首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Soil respiration constitutes the second largest flux of carbon (C) between terrestrial ecosystems and the atmosphere. This study provides a synthesis of soil respiration (R s) in 20 European grasslands across a climatic transect, including ten meadows, eight pastures and two unmanaged grasslands. Maximum rates of R s ( ), R s at a reference soil temperature (10°C; ) and annual R s (estimated for 13 sites) ranged from 1.9 to 15.9 μmol CO2 m−2 s−1, 0.3 to 5.5 μmol CO2 m−2 s−1 and 58 to 1988 g C m−2 y−1, respectively. Values obtained for Central European mountain meadows are amongst the highest so far reported for any type of ecosystem. Across all sites was closely related to . Assimilate supply affected R s at timescales from daily (but not necessarily diurnal) to annual. Reductions of assimilate supply by removal of aboveground biomass through grazing and cutting resulted in a rapid and a significant decrease of R s. Temperature-independent seasonal fluctuations of R s of an intensively managed pasture were closely related to changes in leaf area index (LAI). Across sites increased with mean annual soil temperature (MAT), LAI and gross primary productivity (GPP), indicating that assimilate supply overrides potential acclimation to prevailing temperatures. Also annual R s was closely related to LAI and GPP. Because the latter two parameters were coupled to MAT, temperature was a suitable surrogate for deriving estimates of annual R s across the grasslands studied. These findings contribute to our understanding of regional patterns of soil C fluxes and highlight the importance of assimilate supply for soil CO2 emissions at various timescales.  相似文献   

2.
Soil respiration in six temperate forests in China   总被引:14,自引:0,他引:14  
Scaling soil respiration (RS), the major CO2 source to the atmosphere from terrestrial ecosystems, from chamber‐based measurements to ecosystems requires studies on variations and correlations of RS from various biomes and across geographic regions. However, few studies on RS are available for Chinese temperate forest despite the importance of this forest in the national and global carbon budgets. In this study, we conducted 18‐month RS measurements during 2004–2005 in six temperate forest types, representing the typical secondary forest ecosystems across various site conditions in northeastern China: Mongolian oak (Quercus mongolica Fisch.), aspen‐birch (Populous davidiana Dode and Betula platyphylla Suk.), mixed deciduous (no dominant tree species), hardwood (dominated by Fraxinus mandshurica Rupr., Juglans mandshurica Maxim., and Phellodendron amurense Rupr.) forests, Korean pine (Pinus koraiensis Sieb. et Zucc.) and Dahurian larch (Larix gmelinii Rupr.) plantations. Our specific objectives were to: (1) explore relationships of RS against soil temperature and water content for the six forest ecosystems, (2) quantify annual soil surface CO2 flux and its relations to belowground carbon storage, (3) examine seasonal variations in RS and related environmental factors, and (4) quantify among‐ and within‐ecosystem variations in RS. The RS was positively correlated to soil temperature in all forest types, and was significantly influenced by the interactions of soil temperature and water content in the pine, larch, and mixed deciduous forests. The sensitivity of RS to soil temperature at 10 cm depth (Q10) ranged from 2.61 in the oak forest to 3.75 in the aspen‐birch forests. The Q10 tended to increase with soil water content until reaching a threshold, and then decline. The annual RS for the larch, pine, hardwood, oak, mixed deciduous, and aspen‐birch forests averaged 403, 514, 781, 785, 786, and 813 g C m?2 yr?1, respectively. The annual RS of the broadleaved forests was 72% greater than that of the coniferous forests. The annual RS was positively correlated to soil organic carbon (SOC) concentration at O horizon (R2=0.868) and total biomass of roots <0.5 cm in diameter (R2=0.748). The coefficient of variation (CV) of RS among forest types averaged 25% across the 18‐month measurements. The CV of RS within plots varied from 20% to 27%, significantly (P<0.001) greater than those among plots (9–15%), indicating the importance of the fine‐scaled heterogeneity in RS. This study emphasized that variations in soil respiration and potential sampling bias should be appropriately tackled for accurate soil CO2 flux estimates.  相似文献   

3.
To quantify stem respiration (RS) under elevated CO2 (eCO2), stem CO2 efflux (EA) and CO2 flux through the xylem (FT) should be accounted for, because part of respired CO2 is transported upwards with the sap solution. However, previous studies have used EA as a proxy of RS, which could lead to equivocal conclusions. Here, to test the effect of eCO2 on RS, both EA and FT were measured in a free‐air CO2 enrichment experiment located in a mature Eucalyptus native forest. Drought stress substantially reduced EA and RS, which were unaffected by eCO2, likely as a consequence of its neutral effect on stem growth in this phosphorus‐limited site. However, xylem CO2 concentration measured near the stem base was higher under eCO2, and decreased along the stem resulting in a negative contribution of FT to RS, whereas the contribution of FT to RS under ambient CO2 was positive. Negative FT indicates net efflux of CO2 respired below the monitored stem segment, likely coming from the roots. Our results highlight the role of nutrient availability on the dependency of RS on eCO2 and suggest stimulated root respiration under eCO2 that may shift vertical gradients in xylem [CO2] confounding the interpretation of EA measurements.  相似文献   

4.
We used estimates of autotrophic respiration (RA), net primary productivity (NPP) and soil CO2 evolution (Sff), to develop component carbon budgets for 12‐year‐old loblolly pine plantations during the fifth year of a fertilization and irrigation experiment. Annual carbon use in RA was 7.5, 9.0, 15.0, and 15.1 Mg C ha?1 in control (C), irrigated (I), fertilized (F) and irrigated and fertilized (IF) treatments, respectively. Foliage, fine root and perennial woody tissue (stem, branch, coarse and taproot) respiration accounted for, respectively, 37%, 24%, and 39% of RA in C and I treatments and 38%, 12% and 50% of RA in F and IF treatments. Annual gross primary production (GPP=NPP+RA) ranged from 13.1 to 26.6 Mg C ha?1. The I, F, and IF treatments resulted in a 21, 94, and 103% increase in GPP, respectively, compared to the C treatment. Despite large treatment differences in NPP, RA, and carbon allocation, carbon use efficiency (CUE=NPP/GPP) averaged 0.42 and was unaffected by manipulating site resources. Ecosystem respiration (RE), the sum of Sff, and above ground RA, ranged from 12.8 to 20.2 Mg C ha?1 yr?1. Sff contributed the largest proportion of RE, but the relative importance of Sff decreased from 0.63 in C treatments to 0.47 in IF treatments because of increased aboveground RA. Aboveground woody tissue RA was 15% of RE in C and I treatments compared to 25% of RE in F and IF treatments. Net ecosystem productivity (NEP=GPP‐RE) was roughly 0 in the C and I treatments and 6.4 Mg C ha?1 yr?1 in F and IF treatments, indicating that non‐fertilized treatments were neither a source nor a sink for atmospheric carbon while fertilized treatments were carbon sinks. In these young stands, NEP is tightly linked to NPP; increased ecosystem carbon storage results mainly from an increase in foliage and perennial woody biomass.  相似文献   

5.
Soil surface CO2 flux (RS) is overwhelmingly the product of respiration by roots (autotrophic respiration, RA) and soil organisms (heterotrophic respiration, RH). Many studies have attempted to partition RS into these two components, with highly variable results. This study analyzes published data encompassing 54 forest sites and shows that RA and RH are each strongly (R2>0.8) correlated to annual RS across a wide range of forest ecosystems. Monte Carlo simulation showed that these correlations were significantly stronger than any correlation introduced as an artefact of measurement method. Biome type, measurement method, mean annual temperature, soil drainage, and leaf habit were not significant. For sites with available data, there was a significant (R2=0.56) correlation between total detritus input and RH, while RA was unrelated to net primary production. We discuss why RA and RH might be related to each other on large scales, as both ultimately depend on forest carbon balance and photosynthate supply. Limited data suggest that these or similar relationships have broad applicability in other ecosystem types. Site‐specific measurements are always more desirable than the application of inferred broad relationships, but belowground measurements are difficult and expensive, while measuring RS is straightforward and commonly done. Thus the relationships presented here provide a useful method that can help constrain estimates of terrestrial carbon budgets.  相似文献   

6.
Wetlands play an important role in regulating the atmospheric carbon dioxide (CO2) concentrations and thus affecting the climate. However, there is still lack of quantitative evaluation of such a role across different wetland types, especially at the global scale. Here, we conducted a meta‐analysis to compare ecosystem CO2 fluxes among various types of wetlands using a global database compiled from the literature. This database consists of 143 site‐years of eddy covariance data from 22 inland wetland and 21 coastal wetland sites across the globe. Coastal wetlands had higher annual gross primary productivity (GPP), ecosystem respiration (Re), and net ecosystem productivity (NEP) than inland wetlands. On a per unit area basis, coastal wetlands provided large CO2 sinks, while inland wetlands provided small CO2 sinks or were nearly CO2 neutral. The annual CO2 sink strength was 93.15 and 208.37 g C m?2 for inland and coastal wetlands, respectively. Annual CO2 fluxes were mainly regulated by mean annual temperature (MAT) and mean annual precipitation (MAP). For coastal and inland wetlands combined, MAT and MAP explained 71%, 54%, and 57% of the variations in GPP, Re, and NEP, respectively. The CO2 fluxes of wetlands were also related to leaf area index (LAI). The CO2 fluxes also varied with water table depth (WTD), although the effects of WTD were not statistically significant. NEP was jointly determined by GPP and Re for both inland and coastal wetlands. However, the NEP/Re and NEP/GPP ratios exhibited little variability for inland wetlands and decreased for coastal wetlands with increasing latitude. The contrasting of CO2 fluxes between inland and coastal wetlands globally can improve our understanding of the roles of wetlands in the global C cycle. Our results also have implications for informing wetland management and climate change policymaking, for example, the efforts being made by international organizations and enterprises to restore coastal wetlands for enhancing blue carbon sinks.  相似文献   

7.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   

8.
S. LUYSSAERT  I. INGLIMA  M. JUNG  A. D. RICHARDSON  M. REICHSTEIN  D. PAPALE  S. L. PIAO  E. ‐D. SCHULZE  L. WINGATE  G. MATTEUCCI  L. ARAGAO  M. AUBINET  C. BEER  C. BERNHOFER  K. G. BLACK  D. BONAL  J. ‐M. BONNEFOND  J. CHAMBERS  P. CIAIS  B. COOK  K. J. DAVIS  A. J. DOLMAN  B. GIELEN  M. GOULDEN  J. GRACE  A. GRANIER  A. GRELLE  T. GRIFFIS  T. GRÜNWALD  G. GUIDOLOTTI  P. J. HANSON  R. HARDING  D. Y. HOLLINGER  L. R. HUTYRA  P. KOLARI  B. KRUIJT  W. KUTSCH  F. LAGERGREN  T. LAURILA  B. E. LAW  G. LE MAIRE  A. LINDROTH  D. LOUSTAU  Y. MALHI  J. MATEUS  M. MIGLIAVACCA  L. MISSON  L. MONTAGNANI  J. MONCRIEFF  E. MOORS  J. W. MUNGER  E. NIKINMAA  S. V. OLLINGER  G. PITA  C. REBMANN  O. ROUPSARD  N. SAIGUSA  M. J. SANZ  G. SEUFERT  C. SIERRA  M. ‐L. SMITH  J. TANG  R. VALENTINI  T. VESALA  I. A. JANSSENS 《Global Change Biology》2007,13(12):2509-2537
Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome‐specific carbon budgets; to re‐examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome‐specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non‐CO2 carbon fluxes are not presently being adequately accounted for.  相似文献   

9.
The value of ecosystems functions performed by forests in the climate change era has prompted increasing attention towards assessment of carbon stocks and fluxes in tropical forests. The aim of this study was to understand how forest management approaches and environmental controls impacted on soil CO2 efflux in a tropical Eastern Mau forest which is one of the blocks of the greater Mau complex in Kenya. Nested experimental design approach was employed where 32 plots were nested into four blocks (disturbed natural, undisturbed natural, plantation and glades). In 10 m2 plots, data were collected on soil CO2 efflux, soil temperature and soil moisture using soda lime methods, direct measurement and proxy techniques, respectively. There was significant forest management type effect (F3,127 = 3.01, p = 0.033) and seasonality effect (t test = 3.31, df = 1, p < 0.05) on mean soil CO2 efflux. The recorded mean soil CO2 efflux levels were as follows: plantation forest (9.219 ± 3.067 g C M?2 day?1), undisturbed natural forest (8.665 ± 4.818 g C M?2 day?1), glades (8.592 ± 3.253 g C M?2 day?1) and disturbed natural forest (7.198 ± 3.457 g C M?2 day?1). The study concludes that managing a forest in plantation form is primarily responsible for forest soil CO2 efflux levels due to aspects such as increased microbial activity and root respiration. However, further studies are required to understand the role and impact of soil CO2 efflux on the greater forest carbon budget.  相似文献   

10.
To investigate annual variation in soil respiration (R S) and its components [autotrophic (R A) and heterotrophic (R H)] in relation to seasonal changes in soil temperature (ST) and soil water content (SWC) in an Abies holophylla stand (stand A) and a Quercus-dominated stand (stand Q), we set up trenched plots and measured R S, ST and SWC for 2 years. The mean annual rate of R S was 436 mg CO2 m−2 h−1, ranging from 76 to 1,170 mg CO2 m−2 h−1, in stand A and 376 mg CO2 m−2 h−1, ranging from 82 to 1,133 mg CO2 m−2 h−1, in stand Q. A significant relationship between R S and its components and ST was observed over the 2 years in both stands, whereas a significant correlation between R A and SWC was detected only in stand Q. On average over the 2 years, R A accounted for approximately 34% (range 17–67%) and 31% (15–82%) of the variation in R S in stands A and Q, respectively. Our results suggested that vegetation type did not significantly affect the annual mean contributions of R A or R H, but did affect the pattern of seasonal change in the contribution of R A to R S.  相似文献   

11.
Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m?2 d?1 and absorbed 1.6 ± 0.2 g CO2‐C m?2 d?1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4‐C m?2 d?1) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m?2 (as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m?2in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.  相似文献   

12.
王苗苗  王绍强  陈斌  张心怡  赵健 《生态学报》2023,43(6):2408-2418
CO2施肥效应是全球变绿的主要原因,随着大气中CO2浓度的持续增加,预估未来气候变化条件下,CO2施肥效应对陆地生态系统的影响对减缓全球气候变化具有重大意义。基于未来气候情景数据和Farquhar模型,并结合生态过程模型BEPS(Boreal Ecosystem Productivity Simulator),定量化研究2020—2050年CO2施肥效应对全球叶面积指数(LAI)和总初级生产力(GPP)的影响。研究结果显示2020—2050年,在RCP2.6、RCP4.5和RCP8.5气候情景下,CO2施肥效应导致的LAI年际变化趋势分别为0.002、0.003和0.005 m-2m-2a-1;三个气候情景下CO2施肥效应对LAI的影响为CO2每增加0.1%,LAI平均增加约8.1%—9.2%,由此导致GPP对应增加7.9%—14.6%;由CO2施...  相似文献   

13.
Net biome productivity (NBP) dominates the observed large variation of atmospheric CO2 annual increase over the last five decades. However, the dominant regions controlling inter‐annual to multi‐decadal variability of global NBP are still controversial (semi‐arid regions vs. temperate or tropical forests). By developing a theory for partitioning the variance of NBP into the contributions of net primary production (NPP) and heterotrophic respiration (Rh) at different timescales, and using both observation‐based atmospheric CO2 inversion product and the outputs of 10 process‐based terrestrial ecosystem models forced by 110‐year observational climate, we tried to reconcile the controversy by showing that semi‐arid lands dominate the variability of global NBP at inter‐annual (<10 years) and tropical forests dominate at multi‐decadal scales (>30 years). Results further indicate that global NBP variability is dominated by the NPP component at inter‐annual timescales, and is progressively controlled by Rh with increasing timescale. Multi‐decadal NBP variations of tropical rainforests are modulated by the Pacific Decadal Oscillation (PDO) through its significant influences on both temperature and precipitation. This study calls for long‐term observations for the decadal or longer fluctuations in carbon fluxes to gain insights on the future evolution of global NBP, particularly in the tropical forests that dominate the decadal variability of land carbon uptake and are more effective for climate mitigation.  相似文献   

14.
Partitioning soil respiration (RS) into heterotrophic (RH) and rhizospheric (RR) components is an important step for understanding and modeling carbon cycling in forest ecosystems, but few studies on RR and RH exist in Chinese temperate forests. In this study, we used a trenching plot approach to partition RS in six temperate forests in northeastern China. Our specific objectives were to (1) examine seasonal patterns of soil surface CO2 fluxes from trenched (RT) and untrenched plots (RUT) of these forests; (2) quantify annual fluxes of RS components and their relative contributions in the forest ecosystems; and (3) examine effects of plot trenching on measurements of RS and related environmental factors. The RT maximized in early growing season, but the difference between RUT and RT peaked in later summer. The annual fluxes of RH and RR varied with forest types. The estimated values of RH for the Korean pine (Pinus koraiensis Sieb. et Zucc.), Dahurian larch (Larix gmelinii Rupr.), aspen‐birch (Populous davidiana Dode and Betula platyphylla Suk.), hardwood (Fraxinus mandshurica Rupr., Juglans mandshurica Maxim. and Phellodendron amurense Rupr.), Mongolian oak (Quercus mongolica Fisch.) and mixed deciduous (no dominant tree species) forests averaged 89, 196, 187, 245, 261 and 301 g C m−2 yr−1, respectively; those of RR averaged 424, 209, 628, 538, 524 and 483 g C m−2 yr−1, correspondingly; calculated contribution of RR to RS (RC) varied from 52% in the larch forest to 83% in the pine forest. The annual flux of RR was strongly correlated to biomass of roots <0.5 cm in diameter, while that of RH was weakly correlated to soil organic carbon concentration at A horizon. We concluded that vegetation type and associated carbon metabolisms of temperate forests should be considered in assessing and modeling RS components. The significant impacts of changed soil physical environments and substrate availability by plot trenching should be appropriately tackled in analyzing and interpreting measurements of RS components.  相似文献   

15.
The area of forest established through afforestation/reforestation has been increasing on a global scale, which is particularly important as these planted forests attenuate climate change by sequestering carbon. However, the determinants of soil organic carbon (SOC) sequestration and their contribution to the ecosystem carbon sink of planted forests remain uncertain. By using globally distributed data extracted from 154 peer‐reviewed publications and a total of 355 sampling points, we investigated above‐ground biomass carbon (ABC) sequestration and SOC sequestration across three different climatic zones (tropical, warm temperate, and cold temperate) through correlation analysis, regression models, and structural equation modeling (SEM). We found that the proportion of SOC sequestration in the ecosystem C sequestration averaged 14.1% globally, being the highest (27.0%) in the warm temperate and the lowest (10.7%) in the tropical climatic zones. The proportion was mainly affected by latitude. The sink rate of ABC (RABC) in tropical climates (2.48 Mg C ha?1 year?1) and the sink rate of SOC (RSOC) in warm temperate climates (0.96 Mg C ha?1 year?1) were higher than other climatic zones. The main determinants of RSOC were the number of frost‐free days, latitude, mean annual precipitation (MAP), and SOC density (SOCD) at the initial observation; however, these variables depended on the climatic zone. According to the SEM, frost‐free period, mean annual temperature (MAT) and MAP are the dominant driving factors affecting RSOC in Chinese plantations. MAT has a positive effect on RSOC, and global warming may increase RSOC of temperate plantations in China. Our findings highlight the determinants of SOC sequestration and quantitatively reveal the substantial global contribution of SOC sequestration to ecosystem carbon sink provided by planted forests. Our results help managers identify and control key factors to increase carbon sequestration in forest ecosystems.  相似文献   

16.
Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf‐level ChlF was linked with canopy‐scale solar‐induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R= 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P < 0.0001). We developed a model to estimate GPP from the tower‐based measurement of SIF and leaf‐level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R= 0.68; P < 0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf Fq/Fm, the fraction of absorbed photons that are used for photochemistry for a light‐adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy SIF yield (SIF/APAR, R= 0.79; P < 0.0001). We also found that canopy SIF and SIF‐derived GPP (GPPSIF) were strongly correlated to leaf‐level biochemistry and canopy structure, including chlorophyll content (R= 0.65 for canopy GPPSIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R= 0.35 for canopy GPPSIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R= 0.36 for canopy GPPSIF and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.  相似文献   

17.
Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72, p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79, p < 0.0001) except evergreen broadleaf forests (R2 = 0.16, p < 0.05) at the daily timescale. A higher slope was found for C4 grasslands and croplands than for C3 ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.  相似文献   

18.
Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO2 (eCO2) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007–2012) of flux‐derived GPP data from the Prairie Heating and CO2 Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems. The model was extended by modeling maximum photosynthetic rate (Amax) and light‐use efficiency (Q) as functions of soil water, air temperature, vapor pressure deficit, vegetation greenness, and nitrogen at current and antecedent (past) timescales. The model fits the observed GPP well (R2 = 0.79), which was confirmed by other model performance checks that compared different variants of the model (e.g. with and without antecedent effects). Stimulation of cumulative 6‐year GPP by warming (29%, P = 0.02) and eCO2 (26%, P = 0.07) was primarily driven by enhanced C uptake during spring (129%, P = 0.001) and fall (124%, P = 0.001), respectively, which was consistent across years. Antecedent air temperature (Tairant) and vapor pressure deficit (VPDant) effects on Amax (over the past 3–4 days and 1–3 days, respectively) were the most significant predictors of temporal variability in GPP among most treatments. The importance of VPDant suggests that atmospheric drought is important for predicting GPP under current and future climate; we highlight the need for experimental studies to identify the mechanisms underlying such antecedent effects. Finally, posterior estimates of cumulative GPP under control and eCO2 treatments were tested as a benchmark against 12 terrestrial biosphere models (TBMs). The narrow uncertainties of these data‐driven GPP estimates suggest that they could be useful semi‐independent data streams for validating TBMs.  相似文献   

19.
The relationship between gross primary productivity (GPP) and net primary productivity (NPP) is not fully understood. One of the uncertainties relevant to this issue is the magnitude of woody tissue respiration. Although some data exist for temperate and boreal zones, measurements of woody tissue respiration in tropical forests are sparse. We made in situ chamber measurements of woody tissue respiration in two tropical rain forests, one in the Brazilian Amazon (Reserva Jarú) and one in Central Cameroon (Mbalmayo Reserve). We made measurements on a wide range of species at each site and over a range of stem diameters from 0·02 to 1·4 m. The rate of efflux of carbon dioxide (CO2) from bark at 25 °C, Rt, varied from 0·1 to 5·2 µmol m?2 s?1 across the two sites, and the efflux was related to both volume and surface area components of the measured stem sections. The temperature response in Rt was slightly higher at Jarú than at Mbalmayo, with Q10 values of 1·8 (± 0·1 SE) and 1·6 (± 0·1 SE), respectively. A log–log regression showed that Rt was significantly related to stem diameter, D (P < 0·001; r2 = 0·58–0·62) and was significantly higher at Mbalmayo than at Jarú (P < 0·001), but that the rate of increase in Rt with stem diameter, D, was similar between sites. At the Mbalmayo site, tree growth measurements made over a 4 month period were used to make two estimates of the maintenance (Rm) and construction (Rc) components of respiration embedded in Rt. The two methods agreed closely, suggesting that Rm was approximately 80% of Rc at this site. Rm could be strongly related to D using a sigmoidal relationship that described both surface area and volume components as sources of respiratory CO2 (r2 = 0·71). This functional model was combined with inventory, growth and climate data for the Mbalmayo site to make a first estimate of annual above‐ground woody tissue respiration, RA, which was 257 (± 18 SE) g C m?2 year?1. This value corresponds to approximately 10% of GPP, slightly lower than that found for another tropical rain forest, but higher than for temperate forests. When combined with data from six other sites in tropical, temperate and boreal settings, a very strong relationship was found between RA and leaf area index (LAI), and between RA/GPP and LAI (P < 0·001, r2 = 0·98). This indicates that RA exerts an appreciable constraint on NPP and that this constraint varies closely with LAI across widely differing types of woody vegetation.  相似文献   

20.
This paper presents CO2 flux data from 18 forest ecosystems, studied in the European Union funded EUROFLUX project. Overall, mean annual gross primary productivity (GPP, the total amount of carbon (C) fixed during photosynthesis) of these forests was 1380 ± 330 gC m?2 y?1 (mean ±SD). On average, 80% of GPP was respired by autotrophs and heterotrophs and released back into the atmosphere (total ecosystem respiration, TER = 1100 ± 260 gC m?2 y?1). Mean annual soil respiration (SR) was 760 ± 340 gC m?2 y?1 (55% of GPP and 69% of TER). Among the investigated forests, large differences were observed in annual SR and TER that were not correlated with mean annual temperature. However, a significant correlation was observed between annual SR and TER and GPP among the relatively undisturbed forests. On the assumption that (i) root respiration is constrained by the allocation of photosynthates to the roots, which is coupled to productivity, and that (ii) the largest fraction of heterotrophic soil respiration originates from decomposition of young organic matter (leaves, fine roots), whose availability also depends on primary productivity, it is hypothesized that differences in SR among forests are likely to depend more on productivity than on temperature. At sites where soil disturbance has occurred (e.g. ploughing, drainage), soil espiration was a larger component of the ecosystem C budget and deviated from the relationship between annual SR (and TER) and GPP observed among the less‐disturbed forests. At one particular forest, carbon losses from the soil were so large, that in some years the site became a net source of carbon to the atmosphere. Excluding the disturbed sites from the present analysis reduced mean SR to 660 ± 290 gC m?2 y?1, representing 49% of GPP and 63% of TER in the relatively undisturbed forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号