than in prokaryotes, where they play important functional and evolutionary roles. In yeasts, few independent cases have been described, some of which corresponding to major metabolic functions, but no systematic screening of horizontally transferred genes has been attempted so far. Taking advantage of the synteny conservation among five newly sequenced and annotated genomes of Saccharomycetaceae, we carried out a systematic search for HGT candidates amidst genes present in only one species within conserved synteny blocks. Out of 255 species-specific genes, we discovered 11 candidates for HGT, based on their similarity with bacterial proteins and on reconstructed phylogenies. This corresponds to a minimum of six transfer events because some horizontally acquired genes appear to rapidly duplicate in yeast genomes (e.g. YwqG genes in Kluyveromyces thermotolerans and serine recombinase genes of the IS607 family in Saccharomyces kluyveri). We show that the resulting copies are submitted to a strong functional selective pressure. The mechanisms of DNA transfer and integration are discussed, in relation with the generally small size of HGT candidates. Our results on a limited set of species expand by 50% the number of previously published HGT cases in hemiascomycetous yeasts, suggesting that this type of event is more frequent than usually thought. Our restrictive method does not exclude the possibility that additional HGT events exist. Actually, ancestral events common to several yeast species must have been overlooked, and the absence of homologs in present databases leaves open the question of the origin of the 244 remaining species-specific genes inserted within conserved synteny blocks.  相似文献   

6.
Using a data set of protein translations associated with map positions in the human genome, we identified 1520 mapped highly conserved gene families. By comparing sharing of families between genomic windows, we identified 92 potentially duplicated blocks in the human genome containing 422 duplicated members of these families. Using branching order in the phylogenetic trees, we timed gene duplication events in these families relative to the primate-rodent divergence, the amniote-amphibian divergence, and the deuterostome-protostome divergence. The results showed similar patterns of gene duplication times within duplicated blocks and outside duplicated blocks. Both within and outside duplicated blocks, numerous duplications were timed prior to the deuterostome-protostome divergence, whereas others occurred after the amniote-amphibian divergence. Thus, neither gene duplication in general nor duplication of genomic blocks could be attributed entirely to polyploidization early in vertebrate history. The strongest signal in the data was a tendency for intrachromosomal duplications to be more recent than interchromosomal duplications, consistent with a model whereby tandem duplication-whether of single genes or of genomic blocks-may be followed by eventual separation of duplicates due to chromosomal rearrangements. The rate of separation of tandemly duplicated gene pairs onto separated chromosomes in the human lineage was estimated at 1.7 x 10(-9) per gene-pair per year.  相似文献   

7.

Background  

Identifying syntenic regions, i.e., blocks of genes or other markers with evolutionary conserved order, and quantifying evolutionary relatedness between genomes in terms of chromosomal rearrangements is one of the central goals in comparative genomics. However, the analysis of synteny and the resulting assessment of genome rearrangements are sensitive to the choice of a number of arbitrary parameters that affect the detection of synteny blocks. In particular, the choice of a set of markers and the effect of different aggregation strategies, which enable coarse graining of synteny blocks and exclusion of micro-rearrangements, need to be assessed. Therefore, existing tools and resources that facilitate identification, visualization and analysis of synteny need to be further improved to provide a flexible platform for such analysis, especially in the context of multiple genomes.  相似文献   

8.
J. Ehrlich  D. Sankoff    J. H. Nadeau 《Genetics》1997,147(1):289-296
An important problem in comparative genome analysis has been defining reliable measures of synteny conservation. The published analytical measures of synteny conservation have limitations. Nonindependence of comparisons, conserved and disrupted syntenies that are as yet unidentified, and redundant rearrangements lead to systematic errors that tend to overestimate the degree of conservation. We recently derived methods to estimate the total number of conserved syntenies within the genome, counting both those that have already been described and those that remain to be discovered. With this method, we show that ~65% of the conserved syntenies have already been identified for humans and mice, that rates of synteny disruption vary ~25-fold among mammalian lineages, and that despite strong selection against reciprocal translocations, inter-chromosome rearrangements occurred approximately fourfold more often than inversions and other intra-chromosome rearrangements, at least for lineages leading to humans and mice.  相似文献   

9.
The recent sequencing of twelve insect genomes has enabled us to quantify their divergence using synteny conservation and sequence identity of single-copy orthologs. Protein identity correlates well with synteny and is about three times more conserved, an observation consistent with comparisons among vertebrates. The observed distribution of the lengths of synteny blocks follows a power law and differs from the expectations of the currently accepted random breakage model. Our results show that there is only limited selection for conservation of gene order and reveal a few hundred genes, proximity among which seems to be vital.  相似文献   

10.
Genome rearrangement events, including inversions and translocations, are frequently observed across related microbial species, but the impact of such events on functional diversity is unclear. To clarify this relationship, we compared 4 members of the Gram-negative Burkholderia family (Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cenocepacia) and identified a core set of 2,590 orthologs present in all 4 species (metagenes). The metagenes were organized into 255 synteny blocks whose relative order has been altered by a predicted minimum of 242 genome rearrangement events. Functionally, metagenes within individual synteny blocks were often related. The molecular divergence of metagenes adjacent to synteny breakpoints (boundary metagenes) was significantly greater compared with metagenes within blocks, suggesting an association between breakpoint locations and local fine-scale nucleotide alterations. This phenomenon, referred to as boundary element associated divergence, was also observed in Pseudomonas and Shigella, suggesting that this is a common phenomenon in prokaryotes. We also observed preferential localization of species-specific genes and insertion sequence element to synteny breakpoints in Burkholderia. Our results suggest that in prokaryotes, genome rearrangements may influence functional diversity through the enhanced divergence of boundary genes and the creation of foci for acquiring and deleting species-specific genes.  相似文献   

11.
Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage.  相似文献   

12.
13.
Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.  相似文献   

14.
Identification of conserved genomic regions within and between different genomes is crucial when studying genome evolution. Here, we described regions of strong synteny conservation between vertebrate deuterostomes (tetrapods and teleosts) and invertebrate deuterostomes (amphioxus and sea urchin). The shared gene contents across phylogenetically distant species demonstrate that the conservation of the regions stemmed from an ancestral segment instead of a series of independent convergent events. Comparison of the syntenic regions allows us to postulate the primitive gene organization in the last common ancestor of deuterostomes and the evolutionary events that occurred to the 3 distinct lineages of sea urchin, amphioxus, and vertebrates after their separation. In addition, alignment of the syntenic regions led to the identification of 8 noncoding evolutionarily conserved regions shared between amphioxus and vertebrates. To our knowledge, this is the first report of conserved noncoding sequences shared by vertebrates and nonvertebrates. These noncoding sequences have high possibility of being elements that regulate neighboring genes. They are likely to be a factor in the maintenance of conserved synteny over long phylogenetic distance in different deuterostome lineages.  相似文献   

15.
The divergence of lineages leading to extant squamate reptiles (lizards, snakes, and amphisbaenians) and birds occurred about 275 million years ago. Birds, unlike squamates, have karyotypes that are typified by the presence of a number of very small chromosomes. Hence, a number of chromosome rearrangements might be expected between bird and squamate genomes. We used chromosome-specific DNA from flow-sorted chicken (Gallus gallus) Z sex chromosomes as a probe in cross-species hybridization to metaphase spreads of 28 species from 17 families representing most main squamate lineages and single species of crocodiles and turtles. In all but one case, the Z chromosome was conserved intact despite very ancient divergence of sauropsid lineages. Furthermore, the probe painted an autosomal region in seven species from our sample with characterized sex chromosomes, and this provides evidence against an ancestral avian-like system of sex determination in Squamata. The avian Z chromosome synteny is, therefore, conserved albeit it is not a sex chromosome in these squamate species.  相似文献   

16.
Molecular mechanisms of ITS2 processing, a eukaryotic insertion between the 5.8S and LSU rRNA, remain largely elusive even in yeast. To delineate ITS2 structural and functional features which could be common to eukaryotes, we first produced phylo-genetically supported folding models in the vertebrate lineage, then tested them in deeper branchings and, more particularly, among yeasts. ITS2 comparisons between four Teleostei, a Chondrichthyes specimen and two jawless organisms have revealed a common folding architecture in four to five domains of secondary structure emerging from a preserved structural core. This folding, largely reminiscent of ITS2 architecture in mammals, is also preserved in amphibia and in chicken, despite dramatic sequence variations. Preferential conservation is located around a central loop and at the apex of a long stem in the ITS2 3'-half. Interestingly, these two independent structural features contain, respectively, the 3'-ends of the two transient rRNA precursors 8S and 12S RNA identified in mammals, suggesting a preservation of these intermediates of processing over the entire vertebrate group. Surprising similarities between the vertebrate ITS2 folding shape and that of invertebrates as well as protista have made intriguing the significant differences from the yeast model. A detailed comparative analysis including four relatively close species and Schizosaccharomyces pombe, a deep yeast branching, has revealed an alternative phylogenetically supported four-domain folding presenting strong similarities to the vertebrate model. Remarkably, the two best conserved regions of vertebrates have unambiguously preserved counterparts which are also sites for internal processing in yeast. Therefore, molecular mechanisms involved in ITS2 excision in vertebrates and yeast might be more closely related than currently believed and might require a very similar trans -acting machinery.  相似文献   

17.
Kumar S  Gadagkar SR  Filipski A  Gu X 《Genetics》2001,157(3):1387-1395
Genomic divergence between species can be quantified in terms of the number of chromosomal rearrangements that have occurred in the respective genomes following their divergence from a common ancestor. These rearrangements disrupt the structural similarity between genomes, with each rearrangement producing additional, albeit shorter, conserved segments. Here we propose a simple statistical approach on the basis of the distribution of the number of markers in contiguous sets of autosomal markers (CSAMs) to estimate the number of conserved segments. CSAM identification requires information on the relative locations of orthologous markers in one genome and only the chromosome number on which each marker resides in the other genome. We propose a simple mathematical model that can account for the effect of the nonuniformity of the breakpoints and markers on the observed distribution of the number of markers in different conserved segments. Computer simulations show that the number of CSAMs increases linearly with the number of chromosomal rearrangements under a variety of conditions. Using the CSAM approach, the estimate of the number of conserved segments between human and mouse genomes is 529 +/- 84, with a mean conserved segment length of 2.8 cM. This length is <40% of that currently accepted for human and mouse genomes. This means that the mouse and human genomes have diverged at a rate of approximately 1.15 rearrangements per million years. By contrast, mouse and rat are diverging at a rate of only approximately 0.74 rearrangements per million years.  相似文献   

18.
Whole-genome comparisons provide insight into genome evolution by informing on gene repertoires, gene gains/losses, and genome organization. Most of our knowledge about eukaryotic genome evolution is derived from studies of multicellular model organisms. The eukaryotic phylum Apicomplexa contains obligate intracellular protist parasites responsible for a wide range of human and veterinary diseases (e.g., malaria, toxoplasmosis, and theileriosis). We have developed an in silico protein-encoding gene based pipeline to investigate synteny across 12 apicomplexan species from six genera. Genome rearrangement between lineages is extensive. Syntenic regions (conserved gene content and order) are rare between lineages and appear to be totally absent across the phylum, with no group of three genes found on the same chromosome and in the same order within 25 kb up- and downstream of any orthologous genes. Conserved synteny between major lineages is limited to small regions in Plasmodium and Theileria/Babesia species, and within these conserved regions, there are a number of proteins putatively targeted to organelles. The observed overall lack of synteny is surprising considering the divergence times and the apparent absence of transposable elements (TEs) within any of the species examined. TEs are ubiquitous in all other groups of eukaryotes studied to date and have been shown to be involved in genomic rearrangements. It appears that there are different criteria governing genome evolution within the Apicomplexa relative to other well-studied unicellular and multicellular eukaryotes.  相似文献   

19.
Li M  Liu J  Zhang C 《PloS one》2011,6(10):e26999

Background

The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear.

Methodology/Principal Findings

The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes.

Conclusions/Significance

These results provide valuable insight into the evolutionary history of the vertebrate MAPK family.  相似文献   

20.
Comparative genetic maps of two species allow insights into the rearrangements of their genomes since divergence from a common ancestor. When the map details the positions of genes (or any set of orthologous DNA sequences) on chromosomes, syntenic blocks of one or more genes may be identified and used, with appropriate models, to estimate the number of chromosomal segments with conserved content conserved between species. We propose a model for the distribution of the lengths of unobserved segments on each chromosome that allows for widely differing chromosome lengths. The model uses as data either the counts of genes in a syntenic block or the distance between extreme members of a block, or both. The parameters of the proposed segment length distribution, estimated by maximum likelihood, give predictions of the number of conserved segments per chromosome. The model is applied to data from two comparative maps for the chicken, one with human and one with mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号