首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic materials exhibit remarkable anti‐inflammatory activity in experimental arthritis models. Our aim was to confirm this character of cationic materials and investigate its possible mechanism. Adjuvant‐induced arthritis (AIA) models were used to test cationic materials for their anti‐inflammatory activity. Cationic dextran (C‐dextran) with different cationic degrees was used to investigate the influence of the cationic elements of materials on their anti‐inflammatory ability. Peritoneal macrophages and spleen cells were used to test the expression of cytokines stimulated by cationic materials. Interferon (IFN)‐γ receptor‐deficient mice and macrophage‐depleted rats were used to examine the possible mechanisms of the anti‐inflammatory activity of cationic materials. In AIA models, different cationic materials shared similar anti‐inflammatory characters. The anti‐inflammatory activity of C‐dextran increased with as the cationic degree increased. Cationic materials stimulated interleukin (IL)‐12 expression in peritoneal macrophages, and strong stimulation of IFN‐γ secretion was subsequently observed in spleen cells. In vivo experiments revealed that circulating IL‐12 and IFN‐γ were enhanced by the cationic materials. Using IFN‐γ receptor knockout mice and macrophage‐depleted rats, we found that IFN‐γ and macrophages played key roles in the anti‐inflammatory activity of the materials towards cells. We also found that neutrophil infiltration at inflammatory sites was reduced when AIA animals were treated with C‐dextran. We propose that cationic signals act through an unknown receptor on macrophages to induce IL‐12 secretion, and that IL‐12 promotes the expression of IFN‐γ by natural killer cells (or T cells). The resulting elevated systemic levels of IFN‐γ inhibit arthritis development by preventing neutrophil recruitment to inflammatory sites.  相似文献   

2.
Reports describing the effect of interferon‐γ (IFNγ) on interleukin‐1β (IL‐1β) production are conflicting. We resolve this controversy by showing that IFNγ potentiates IL‐1β release from human cells, but transiently inhibits the production of IL‐1β from mouse cells. Release from this inhibition is dependent on suppressor of cytokine signalling 1. IL‐1β and Th17 cells are pathogenic in mouse models for autoimmune disease, which use Mycobacterium tuberculosis (MTB), in which IFNγ and IFNβ are anti‐inflammatory. We observed that these cytokines suppress IL‐1β production in response to MTB, resulting in a reduced number of IL‐17‐producing cells. In human cells, IFNγ increased IL‐1β production, and this might explain why IFNγ is detrimental for multiple sclerosis. In mice, IFNγ decreased IL‐1β and subsequently IL‐17, indicating that the adaptive immune response can provide a systemic, but transient, signal to limit inflammation.  相似文献   

3.
To study the contribution of T‐cell receptors (TCR) to resulting T‐cell responses, we studied three different human αβ TCRs, reactive to the same gp100‐derived peptide presented in the context of HLA‐A*0201. When expressed in primary CD8 T cells, all receptors elicited classic antigen‐induced IFN‐γ responses, which correlated with TCR affinity for peptide–MHC in the order T4H2 > R6C12 > SILv44. However, SILv44 elicited superior IL‐17A release. Importantly, in vivo, SILv44‐transgenic T cells mediated superior antitumor responses to 888‐A2 + human melanoma tumor cells upon adoptive transfer into tumor‐challenged mice while maintaining IL‐17 expression. Modeling of the TCR ternary complexes suggested architectural differences between SILv44 and the other complexes, providing a potential structural basis for the observed differences. Overall, the data reveal a more prominent role for the T‐cell receptor in defining host T‐cell physiology than traditionally assumed, while parameters beyond IFN‐γ secretion and TCR affinity ultimately determine the reactivity of tumor‐reactive T cells.  相似文献   

4.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

5.
We aimed to assess the immunoregulatory effects of IFN‐β in patients with tuberculous pleurisy. IFN‐β, IFN‐γ and IL‐17 expression levels were detected, and correlations among these factors in different culture groups were analyzed. Pleural fluid mononuclear cells (PFMC) from tuberculous pleural effusions, but not peripheral blood mononuclear cells (PBMC) from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ. Moreover, exogenous IFN‐β significantly inhibited the expression of IL‐17 in PFMC. By contrast, IFN‐β simultaneously enhanced the levels of IFN‐γ. To further investigate the regulation of IL‐17 and IFN‐γ by endogenous IFN‐β, an IFN‐β neutralizing antibody was simultaneously added to bacillus Calmette‐Guérin (BCG)‐stimulated PFMC. IL‐17 expression was significantly increased, but IFN‐γ production was markedly decreased in the experimental group supplemented with the IFN‐β neutralizing antibody. Simultaneously, IL‐17 production was remarkably increased in the experimental group supplemented with the IFN‐γ neutralizing antibody. Taken together, in our study, we first found that freshly isolated PFMC, but not PBMC from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ in vivo. Moreover, IFN‐β suppressed IL‐17 expression and increased IFN‐γ production. Furthermore, both IFN‐β and IFN‐γ down‐regulated IL‐17 expression. These observations suggest that caution is required when basing anti‐tuberculosis treatment on the inhibition of IFN‐β signaling.  相似文献   

6.
Expression of surface NKG2D ligands on tumour cells, which activates nature killer (NK) cells and CD8+ T cells, is crucial in antitumour immunity. Some types of tumours have evolved mechanisms to suppress NKG2D‐mediated immune cell activation, such as tumour‐derived soluble NKG2D ligands or sustained NKG2D ligands produced by tumours down‐regulate the expression of NKG2D on NK cells and CD8+ T cells. Here, we report that surface NKG2D ligand RAE1ε on tumour cells induces CD11b+Gr‐1+ myeloid‐derived suppressor cell (MDSC) via NKG2D in vitro and in vivo. MDSCs induced by RAE1ε display a robust induction of IL‐10 and arginase, and these MDSCs show greater suppressive activity by inhibiting antigen‐non‐specific CD8+ T‐cell proliferation. Consistently, upon adoptive transfer, MDSCs induced by RAE1ε significantly promote CT26 tumour growth in IL‐10‐ and arginase‐dependent manners. RAE1ε moves cytokine balance towards Th2 but not Th1 in vivo. Furthermore, RAE1ε enhances inhibitory function of CT26‐derived MDSCs and promotes IL‐4 rather than IFN‐γ production from CT26‐derived MDSCs through NKG2D in vitro. Our study has demonstrated a novel mechanism for NKG2D ligand+ tumour cells escaping from immunosurveillance by facilitating the proliferation and the inhibitory function of MDSCs.  相似文献   

7.
Pro‐inflammatory interleukin (IL)‐17‐producing γδ (γδ17) T cells are thought to develop exclusively in the thymus during fetal/perinatal life, as adult bone marrow precursors fail to generate γδ17 T cells under homeostatic conditions. Here, we employ a model of experimental autoimmune encephalomyelitis (EAE) in which hematopoiesis is reset by bone marrow transplantation and demonstrate unequivocally that Vγ4+ γδ17 T cells can develop de novo in draining lymph nodes in response to innate stimuli. In vitro, γδ T cells from IL‐17 fate‐mapping reporter mice that had never activated the Il17 locus acquire IL‐17 expression upon stimulation with IL‐1β and IL‐23. Furthermore, IL‐23R (but not IL‐1R1) deficiency severely compromises the induction of γδ17 T cells in EAE, demonstrating the key role of IL‐23 in the process. Finally, we show, in a composite model involving transfers of both adult bone marrow and neonatal thymocytes, that induced γδ17 T cells make up a substantial fraction of the total IL‐17‐producing Vγ4+ T‐cell pool upon inflammation, which attests the relevance of this novel pathway of peripheral γδ17 T‐cell differentiation.  相似文献   

8.
IL‐18 modulates immune functions by inducing IFN‐γ production and promoting Th1 immune responses. In the present study, we amplified and cloned the sequence (582 bp) encoding full‐length bovine IL‐18 from PBMC stimulated with PHA. The nucleotide and the deduced amino acid sequence of Bos indicus IL‐18 showed an identity of 86–98% compared with IL‐18 sequences of other ruminants. The insert was subcloned into a pET 32a vector and expressed in Escherichia coli as a fusion protein and the matured protein was obtained by caspase I treatment. The specificity of these proteins was confirmed by western blotting. The biological activity of the purified protein was analyzed by its ability to induce IFN‐γ production in PBMC measured by ELISA and qPCR.  相似文献   

9.
The aim of this study was to investigate the effect of vaccinia virus expressing IL‐37 (VV‐IL‐37) on cell proliferation, migration and invasion of hepatocellular carcinoma (HCC) and its possible underlying molecular mechanisms. In this study, we constructed a cancer‐targeted vaccinia virus carrying the IL‐37 gene knocked in the region of the viral thymidine kinase (TK) gene. Human HCC cell lines were assayed in vitro for cell proliferation, migration and invasion. Serum level, relative mRNA level and protein level of IL‐37 in HCC cell lines SMMC7721 and Bel7402 were tested by ELISA assay, qRT‐PCR and western blot, respectively. The levels of IL‐2, IFN‐γ and TNF‐α in HCC tumor tissues were also analyzed by ELISA. STAT3 and p‐STAT3 expression in tumor tissues were determined by western blot. Our results showed that VV‐IL‐37 efficiently infected and inhibited HCC cells proliferation, migration and invasion via decreasing STAT3 phosphorylation. In vivo, VV‐IL‐37 expressed IL‐37 at a high level in the transplanted tumor, reduced STAT3 activity, and eventually inhibited tumor growth. In conclusion, we demonstrate that VV‐IL‐37 promotes antitumor immune responses in HCC.  相似文献   

10.
Recently, emerging evidence strongly suggested that the activation of interleukin‐27 Receptor α (IL‐27Rα) could modulate different inflammatory diseases. However, whether IL‐27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL‐27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL‐27Rα/IL‐27 expression was detected, and IL‐27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL‐27 (rIL‐27) stimulation. Finally, IFN‐γ/ IL‐10 in graft/serum from model mice was detected. Results showed higher IL‐27Rα/IL‐27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL‐27Rα+ spleen cells accelerated allograft rejection in vivo. rIL‐27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL‐27 could be almost totally blocked by JAK/ STAT inhibitor and anti‐IL‐27 p28 Ab. Finally, higher IL‐27Rα+IFN‐γ+ cells and lower IL‐27Rα+IL‐10+ cells within allografts, and high IFN‐γ/low IL‐10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL‐27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up‐regulating IFN‐γ via enhancing STAT pathway. Blocking IL‐27 pathway may favour to prevent allorejection, and IL‐27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.  相似文献   

11.
Rhizomes of Curcuma phaeocaulis Valeton (Zingiberaceae) have traditionally been used for controlling inflammatory conditions. Numerous studies have aimed to isolate and characterize the bioactive constituents of C. phaeocaulis. It has been reported that its anti‐inflammatory properties are a result of cyclooxygenase‐2 inhibition; however, its effect on the T‐cell function remains to be elucidated. In this study, four known sesquiterpenoids, viz., ar‐turmerone (TM), germacrone (GM), (+)‐(4S,5S)‐germacrone‐4,5‐epoxide (GE), and curzerenone (CZ), were isolated from C. phaeocaulis rhizomes and evaluated for their effects on the CD4+ T‐cell function. While GM, GE, and CZ had no effect on the activation of splenic T cells or CD4+ T cells, TM suppressed the interferon (IFN)‐γ production, without affecting the interleukin (IL)‐4 expression. TM also decreased the expression of IL‐2 in CD4+ T cells, but did not change their cell‐division rates upon stimulation. These results suggest that TM, a major constituent of C. phaeocaulis rhizomes selectively exerts potent anti‐inflammatory effects via suppression of the inflammatory cytokines IFN‐γ and IL‐2.  相似文献   

12.
The role of adaptive immunity in obesity‐associated adipose tissue (AT) inflammation and insulin resistance (IR) is controversial. We employed flow cytometry and quantitative PCR to assess T‐cell recruitment and activation in epididymal AT (eAT) of C57BL/6 mice during 4–22 weeks of a high‐fat diet (HFD (60% energy)). By week 6, eAT mass and stromal vascular cell (SVC) number increased threefold in mice fed HFD, coincident with onset of IR. We observed no increase in the proportion of CD3+ SVCs or in gene expression of CD3, interferon‐γ (IFN‐γ), or regulated upon activation, normal T‐cell expressed and secreted (RANTES) during the first 16 weeks of HFD. In contrast, CD11c+ macrophages (MΦ) were enriched sixfold by week 8 (P < 0.01). SVC enrichment for T cells (predominantly CD4+ and CD8+) and elevated IFN‐γ and RANTES gene expression were detected by 20–22 weeks of HFD (P < 0.01), coincident with the resolution of eAT remodeling. HFD‐induced T‐cell priming earlier in the obesity time course is suggested by (i) elevated (fivefold) interleukin‐12 (IL‐12)p40 gene expression in eAT by week 12 (P ≤ 0.01) and (ii) greater IFN‐γ secretion from phorbol myristate acetate (PMA)/ionophore‐stimulated eAT explants at week 6 (onefold, P = 0.08) and week 12 (fivefold, P < 0.001). In conclusion, T‐cell enrichment and IFN‐γ gene induction occur subsequent to AT macrophage (ATMΦ) recruitment, onset of IR and resolution of eAT remodeling. However, enhanced priming for IFN‐γ production suggests the contribution of CD4+ and/or CD8+ effectors to cell‐mediated immune responses promoting HFD‐induced AT inflammation and IR.  相似文献   

13.
Immune cell products such as interferon (IFN)‐γ and interleukin (IL)‐12 are potent inhibitors of osteoclast formation. We previously characterized the human osteoclast inhibitory peptide‐1 (OIP‐1/hSca), a Ly‐6 gene family member and showed IFN‐γ modulation of OIP‐1 expression in bone marrow cells. Whether, IL‐12 regulates OIP‐1 expression in the bone microenvironment is unclear. Real‐time PCR analysis revealed that IL‐12 treatment significantly enhanced OIP‐1 mRNA expression in human bone marrow mononuclear cells. Because IL‐12 induces IFN‐γ production by T cells, we tested whether IFN‐γ participates in IL‐12 stimulation of OIP‐1 gene expression in these cells. IL‐12 treatment in the presence of IFN‐γ neutralizing antibody significantly increased OIP‐1 mRNA expression, suggesting that IL‐12 directly regulates OIP‐1 gene expression. Interestingly, real‐time PCR analysis demonstrated that IL‐12 induces OIP‐1 expression (3.2‐fold) in CD4+ T cells; however, there was no significant change in CD8+ T cells. Also, IL‐12 (10 ng/ml) treatment of Jurkat cells transfected with OIP‐1 gene (?1 to ?1,988 bp) promoter‐luciferase reporter plasmid demonstrated a 5‐fold and 2.7‐fold increase in OIP‐1 gene promoter activity in the presence and absence of antibody against IFN‐γ, respectively. We showed that STAT‐1,3 inhibitors treatment significantly decreased IL‐12 stimulated OIP‐1 promoter activity. Chromatin immunoprecipitation (ChIP) assay confirmed STAT‐3, but not STAT‐1 binding to the OIP‐1 gene promoter in response to IL‐12 stimulation. These results suggest that IL‐12 stimulates the OIP‐1 gene expression through STAT‐3 activation in CD4+ T cells. J. Cell. Biochem. 107: 104–111, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
16.
Abstract: The Indian langur monkey (Presbytis entellus) is an experimental host for a range of human diseases and for the assessment of vaccine candidate antigens to some common parasitic infections. This experimental host is particularly suitable for the follow‐up of immunological responses. To understand some of the mechanism that underlies the defense against experimental pathogens there is a need of the basic knowledge on antibody and cell mediated immune responses. In the present study 25 naïve monkeys were subjected to for assessment of their antibody responses to various human parasitic antigens as well as mitogen induced cellular responses. Only few monkeys were found to have low titer of antiparasitic antibodies. There was compressive dose dependent proliferative response of peripheral blood mononuclear cells. Unlike humans, the blastogenic as well as cytokine responses (IFN‐γ, IL‐2 and IL‐4) to Con A was considerably higher as compared to PHA. These findings are similar to what have been reported in other non‐human primates, confirming the appropriateness of Indian langurs for pre‐clinical trials.  相似文献   

17.
18.
19.
Allergen‐specific immunotherapy to induce T regulatory cells in the periphery has been used to treat allergic diseases. Mycobacteria can be used as an adjuvant for inducing T regulatory cells. However, it is unclear whether intranasal immunotherapy in combination with Mycobacteria adjuvant induces regulatory T cell differentiation and attenuates allergic responses in vivo. To investigate the role of intranasal ovalbumin (OVA) treatment alone and in combination with Mycobacteria vaccae, proportions of FoxP3+ regulatory T cells and anti‐inflammatory responses were evaluated in a murine model of asthma that was established in three groups of bicistronic Foxp3EGFP reporter BALB/c mice. Before establishment of the asthma model, two groups of mice received intranasal OVA immunotherapy and one also received simultaneous s.c. M. vaccae. Expression of CD4+CD25+Foxp3+EGFP+ T cells in the lung and spleen was analyzed by flow cytometry and the cytokine profiles of allergen‐stimulated lung and spleen lymphocytes assessed. The intranasal OVA immunotherapy group showed greater expression of CD4+CD25+Foxp3+EGFP+ T cells in the spleen whereas in the group that also received M. vaccae such greater expression was demonstrated in the lung. Additionally, the proportion of IL‐10 and IFN‐γ‐secreting splenocytes was greater in the intranasal OVA + M. vaccae group. CD25 neutralization decreased CD4+Foxp3+ cells more than other groups. In parallel with this finding, production of IL‐10 and IFN‐γ was down‐regulated. Mucosal administration of OVA antigen results in a greater proportion of CD4+Foxp3+ T cells in the spleen. IL‐10 and IFN‐γ induced by intranasal OVA immunotherapy and M. vaccae administration is down‐regulated after CD25 neutralization.
  相似文献   

20.
This cross‐sectional multicenter study aimed to evaluate serum CXCL‐10, as an activity marker for vitiligo, and compare it with other putative serum and tissue markers. Serum CXCL‐10 was compared to interferon gamma (IFN‐γ), interleukin 6 (IL‐6), and IL‐17 using ELISA in 55 non‐segmental vitiligo patients (30 active and 25 stable) and 30 healthy controls. Marginal skin biopsy was taken for immunohistochemical evaluation of CD8+T cells and CXCL‐10+ve cells. Serum levels of CXCL‐10, IL‐17, and IL‐6 were elevated in all vitiligo patients compared to controls (p < .05). All investigated serum markers were higher in active versus stable vitiligo. Tissue expression of CXCL‐10+ve cells and CD8+ve T cells was stronger in vitiligo patients compared to controls, and tissue CXCL‐10+ve cell expression was stronger in active versus stable cases. Positive correlations were noted between the different serum and tissue markers. CXCL‐10 was the most specific, whereas IL‐6 was the most sensitive serum marker to distinguish active from stable disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号