首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  1. Elevated levels of anthropogenic noise, especially those observed through boating activity, can negatively impact fish species, but it remains unclear which species are most affected and which behavioural metrics are best used in assessing fish responses to underwater noise. The effects of boat sounds on freshwater species are of particular interest because freshwater environments are less studied than the marine realm despite comparably high levels of biodiversity.
  2. In the current study, we examine the behavioural responses to boat noise in two freshwater species that differ in their hypothesised response to sound inputs: the spottail shiner (Notropis hudsonius), a species with known hearing specialisations, and the bluegill sunfish (Lepomis macrochirus), a species with more generalised hearing capabilities. Fish were presented with boat noise in a laboratory setting, and their swimming, escape and foraging behaviours were assessed to examine differential responses in relation to hypothesised hearing abilities.
  3. Both species showed a decrease in general swimming behaviours but an increase in erratic movements in response to boat noise, indicative of stress responses for both species. Despite the similarities in response based on swimming behaviours however, only spottail shiners exhibited true escape responses to the onset of the noise stimulus, suggesting a more extreme reaction in the species with a more refined hearing ability.
  4. Taken together, these results show that freshwater fish can respond to increased levels of anthropogenic noise, but that the severity of the response may differ based on auditory structures and therefore presumed hearing ability. The differences seen between behavioural metrics used (swimming vs. escape responses) also demonstrate how care must be taken in choosing a metric when developing exposure guidelines for underwater sound exposures, as different metrics could lead to differential impact assessments.
  相似文献   

2.
The wild stocks of large yellow croaker Larimichthys crocea and yellow drum Nibea albiflora have been depleted since the 1980. Although the Chinese government has put a lot of effort (e.g., implementing fishing ban and releasing artificially bred fish into naturally distributed sea areas) into restoring their natural resources, the restoration still fails to expectation. We speculate that the slow restoration may be related to the increasing ship noise near the spawning grounds of these two species of fish. To test the harmfulness of ship noise on the L. crocea and N. albiflora, in our previous study, we studied the impacts of ship noise on their behaviors, parallelly, in the present study, we focused on the impacts of noise on their immunophysiological responses. We designed two experiments. In the first experiment, the juveniles were exposed to 120 dB ship noise for only once, then the plasma physiological indices were monitored every 1 hr within 4 hr. In the second experiment, the juveniles were exposed to 120 dB noise twice a day for 30 days, afterwards, the growth, plasma immune indices and intestinal microbiota were analyzed. The results showed that stimulated by ship noise, the physiological indices of L. crocea and N. albiflora both increased sharply within 3 hr. After a month noise stimulation, the growth and immune indices decreased significantly, and the proportion of intestinal microbiota was seriously imbalanced, showing Vibrio and Pseudomonas were dominant and other genera's abundance was quite low, especially some common intestinal probiotics. In addition, we also found that N. albiflora may be more sensitive to ship noise than L. crocea in terms of the required duration of physiological indices recovering to unstimulated level, and growth. This study highlights that ship noise negatively affects L. crocea and N. albiflora, which is helpful for some departments taking measures to protect the natural resource of these two species of fish.  相似文献   

3.
4.
Better understanding of the mechanisms underlying interindividual variation in stress responses and their links with production traits is a key issue for sustainable animal breeding. In this study, we searched for quantitative trait loci (QTL) controlling the magnitude of the plasma cortisol stress response and compared them to body size traits in five F2 full‐sib families issued from two rainbow trout lines divergently selected for high or low post‐confinement plasma cortisol level. Approximately 1000 F2 individuals were individually tagged and exposed to two successive acute confinement challenges (1 month interval). Post‐stress plasma cortisol concentrations were determined for each fish. A medium density genome scan was carried out (268 markers, overall marker spacing less than 10 cM). QTL detection was performed using qtlmap software, based on an interval mapping method ( http://www.inra.fr/qtlmap ). Overall, QTL of medium individual effects on cortisol responsiveness (<10% of phenotypic variance) were detected on 18 chromosomes, strongly supporting the hypothesis that control of the trait is polygenic. Although a core array of QTL controlled cortisol concentrations at both challenges, several QTL seemed challenge specific, suggesting that responses to the first and to a subsequent exposure to the confinement stressor are distinct traits sharing only part of their genetic control. Chromosomal location of the steroidogenic acute regulatory protein (STAR) makes it a good potential candidate gene for one of the QTL. Finally, comparison of body size traits QTL (weight, length and body conformation) with cortisol‐associated QTL did not support evidence for negative genetic relationships between the two types of traits.  相似文献   

5.
6.
Systematic sequencing is the method of choice for generating genomic resources for molecular marker development and candidate gene identification in nonmodel species. We generated 47 357 Sanger ESTs and 2.2M Roche‐454 reads from five cDNA libraries for European beech (Fagus sylvatica L.). This tree species of high ecological and economic value in Europe is among the most representative trees of deciduous broadleaf forests. The sequences generated were assembled into 21 057 contigs with MIRA software. Functional annotations were obtained for 85% of these contigs, from the proteomes of four plant species, Swissprot accessions and the Gene Ontology database. We were able to identify 28 079 in silico SNPs for future marker development. Moreover, RNAseq and qPCR approaches identified genes and gene networks regulated differentially between two critical phenological stages preceding vegetative bud burst (the quiescent and swelling buds stages). According to climatic model‐based projection, some European beech populations may be endangered, particularly at the southern and eastern edges of the European distribution range, which are strongly affected by current climate change. This first genomic resource for the genus Fagus should facilitate the identification of key genes for beech adaptation and management strategies for preserving beech adaptability.  相似文献   

7.
Isocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO2 is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described. Our data show that isocitrate lyase is required for growth in darkness on acetate (heterotrophic conditions), as well as for efficient growth in the light when acetate is supplied (mixotrophic conditions). Under these latter conditions, reduced acetate assimilation and concomitant reduced respiration occur, and biomass composition analysis reveals an increase in total fatty acid content, including neutral lipids and free fatty acids. Quantitative proteomic analysis by 14N/15N labelling was performed, and more than 1600 proteins were identified. These analyses reveal a strong decrease in the amounts of enzymes of the glyoxylate cycle and gluconeogenesis in parallel with a shift of the TCA cycle towards amino acid synthesis, accompanied by an increase in free amino acids. The decrease of the glyoxylate cycle and gluconeogenesis, as well as the decrease in enzymes involved in β–oxidation of fatty acids in the icl mutant are probably major factors that contribute to remodelling of lipids in the icl mutant. These modifications are probably responsible for the elevation of the response to oxidative stress, with significantly augmented levels and activities of superoxide dismutase and ascorbate peroxidase, and increased resistance to paraquat.  相似文献   

8.
9.
10.
Temperature and nutrition are among the most important environmental factors affecting ectotherm growth. As temperature and host‐plant quality often co‐vary in nature, the interaction between the two is of potentially high ecological importance for herbivorous insects. We here use the temperate‐zone butterfly Pieris napi L. (Lepidoptera: Pieridae) to investigate interactive effects of larval rearing temperature and host‐plant quality (by manipulating water availability) on larval growth. As growth rates have been hypothesized to govern stress tolerance, we additionally assessed adult starvation resistance. Butterflies followed the ‘temperature‐size rule’, which states that body size increases at lower developmental temperatures, proximately caused by differences in growth increment, which resulted from increased consumption at the lower temperature. Larvae benefitted from feeding on stressed plants from the low‐water regime by having higher body mass, growth rate, and food conversion efficiency, thus supporting the plant stress hypothesis, which predicts that plant quality for herbivores should increase if stress is imposed on plants. Some effects of host‐plant quality on larval growth parameters were as strong as or even stronger than effects of temperature, whereas interactive effects between temperature and food quality were scarce. At the low temperature, adult starvation resistance was higher than at the higher temperature and females were more resistant than males, whereas plant water regime had no clear impact. No evidence was found for a trade‐off between growth rate and starvation resistance. This study illustrates the importance of considering effects of host‐plant quality along with variation in other environmental factors for estimating the impact of environmental changes on herbivorous species.  相似文献   

11.
The frequency of extreme events, such as cold spells, is expected to increase under global warming. Therefore, the ability of insects to survive rapid changes in temperature is an important aspect to investigate in current population ecology. The hemlock looper (HL), Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae), a defoliator of boreal balsam fir forests in eastern Canada, overwinters at the egg stage on tree trunks and branches where eggs can be exposed to very low subzero air temperatures. Using eggs from the island of Newfoundland (NL) and Quebec mainland (QC), we undertook field and laboratory experiments to determine: (1) their supercooling point (SCP) in mid‐January and mid‐February; (2) overwintering mortality; (3) cold tolerance to various combinations of subzero temperatures (?25, ?30, ?33, ?35, or ?37 °C) and exposure durations (2, 4, 8, 12, or 16 h); and (4) potential causes of death at subzero temperatures above the SCP. Regardless of population or sampling date, eggs supercooled on average at ?40.1 °C. In the field, 59% of eggs from either population that overwintered in Sainte‐Foy (QC) and Corner Brook (NL) hatched successfully, whereas none did in Armagh (QC) or Epaule (QC). In the laboratory, 50% of eggs survived after 4 h at ?34.4 °C or after 14 h at ?32.9 °C. In contrast, regardless of exposure duration, >50% of eggs hatched at temperatures ≥?33 °C, but <50% did so at ≤?35 °C, suggesting high pre‐freeze mortality. However, when eggs were attached to thermocouples and exposed to temperatures ranging from ?25 to ?37 °C for 16 h, 69% froze at temperatures of ?35 to ?37 °C, but only 2% did at ?25 or ?30 °C. Time to freeze decreased as subzero temperatures declined, and this was more evident in island eggs than in mainland eggs. Overall, eggs can freeze after a brief exposure to subzero temperatures higher than the standard SCP, and are thus highly vulnerable to cold spells.  相似文献   

12.
13.
Southeastern Australian waters are warming at nearly four times the global average rate (~0.7°C · century?1) driven by strengthening incursions of the warm oligotrophic East Australian Current. The growth rate hypothesis (GRH) predicts that nutrient depletion will impact more severely on seaweeds at high latitudes with compressed growth seasons. This study investigates the effects of temperature and nutrients on the ecophysiology of the habitat‐forming seaweed Phyllospora comosa in a laboratory experiment using temperature (12°C, 17°C, 22°C) and nutrient (0.5, 1.0, 3.0 μM NO3?) scenarios representative of observed variation among geographic regions. Changes in growth, photosynthetic characteristics (via chlorophyll fluorescence), pigment content, tissue chemistry (δ13C, % C, % N, C:N) and nucleic acid characteristics (absolute RNA and DNA, RNA:DNA ratios) were determined in seaweeds derived from cool, high‐latitude and warm, low‐latitude portions of the species’ range. Performance of P. comosa was unaffected by nitrate availability but was strongly temperature‐dependent, with photosynthetic efficiency, growth, and survival significantly impaired at 22°C. While some physiological processes (photosynthesis, nucleic acid, and accessory pigment synthesis) responded rapidly to temperature, others (C/N dynamics, carbon concentrating processes) were largely invariant and biogeographic variation in these characteristics may only occur through genetic adaptation. No link was detected between nutrient availability, RNA synthesis and growth, and the GRH was not supported in this species. While P. comosa at high latitudes may be less susceptible to oligotrophy than predicted by the GRH, warming water temperatures will have deleterious effects on this species across its range unless rapid adaptation is possible.  相似文献   

14.
Genetic diversity may play an analogous role to species diversity, as it can contribute to ecosystem function and stability, and provision of ecosystem services. In the Baltic Sea, perennial algal beds are often comprised of only Fucus vesiculosus and the amount of genetic variation in fitness‐related traits (i.e., the ability of the alga to photosynthesize or withstand stress) will thus determine the alga's local persistence in a changing environment. To study genetic variation in the crucial traits behind persistence we grew replicate vegetative branches that came from the same genotype in common gardens. We quantified osmotic stress tolerance and recovery responses by exposing branches to desiccation, freezing, and hyposalinity regimens. Our results show that genetic variation among genotypes was apparent for some photosynthetic parameters (maximal electron transport rate, saturation irradiance for electron transport, nonphotochemical quenching) and growth. Algae tolerated freezing (1,440 min at ?2.5°C) and hyposalinity (1,560 min at 2.5) well, but did not recover from desiccation (70 min at 12°C, causing ~94% water loss). Furthermore, we found very little if any evidence on genetic variation in tolerance to these stressors. Our results suggest that low salinity and cold winters in the northern marginal populations selected for hyposalinity and freezing tolerant genotypes, possibly eroding genetic variation in tolerance, but that tolerance to harsh desiccation has been lost, likely due to relaxed selection. The overall availability of genetic variation in fitness related traits might be supportive for F. vesiculosus during adaptation to gradual changes of its environment.  相似文献   

15.
Life‐history traits from four geographical populations (tropical Ledong population [LD], subtropical Guangzhou [GZ] and Yongxiu populations, and temperate Langfang population [LF]) of the Asian corn borer, Ostrinia furnacalis were investigated at a wide range of temperatures (20–32°C). The larval and pupal times were significantly decreased with increasing rearing temperature, and growth rate was positively correlated with temperature. The relationship between body weight and rearing temperature in O. furnacalis did not follow the temperature–size rule (TSR); all populations exhibited the highest pupal and adult weights at high temperatures or intermediate temperatures. However, development time, growth rate, and body weight did not show a constant latitudinal gradient. Across all populations at each temperature, female were significantly bigger than males, showing a female‐biased sexual size dimorphism (SSD). Contrary to Rensch's rule, the SSD tended to increase with rising temperature. The subtropical GZ population exhibited the largest degree of dimorphism while the temperate LF exhibited the smallest. Male pupae lose significantly more weight at metamorphosis compared to females. The proportionate weight losses of different populations were significantly different. Adult longevity was significantly decreased with increasing temperature. Between sexes, all populations exhibit a rather female‐biased adult longevity. Finally, we discuss the adaptive significance of higher temperature‐inducing high body weight in the moth's life history and why the moth exhibits the reverse TSR.  相似文献   

16.
17.
Persistence by adaptation is called evolutionary rescue. Evolutionary rescue is more likely in populations that have been previously exposed to lower doses of the same stressor. Environmental fluctuations might also reduce the possibility of rescue, but little is known about the effect of evolutionary history on the likelihood of rescue. In this study, we hypothesised that the ubiquitous operation of generalised stress responses in many organisms increases the likelihood of rescue after exposure to other stressors. We tested this hypothesis with experimental populations that had been exposed to long‐term starvation and were then selected on different, unrelated stressors. We found that prior adaptation to starvation imposes contrary effects on the plastic and evolutionary responses of populations to subsequent stressors. When first exposed to new stressors, such populations become extinct more often. If they survive the initial exposure to the new stressors, however, they are more likely to undergo evolutionary rescue.  相似文献   

18.
19.
20.
Barley yellow dwarf (BYD) is one of the most common diseases of cereal crops, caused by the phloem‐limited, cereal aphid‐borne Barley yellow dwarf virus (BYDV) (Luteoviridae). Delayed planting and controlling aphid vector numbers with insecticides have been the primary approaches to manage BYD. There is limited research on nitrogen (N) application effects on plant growth, N status, and water use in the BYDV pathosystem in the absence of aphid control. Such information will be essential in developing a post‐infection management plan for BYDV‐infected cereals. Through a greenhouse study, we assessed whether manipulation of N supply to BYDV‐infected winter wheat, Triticum aestivum L. (Poaceae), in the presence or absence of the aphid vector Rhopalosiphum padi L. (Hemiptera: Aphididae), could improve N and/or water uptake, and subsequently promote plant growth. Similar responses of shoot biomass and of water and N use efficiencies to various N application rates were observed in both BYDV‐infected and non‐infected plants, suggesting that winter wheat plants with only BYDV infection may be capable of outgrowing infection by the virus. Plants, which simultaneously hosted aphids and BYDV, suffered more severe symptoms and possessed higher virus loads than those infected with BYDV only. Moreover, in plants hosting both BYDV and aphids, aphid pressure was positively associated with N concentration within plant tissue, suggesting that N application and N concentration within foliar tissue may alter BYDV replication indirectly through their influence on aphid reproduction. Even though shoot biomass, tissue N concentration, and water use efficiency increased in response to increased N application, decision‐making on N fertilization to plants hosting both BYDV and aphids should take into consideration the potential of aphid outbreak and/or the possibility of reduced plant resilience to environmental stresses due to decreased root growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号