首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The majority of plant viruses are dependent on arthropod vectors for spread between plants. Wheat streak mosaic virus (family Potyviridae, genus Tritimovirus, WSMV) is transmitted by the wheat curl mite, Aceria tosichella Keifer, and this virus and vector cause extensive yield losses in most major wheat (Triticum aestivum L.)-growing regions of the world. Many cultivars in use are susceptible to this vector-virus complex, and yield losses of 10-99% have been documented. wheat curl mite resistance genes have been identified in goat grass, Aegilops tauschii (Coss) Schmal., and transferred to hexaploid wheat, but very few varieties contain effectively wheat curl mite resistance, due to virulent wheat curl mite populations. However, wheat curl mite resistance remains an effective strategy to reduce losses due to WSMV. The goal of our project was to identify the most effective, reproducible, and rapid method for assessing wheat curl mite resistance. We also wanted to determine whether mite resistance is affected by WSMV infection, because the pathogen and pest commonly occur together. Single and group wheat curl mite infestations produced similar amounts of leaf rolling and folding on wheat curl mite-susceptible wheat varieties that were independent of initial wheat curl mite infestation. This finding will allow accurate, efficient, large-scale screening of wheat germplasm for wheat curl mite resistance by infesting plants with sections of wheat leaf tissue containing mixed stages of wheat curl mite. The wheat curl mite-resistant breeding line 'OK05312' displayed antibiosis (reduced wheat curl mite population development). The effect of WSMV infection on wheat curl mite reproduction was genotype-dependent. Mite populations increased on infected wheat curl mite- and WSMV-susceptible plants compared with uninfected plants, but WSMV infection had no significant effect on wheat curl mite populations on resistant plants. OK05312 is a strong source of wheat curl mite resistance for wheat breeding programs.  相似文献   

3.
The wheat curl mite (WCM), Aceria tosichella, is an important pest of wheat and other cereal crops that transmits wheat streak mosaic virus and several other plant viruses. Wheat curl mite has long been considered a single polyphagous species, but recent studies in Poland revealed a complex of genetically distinct lineages with divergent host‐acceptance traits, ranging from highly polyphagous to host‐specific. This diversity of WCM genotypes and host‐acceptance phenotypes in Europe, the presumed native range of WCM, raises questions about the lineage identities of invasive WCM populations on other continents and their relationships to European lineages. The goals of this study were to examine the global presence of WCM and determine the relatedness of lineages established in different continents, on the basis of phylogenetic analyses of mitochondrial and nuclear DNA sequence data. Host‐range bioassays of a highly polyphagous WCM lineage were performed to supplement existing data on this lineage's ability to colonise graminaceous and non‐graminaceous hosts. Invasive WCM populations in North and South America and Australia assorted with the only three known polyphagous and pestiferous WCM lineages (‘MT‐1’, ‘MT‐7’ and ‘MT‐8’) from a total of eight currently described lineages. These results show that the most polyphagous lineages were more successful colonisers and reflect a need for extensive surveys for WCM on both crops and wild grass species in invaded continents. The most invasive lineage (‘MT‐1’) was shown to successfully colonise all 10 plant species tested in three families and has spread to North and South America and Australia from its presumed origins in Eurasia.  相似文献   

4.
Wheat streak mosaic virus (WSMV), vectored by Wheat curl mite, has been of great economic importance in the Great Plains of the United States and Canada. Recently, the virus has been identified in Australia, where it has spread quickly to all major wheat growing areas. The difficulties in finding adequate natural resistance in wheat prompted us to develop transgenic resistance based on RNA interference (RNAi). An RNAi construct was designed to target the nuclear inclusion protein ‘a’ (NIa) gene of WSMV. Wheat was stably cotransformed with two plasmids: pStargate‐NIa expressing hairpin RNA (hpRNA) including WSMV sequence and pCMneoSTLS2 with the nptII selectable marker. When T1 progeny were assayed against WSMV, ten of sixteen families showed complete resistance in transgenic segregants. The resistance was classified as immunity by four criteria: no disease symptoms were produced; ELISA readings were as in uninoculated plants; viral sequences could not be detected by RT‐PCR from leaf extracts; and leaf extracts failed to give infections in susceptible plants when used in test‐inoculation experiments. Southern blot hybridization analysis indicated hpRNA transgene integrated into the wheat genome. Moreover, accumulation of small RNAs derived from the hpRNA transgene sequence positively correlated with immunity. We also showed that the selectable marker gene nptII segregated independently of the hpRNA transgene in some transgenics, and therefore demonstrated that it is possible using these techniques, to produce marker‐free WSMV immune transgenic plants. This is the first report of immunity in wheat to WSMV using a spliceable intron hpRNA strategy.  相似文献   

5.
Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite (Acer tulipae), is an important disease of wheat (Triticum aestivum L.) in the North American Great Plains. Resistant varieties have not been developed for two primary reasons. First, useful sources of resistance have not been available, and second, field screening for virus resistance is laborious and beyond the scope of most breeding programs. The first problem may have been overcome by the development of resistance to both the mite and the virus by the introgression of resistance genes from wild relatives of wheat. To help address the second problem, we have developed polymerase chain reaction (PCR) markers linked to the WSMV resistance gene Wsm1. Wsm1 is contained on a translocated segment from Agropyron intermedium. One sequence-tagged-site (STS) primer set (WG232) and one RAPD marker were found to be linked to the translocation containing Wsm1. The diagnostic RAPD band was cloned and sequenced to allow the design of specific PCR primers. The PCR primers should be useful for transferring Wsm1 into locally adapted cultivars.This is Journal Series No. J-4041 of the Montana Agricultural Experiment Station  相似文献   

6.
The wheat curl mite (WCM), Aceria tosichella Keifer, is the vector of wheat streak mosaic virus and high plains virus which cause significant crop loss in winter wheat throughout the western Great Plains. Volunteer wheat emerging before harvest, as a result of severe hail, is the primary source of mites and virus that infect fall-planted winter wheat. Wind-borne movement of the WCM is of key importance in the spread and infection of the virus complex. Significant movement of WCM from wheat has been thought to be closely tied to the senescence or deterioration of the host. Results from field and greenhouse studies indicated that movement from un-vernalized winter wheat was not closely associated with the deterioration of the wheat host. Greenhouse studies showed no correlation between WCM movement and plant condition, but there was a highly significant relationship between WCM movement and mite population on the host plant. Field studies did not demonstrate increased movement associated with deteriorating un-vernalized winter wheat. However, healthier hosts which were able to support a larger population of mites were associated with increased movement. The main influence on the level of mite movement relates to the size of the source population and not the condition of the host plant, but plant condition appears to be a factor in limiting the increase of the WCM population.  相似文献   

7.
The wheat curl mite (WCM), Aceria tosichella Keifer (Trombidiformes: Eriophyidae), is a major pest in cropping regions of the world and is recognised as the primary vector of several yield-reducing pathogens, primarily affecting wheat. Management of WCM is complicated due to several aspects of the mite’s biology and ecology; however, commercially viable mite resistant wheat varieties may offer practical long-term management options. Unfortunately, mite populations have adapted to previously identified sources of resistance, highlighting the need for further sources of resistance and the value of stacking different resistances to give greater degrees and longevity of control. In this study we assessed the susceptibility of 42 wheat-derived genotypes to mite population growth using a new experimental method that overcomes methodological limitations of previous studies. Experimental wheat lines included a variety of wheat genotypes, related Triticeae species, wheat-alien chromosome amphiploids, and chromosome addition or substitution lines. From these we identify new promising sources of WCM resistance associated with Thinopyrum intermedium, Th. ponticum and Hordeum marinum chromosomes. More specifically we identify group 1J and 5J chromosomes of the L3 and L5 wheat-Th. intermedium addition lines as new sources of resistance that could be exploited to transfer resistance onto homoeologous wheat chromosomes. This study offers new methods for reliable in situ estimations of mite abundance on cereal plants, and new sources of WCM resistance that may assist management of WCM and associated viruses in wheat.  相似文献   

8.
9.
The wheat curl mite (WCM), Aceria tosichella , is an eriophyid pest of cereals, and the vector responsible for the transmission of wheat streak mosaic virus (WSMV). In a previous study, the taxonomic status of A. tosichella in Australia was assessed using molecular markers. A. tosichella was shown to consist of two genetically distinct lineages likely to represent different species. Here we show that both lineages occupy similar distributions, occurring throughout the entire Australian wheat belt, and that the lineages are often found in sympatry. CLIMEX analysis suggests that tolerance to heat and desiccation limit the distribution of A. tosichella . In the laboratory, only one WCM lineage transmitted WSMV virus under controlled conditions. These results have implications for the management of WCM and WSMV within Australia.  相似文献   

10.
The wheat curl mite (WCM) is a major pest in cereal crops around the world and the vector of at least four known pathogens capable of reducing yields in crops such as wheat, corn, barley, oats, millet and rye. Current taxonomy recognizes WCM as a single species, Aceria tosichella; however, recent genetic, physiological and ecological studies have shown that WCM is likely to be a species complex. In this study we assessed genetic variation and phylogenetic relationships among WCM from four continents and a wide range of host plants using DNA sequence data from one mitochondrial gene, one nuclear gene and a single nuclear intergenic spacer region. Phylogenetic analyses revealed 11 unique mite lineages associated with specific plant hosts including wheat and barley. Host associations were consistent across continents, often with a single haplotype dominating a host plant regardless of geographic origin. The genetic and ecological differences identified in this study support the notion that WCM is a species complex in need of major taxonomic revision. These findings have implications for control of WCM globally, particularly within the context of identifying plants that form ‘green bridge’ refuges, assessing disease transmission risk, and identifying resistance in cereal genotypes to WCM and associated pathogens.  相似文献   

11.
The wheat curl mite (WCM), Aceria tosichella, and the plant viruses it transmits represent an invasive mite-virus complex that has affected cereal crops worldwide. The main damage caused by WCM comes from its ability to transmit and spread multiple damaging viruses to cereal crops, with Wheat streak mosaic virus (WSMV) and Wheat mosaic virus (WMoV) being the most important. Although WCM and transmitted viruses have been of concern to cereal growers and researchers for at least six decades, they continue to represent a challenge. In older affected areas, for example in North America, this mite-virus complex still has significant economic impact. In Australia and South America, where this problem has only emerged in the last decade, it represents a new threat to winter cereal production. The difficulties encountered in making progress towards managing WCM and its transmitted viruses stem from the complexity of the pathosystem. The most effective methods for minimizing losses from WCM transmitted viruses in cereal crops have previously focused on cultural and plant resistance methods. This paper brings together information on biological and ecological aspects of WCM, including its taxonomic status, occurrence, host plant range, damage symptoms and economic impact. Information about the main viruses transmitted by WCM is also included and the epidemiological relationships involved in this vectored complex of viruses are also addressed. Management strategies that have been directed at this mite-virus complex are presented, including plant resistance, its history, difficulties and advances. Current research perspectives to address this invasive mite-virus complex and minimize cereal crop losses worldwide are also discussed.  相似文献   

12.
The eriophyid mite transmitted Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) shares a common genome organization with aphid transmitted species of the genus Potyvirus. Although both tritimoviruses and potyviruses encode helper component-proteinase (HC-Pro) homologues (required for nonpersistent aphid transmission of potyviruses), sequence conservation is low (amino acid identity, approximately 16%), and a role for HC-Pro in semipersistent transmission of WSMV by the wheat curl mite (Aceria tosichella [Keifer]) has not been investigated. Wheat curl mite transmissibility was abolished by replacement of WSMV HC-Pro with homologues of an aphid transmitted potyvirus (Turnip mosaic virus), a rymovirus (Agropyron mosaic virus) vectored by a different eriophyid mite, or a closely related tritimovirus (Oat necrotic mottle virus; ONMV) with no known vector. In contrast, both WSMV-Sidney 81 and a chimeric WSMV genome bearing HC-Pro of a divergent strain (WSMV-El Batán 3; 86% amino acid sequence identity) were efficiently transmitted by A. tosichella. Replacing portions of WSMV-Sidney 81 HC-Pro with the corresponding regions from ONMV showed that determinants of wheat curl mite transmission map to the 5'-proximal half of HC-Pro. WSMV genomes bearing HC-Pro of heterologous species retained the ability to form virions, indicating that loss of vector transmissibility was not a result of failure to encapsidate. Although titer in systemically infected leaves was reduced for all chimeric genomes relative to WSMV-Sidney 81, titer was not correlated with loss of vector transmissibility. Collectively, these results demonstrate for the first time that HC-Pro is required for virus transmission by a vector other than aphids.  相似文献   

13.
The survival of the wheat curl mite (WCM), Aceria tosichilla Keifer, on five sources of resistant wheat (Triticum aestivum L.) was determined for collections of mites from Kansas (including a strain adapted to TAM 107), South Dakota and Texas, USA and Alberta, Canada. Sources of resistance to Aegilops squarrosa L. and Agropyron elongatum (Host) were resistant to WCMs from South Dakota and Alberta, but susceptible to WCMs from Kansas and Texas. Two wheats with resistance to rye (Secale cereale L.), PI 475772 and TAM 107, were resistant to all WCM collections except the strain from Kansas that was selected for adaptation to TAM 107. A common wheat (PI 222655) was resistant to all WCM collections except the one from Alberta, Canada. Because WCMs have overcome the resistance of TAM 107 in Kansas, the only resistance now available in commercial cultivars may be lost. Results indicate that PI222655 is the best source of resistance to replace TAM 107 in the USA but it may not be effective in Canada. Resistance to Ae. squarrosa and A. elongatum could be deployed against WCMs in Alberta and South Dakota but these sources may not be effective in Kansas and Texas. However, one WCM collection from each location may not represent the general mite population of an area. Therefore, any new sources of resistance should be evaluated fully against WCMs from areas where they are likely to be used in commercial cultivars.  相似文献   

14.
The wheat curl mite (WCM), Aceria tosichella Keifer, is a polyphagous eriophyoid mite and the primary vector of wheat streak mosaic virus (WSMV) and five other viral pathogens in cereals. Previous research using molecular markers and a series of laboratory experiments found A. tosichella in Australia to consist of two genetically distinct lineages, which have broad overlapping distributions and differ in their ability to transmit WSMV under controlled conditions. This pattern of transmission also appears to be apparent in the field, whereby a strong association between WSMV detection and a single WCM lineage has been detected. In this study, we conduct a population genetic analysis and provide information on the genetic structure of the Australian viruliferous WCM lineage. We assessed genetic differentiation of 16 WCM populations using nine microsatellite markers. Strong evidence for extensive gene flow and low genetic structuring throughout the Australian wheatbelt was evident, with an exception for Western Australian and far north Queensland populations that appear to be genetically isolated. The data also indicate genetic patterns consistent with an arrhenotokous parthenogenetic mode of reproduction. Implications of these findings are discussed with reference to the management of WCM and associated cereal pathogens in Australia and overseas.  相似文献   

15.
Agropyron Gaertn. (P genome) is a wild relative of wheat that harbours many genetic variations that could be used to increase the genetic diversity of wheat. To agronomically transfer important genes from the P genome to a wheat chromosome by induced homoeologous pairing and recombination, it is necessary to determine the chromosomal relationships between Agropyron and wheat. Here, we report using the wheat 660K single nucleotide polymorphism (SNP) array to genotype a segregating Agropyron F1 population derived from an interspecific cross between two cross‐pollinated diploid collections ‘Z1842’ [A. cristatum (L.) Beauv.] (male parent) and ‘Z2098’ [A. mongolicum Keng] (female parent) and 35 wheat–A. cristatum addition/substitution lines. Genetic linkage maps were constructed using 913 SNP markers distributed among seven linkage groups spanning 839.7 cM. The average distance between adjacent markers was 1.8 cM. The maps identified the homoeologous relationship between the P genome and wheat and revealed that the P and wheat genomes are collinear and relatively conserved. In addition, obvious rearrangements and introgression spread were observed throughout the P genome compared with the wheat genome. Combined with genotyping data, the complete set of wheat–A. cristatum addition/substitution lines was characterized according to their homoeologous relationships. In this study, the homoeologous relationship between the P genome and wheat was identified using genetic linkage maps, and the detection mean for wheat–A. cristatum introgressions might significantly accelerate the introgression of genetic variation from Agropyron into wheat for exploitation in wheat improvement programmes.  相似文献   

16.
Two economically important eriophyoid mites, Aceria tosichella (wheat curl mite; WCM) and Aceria tulipae (dry bulb mite; DBM), were frequently confounded in the world literature until the late 20th Century. Their morphological similarity and ambiguous data from plant‐transfer and virus‐transmission trials contributed to this confusion. Until recently, there was a general lack of knowledge about the existence of species complexes and it was not possible to accurately genotype tested mites. In the present study, two WCM genotypes of divergent host specificity (MT‐1 and MT‐2) and one DBM genotype were tested for the acceptance of Poaceae, Amarylidaceae, and Liliaceae species that were reported or suspected as hosts of WCM or DBM. The MT‐1 lineage colonized all tested plants. Onion‐ and garlic‐associated DBM populations did not colonize tulip and wild garlic, suggesting that host‐acceptance variability exists within A. tulipae s.l. Morphometric analysis did not discriminate closely‐related MT‐1 and MT‐2 genotypes but completely separated both WCM genotypes from DBM based on the larger overall body size of the latter. Three morphological traits combined to discriminate between the DBM and MT‐1 genotypes, both of which can infest Amarylidaceae bulbs. In total, these combined DNA sequence, host‐acceptance, morphometrical results unambiguously separated two WCM and one DBM genotypes. Similar studies on additional lineages of both WCM and DBM should ultimately dispel previous taxonomic confusion between these two species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 421–436.  相似文献   

17.
 Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite (WCM), is one of the most important viral diseases of wheat (Triticum aestivum) in the world. Genetic resistance to WSMV and the WCM does not exist in wheat. Resistance to WSMV and the WCM was evaluated in five different partial amphiploids namely Agrotana, OK7211542, ORRPX, Zhong 5 and TAF 46, which were derived from hybrids of wheat with decaploid Thinopyrum ponticum or with hexaploid Th. intermedium. Agrotana was shown to be immune to WSMV and the WCM; the other four partial amphiploids were susceptible to the WCM. Genomic in situ hybridization (GISH) using genomic DNA probes from Th. elongatum (EE, 2n=14), Th. bessarabicum (JJ, 2n=14), Pseudoroegneria strigosa (SS, 2n=14) and T. aestivum (AABBDD, 2n=42) demonstrated that three of the partial amphiploids, Agrotana, OK7211542 and ORRPX, have almost identical alien genome constitutions: all have 16 alien chromosomes, with 8 chromosomes being closely related to the Js genome and 8 chromosomes belonging to the E or J genomes and no evidence of any S-genome chromosomes. GISH confirmed that the alien genomes of Agrotana and OK7211542, like ORRPX, were all derived from Th. ponticum, and not from Th. intermedium. However, in contrast to Agrotana, ORRPX and OK7211542 were susceptible to the WCM and WSMV. The partial amphiploid Zhong 5 had a reconstituted alien genome composed of 4 S-and 4 Js-genome chromosomes of Th. intermedium with 6 translocated chromosomes between the S and Js genomes. This line was highly resistant to WSMV, but was susceptible to the WCM. TAF 46, which contained a synthetic genome consisting of 3 pairs of S-genome chromosomes and 4 pairs of E- or J-genome chromosomes in addition to the 21 pairs of wheat chromosomes, was susceptible to the WCM, but moderately resistant to WSMV. Agrotana offers great potential for transferring WSMV and WCM resistance into wheat. Received: 27 January 1998 / Accepted: 10 February 1998  相似文献   

18.
Amphibian species are known to carry endoparasitic mites. The infestation probability, prevalence, and intensity of mites vary among species and habitats. Mites of the genus Endotrombicula are known to infest African and Malagasy frogs. However, the factors leading to an increase in the probability of mite infestation are unknown. To test for inter‐ and intraspecific differences in infestation probability and its potential correlation with sex, age, habitat preferences, and/or season within a species‐rich West African leaf‐litter frog assemblage, we examined more than 6,800 individual frogs for the presence of mites throughout two independent time increments, 1999–2000 and 2016–2017. We found only members of the leaf‐litter frog genus Phyrnobatrachus to be infested, while other syntopically occurring genera were not affected. Within Phrynobatrachus, only four out of eight species were infested. Mites prevalence differed between species (highest P. phyllophilus, followed by P. alleni), sex (males higher than females in P. alleni and P. phyllophilus), and age (adults higher than juveniles in P. alleni), as well as season (more mites during wet than dry season in P. phyllophilus). The prevalence of mite infestation did not influence mate choice in P. alleni. Increased humidity showed a clear positive effect on infestation prevalence. We also detected a marked decrease in the prevalence of mites from 1999–2000 to 2016–2017, a period during which climatological changes within the study area have been reported with a tendency toward drier conditions. The decrease in mite infestation prevalence over time might be a signal of increasingly drier conditions.  相似文献   

19.
【背景】小麦/玉米轮作是中国粮食作物主要种植模式之一,目前对小麦/玉米轮作田根际土壤微生物差异变化缺乏全面的了解。【目的】明确小麦/玉米根际土壤微生物差异变化并了解其潜在功能。【方法】以小麦/玉米根际土壤为材料,运用细菌16S rRNA基因和真菌rDNA ITS基因测序,分析小麦/玉米根际土壤微生物多样性。【结果】玉米季微生物丰富度高于小麦季,而多样性无明显差异。放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)和绿弯菌门(Chloroflexi)为小麦季和玉米季根际土壤的优势细菌门,优势真菌门为子囊菌门(Ascomycota)。小麦季和玉米季共有细菌和真菌分别是631个和261个,小麦季特有细菌和真菌分别是38个和58个,玉米季特有细菌和真菌分别是25个和39个。LEfSe分析(LDA阈值为2)细菌和真菌表明,放线菌纲(Actinobacteria)和微囊菌目(Microascales)在小麦季富集,鞘脂单胞菌目(Sphingomonadales)和银耳纲(Tremellomycetes)在玉米季富集。小麦季、玉...  相似文献   

20.
Brief historyIn 1993, severe mosaic and necrosis symptoms were observed on corn (maize) and wheat from several Great Plains states of the USA. Based on the geographical location of infections, the disease was named High Plains disease and the causal agent was tentatively named High Plains virus. Subsequently, researchers renamed this virus as maize red stripe virus and wheat mosaic virus to represent the host and symptom phenotype of the virus. After sequencing the genome of the pathogen, the causal agent of High Plains disease was officially named as High Plains wheat mosaic virus. Hence, High Plains virus, maize red stripe virus, wheat mosaic virus, and High Plains wheat mosaic virus (HPWMoV) are synonyms for the causal agent of High Plains disease.TaxonomyHigh Plains wheat mosaic virus is one of the 21 definitive species in the genus Emaravirus in the family Fimoviridae.VirionThe genomic RNAs are encapsidated in thread‐like nucleocapsids in double‐membrane 80–200 nm spherical or ovoid virions.Genome characterizationThe HPWMoV genome consists of eight single‐stranded negative‐sense RNA segments encoding a single open reading frame (ORF) in each genomic RNA segment. RNA 1 is 6,981‐nucleotide (nt) long, coding for a 2,272 amino acid protein of RNA‐dependent RNA polymerase. RNA 2 is 2,211‐nt long and codes for a 667 amino acid glycoprotein precursor. RNA 3 has two variants of 1,439‐ and 1,441‐nt length that code for 286 and 289 amino acid nucleocapsid proteins, respectively. RNA 4 is 1,682‐nt long, coding for a 364 amino acid protein. RNA 5 and RNA 6 are 1,715‐ and 1,752‐nt long, respectively, and code for 478 and 492 amino acid proteins, respectively. RNA 7 and RNA 8 are 1,434‐ and 1,339‐nt long, code for 305 and 176 amino acid proteins, respectively.Biological propertiesHPWMoV can infect wheat, corn (maize), barley, rye brome, oat, rye, green foxtail, yellow foxtail, and foxtail barley. HPWMoV is transmitted by the wheat curl mite and through corn seed.Disease managementGenetic resistance against HPWMoV in wheat is not available, but most commercial corn hybrids are resistant while sweet corn varieties remain susceptible. Even though corn hybrids are resistant to virus, it still serves as a green bridge host that enables mites to carry the virus from corn to new crop wheat in the autumn. The main management strategy for High Plains disease in wheat relies on the management of green bridge hosts. Cultural practices such as avoiding early planting can be used to avoid mite buildup and virus infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号