首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Dermal fibroblasts are required for structural integrity of the skin and for hair follicle development. Uniform Wnt signaling activity is present in dermal fibroblast precursors preceding hair follicle initiation, but the functional requirement of dermal Wnt signaling at early stages of skin differentiation and patterning remains largely uncharacterized. We show in mice that epidermal Wnt ligands are required for uniform dermal Wnt signaling/β-catenin activity and regulate fibroblast cell proliferation and initiation of hair follicle placodes. In the absence of dermal Wnt signaling/β-catenin activity, patterned upregulation of epidermal β-catenin activity and Edar expression are absent. Conversely, forced activation of β-catenin signaling leads to the formation of thickened dermis, enlarged epidermal placodes and dermal condensates that result in prematurely differentiated enlarged hair follicles. These data reveal functional roles for dermal Wnt signaling/β-catenin in fibroblast proliferation and in the epidermal hair follicle initiation program.  相似文献   

3.
Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells.  相似文献   

4.
5.
6.
Background information. Although MSCs (mesenchymal stem cells) and fibroblasts have been well studied, differences between these two cell types are not fully understood. We therefore comparatively analysed antigen and gene profiles, colony‐forming ability and differentiation potential of four human cell types in vitro: commercially available skin‐derived fibroblasts [hSDFs (human skin‐derived fibroblasts)], adipose tissue‐derived stem cells [hASCs (human adipose tissue‐derived stem cells)], embryonic lung fibroblasts (WI38) and dermal microvascular endothelial cells [hECs (human dermal microvascular endothelial cells)]. Results. hSDFs, hASCs and WI38 exhibited a similar spindle‐like morphology and expressed same antigen profiles: positive for MSC markers (CD44, CD73 and CD105) and fibroblastic markers [collagen I, HSP47 (heat shock protein 47), vimentin, FSP (fibroblast surface protein) and αSMA (α smooth muscle actin)], and negative for endothelial cell marker CD31 and haemopoietic lineage markers (CD14 and CD45). We further analysed 90 stem cell‐associated gene expressions by performing real‐time PCR and found a more similar gene expression pattern between hASCs and hSDFs than between hSDFs and WI38. The expression of embryonic stem cell markers [OCT4, KLF4, NANOG, LIN28, FGF4 (fibroblast growth factor 4) and REST] in hASCs and hSDFs was observed to differ more than 2.5‐fold as compared with WI38. In addition, hSDFs and hASCs were able to form colonies and differentiate into adipocytes, osteoblasts and chondrocytes in vitro, but not WI38. Moreover, single cell‐derived hSDFs and hASCs obtained by clonal expansion were able to differentiate into adipocytes and osteoblasts. However, CD31 positive hECs did not show differentiation potential. Conclusions. These findings suggest that (i) so‐called commercially available fibroblast preparations from skin (hSDFs) consist of a significant number of cells with differentiation potential apart from terminally differentiated fibroblasts; (ii) colony‐forming capacity and differentiation potential are specific important properties that discriminate MSCs from fibroblasts (WI38), while conventional stem cell properties such as plastic adherence and the expression of CD44, CD90 and CD105 are unspecific for stem cells.  相似文献   

7.
Wnt proteins are secreted molecules that play multiple roles during hair follicle development and postnatal hair cycling. Wntless (Wls) is a cargo protein required for the secretion of various Wnt ligands. However, its role during hair follicle development and hair cycling remains unclear. Here, we examined the expression of Wls during hair follicle induction and postnatal hair cycling. We also conditionally deleted Wls with K14-cre to investigate its role in hair follicle induction. K14-cre;Wlsc/c mice exhibited abnormal hair follicle development, which is possibly caused by impaired canonical Wnt signaling. Meanwhile, Wnt5a is also expressed in embryonic epidermis, but Wnt5a null mice showed no significant defect in embryonic hair follicle morphogenesis. Therefore, Wls may regulate hair follicle induction by mediating the Wnt/β-catenin pathway.  相似文献   

8.
The serine protease Corin is a novel modifier of the Agouti pathway   总被引:1,自引:0,他引:1  
The hair follicle is a model system for studying epithelial-mesenchymal interactions during organogenesis. Although analysis of the epithelial contribution to these interactions has progressed rapidly, the lack of tools to manipulate gene expression in the mesenchymal component, the dermal papilla, has hampered progress towards understanding the contribution of these cells. In this work, Corin was identified in a screen to detect genes specifically expressed in the dermal papilla. It is expressed in the dermal papilla of all pelage hair follicle types from the earliest stages of their formation, but is not expressed elsewhere in the skin. Mutation of the Corin gene reveals that it is not required for morphogenesis of the hair follicle. However, analysis of the ;dirty blonde' phenotype of these mice reveals that the transmembrane protease encoded by Corin plays a critical role in specifying coat color and acts downstream of agouti gene expression as a suppressor of the agouti pathway.  相似文献   

9.
We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin.

Methodology and Principal Findings

Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression.

Conclusions and Significance

These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue.  相似文献   

10.
Mutations in WNT effector genes perturb hair follicle morphogenesis, suggesting key roles for WNT proteins in this process. We show that expression of Wnts 10b and 10a is upregulated in placodes at the onset of follicle morphogenesis and in postnatal hair follicles beginning a new cycle of hair growth. The expression of additional Wnt genes is observed in follicles at later stages of differentiation. Among these, we find that Wnt5a is expressed in the developing dermal condensate of wild type but not Sonic hedgehog (Shh)-null embryos, indicating that Wnt5a is a target of SHH in hair follicle morphogenesis. These results identify candidates for several key follicular signals and suggest that WNT and SHH signaling pathways interact to regulate hair follicle morphogenesis.  相似文献   

11.
12.
Induced pluripotent stem cells (iPSCs) are adult somatic cells genetically reprogrammed to an embryonic stem cell‐like state. Notwithstanding their autologous origin and their potential to differentiate towards cells of all three germ layers, iPSC reprogramming is still affected by low efficiency. As dermal fibroblast is the most used human cell for reprogramming, we hypothesize that the variability in reprogramming is, at least partially, because of the skin fibroblasts used. Human dermal fibroblasts harvested from five different anatomical sites (neck, breast, arm, abdomen and thigh) were cultured and their morphology, proliferation, apoptotic rate, ability to migrate, expression of mesenchymal or epithelial markers, differentiation potential and production of growth factors were evaluated in vitro. Additionally, gene expression analysis was performed by real‐time PCR including genes typically expressed by mesenchymal cells. Finally, fibroblasts isolated from different anatomic sites were reprogrammed to iPSCs by integration‐free method. Intriguingly, while the morphology of fibroblasts derived from different anatomic sites differed only slightly, other features, known to affect cell reprogramming, varied greatly and in accordance with anatomic site of origin. Accordingly, difference also emerged in fibroblasts readiness to respond to reprogramming and ability to form colonies. Therefore, as fibroblasts derived from different anatomic sites preserve positional memory, it is of great importance to accurately evaluate and select dermal fibroblast population prior to induce reprogramming.  相似文献   

13.
In stem cell cultures from adult human tissue, undesirable contamination with fibroblasts is frequently present. The presence of fibroblasts obscures the actual number of stem cells and may result in extracellular matrix production after transplantation. Identification of fibroblasts is difficult because of the lack of specific fibroblast markers. In our laboratory, we isolate and expand neural-crest-derived stem cells from human hair follicle bulges and investigate their potential to differentiate into neural cells. To establish cellular identities, we perform immunohistochemistry with antibodies specific for glial and neuronal markers, and use fibroblasts as negative control. We frequently observe that human adult dermal fibroblasts also express some glial and neuronal markers. In this study, we have sought to determine whether our observations represent actual expression of these markers or result from cross-reactivity. Immunohistochemistry was performed on human adult dermal fibroblasts using acknowledged glial and neuronal antibodies followed by verification of the data using RT-qPCR. Human adult dermal fibroblasts showed expression of the glia-specific markers SOX9, glial fibrillary acidic protein and EGR2 (KROX20) as well as for the neuron-specific marker class III β-tubulin, both at the protein and mRNA level. Furthermore, human adult dermal fibroblasts showed false-positive immunostaining for S100β and GAP43 and to a lower extent for OCT6. Our results indicate that immunophenotyping as a tool to determine cellular identity is not as reliable as generally assumed, especially since human adult dermal fibroblasts may be mistaken for neural cells, indicating that the ultimate proof of glial or neuronal identity can only be provided by their functionality.  相似文献   

14.
15.
Significant increases in skin wound healing rates occur by reducing connexin-mediated communication (CMC). Gap27, a connexin (Cx) mimetic peptide targeted to the second extracellular loop of Cx43, which inhibits CMC, increases migration of human keratinocytes and dermal fibroblasts. To examine the efficacy of Gap27 in a hyperglycemic and hyperinsulinemic in vitro environment, cell migration, gap junction, and Cx hemichannel functionality and cell-substrate adhesion assays were performed on human dermal fibroblasts and diabetic fibroblast and keratinocytes. To investigate fibroblast genes involved in these processes, extra-cellular matrix (ECM) and adhesion gene expression was determined with a PCR array. Gap27 increased fibroblast migration in both euglycemia/euinsulinemia and hyperglycemia/hyperinsulinemia, and influenced migration in diabetic keratinocytes. Hyperglycemia/hyperinsulinemia reduced gap junction coupling in fibroblasts and Gap27 reduced CMC and cell adhesion to substrata in fibroblasts cultured in high glucose. Migrating dermal fibroblast ECM and cell adhesion genes were found to be differentially regulated by Gap27 in euglycemia and hyperglycemia. The PCR array showed that Gap27 upregulated 34 genes and downregulated 1 gene in euglycemic migrating fibroblasts. By contrast in hyperglycemia, Gap27 upregulated 1 gene and downregulated 9 genes. In euglycemic conditions, Gap27 induced upregulation of genes associated with ECM remodeling, whereas in hyperglycemia, ECM component genes were downregulated by Gap27. Thus, Gap27 improves cell migration during scrape-wound repair in hyperglycemia/hyperinsulinemia conditions in vitro, although migration of diabetic cells is less influenced. Our results suggest that this increase in motility may occur by decreasing gap junction and hemichannel activity and altering gene expression in the adhesion and ECM pathway.  相似文献   

16.
Mice null for the Vitamin D receptor (VdrKO) have a disrupted first hair follicle cycle and aborted subsequent hair follicle cycling. We examined the expression of different markers and mediators of hair follicle cycling in the hair follicle of the VdrKO mouse during days 13–22 when the hair follicle normally initiates and completes the first catagen. We compared the expression of those genes in mice with a nonsense mutation in hairless (Rhino), which have a similar alopecia phenotype, and to Cyp27b1 null mice which are deficient in the production of 1,25(OH)2D3, the Vdr ligand, but display normal hair follicle cycling. Our results demonstrate the down regulation of hair follicle markers and the alteration of expression of hedgehog (Hh), Wnt, Fgf, and Tgfβ pathways in VdrKO and Rhino mice, but not in Cyp27b1KO mice. Treatment of VdrKO mice with an agonist to the Hh pathway partially restored hair follicle cycling, suggesting a role of this pathway in the regulation of hair follicle cycling by VDR. These results suggest that Vdr regulates directly or indirectly the expression of genes required for hair follicle cycling, including Hh signaling, independent of 1,25(OH)2D3. J. Cell. Physiol. 225: 482–489, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
已知绒山羊毛囊的发育受Wnt等信号通路控制,但Wnt通路相关基因在绒山羊胚胎毛囊启动和生长发育过程中的表达及作用机制尚不清楚。本文采用RNA-Seq技术对45 d,55 d和65 d的绒山羊胚胎体侧皮肤进行了转录组测序,鉴定Wnt通路相关基因的表达。 RNA- Seq技术结合blast搜索,将转录组有效测序数据与云南黑山羊参考基因组序列(http://goat. kiz.ac. cn/GGD/download.htm)比对,获得了已知的Wnt通路(pathway hsa04310)中的123个相关基因(86.0%)。进而采用实时荧光定量PCR技术检测,验证了差异表达的Sfrp4、Wnt3、Wnt10a(上调)和Apc2(下调)基因在绒山羊胚胎不同时期皮肤中的表达量,初步探索了绒山羊毛囊在胚胎期启动、发育过程中,Wnt通路部分基因的表达模式,为进一步研究Wnt通路部分基因在绒山羊胚胎毛囊启动、发育过程中的作用机制提供了有意义的线索。  相似文献   

18.
Noise‐induced hearing loss (NIHL) is one of the most frequent disabilities in industrialized countries. Evidence shows that hair cell loss in the auditory end organ is responsible for the majority of various ear pathological conditions. The functional roles of the receptor tyrosine kinase ROR1 have been underscored in various tumours. In this study, we evaluated the ability of ROR1 to influence cochlear hair cell loss of guinea pigs with NIHL. The NIHL model was developed in guinea pigs, with subsequent measurement of the auditory brainstem response (ABR). Gain‐of‐function experiments were employed to explore the role of ROR1 in NIHL. The interaction between ROR1 and Wnt5a and their functions in the cochlear hair cell loss were further analysed in response to alteration of ROR1 and Wnt5a. Guinea pigs with NIHL demonstrated elevated ABR threshold and down‐regulated ROR1, Wnt5a and NF‐κB p65. The up‐regulation of ROR1 was shown to decrease the cochlear hair cell loss and the expression of pro‐apoptotic gene (Bax, p53) in guinea pig cochlea, but promoted the expression of anti‐apoptotic gene (Bcl‐2) and the fluorescence intensity of cleaved‐caspase‐3. ROR1 interacted with Wnt5a to activate the NF‐κB signalling pathway through inducing phosphorylation and translocation of p65. Furthermore, Wnt5a overexpression decreased the cochlear hair cell loss. Collectively, this study suggested the protection of overexpression of ROR1 against cochlear hair cell loss in guinea pigs with NIHL via the Wnt5a‐dependent NF‐κB signalling pathway.  相似文献   

19.
The adult hair follicle has well-defined dermal and epithelial populations that display distinct developmental properties. The follicular dermal cells, namely the dermal papilla and dermal sheath, are derived from the same mesenchymal cells as dermal fibroblasts and therefore, we believed that follicular cells could be useful sources of interfollicular keratinocytes and fibroblast for skin wound repair. In this study, we evaluated the relative effect of various mesenchymal-derived cells on wound healing following skin injury. Human dermal cells, including two different follicular dermal cells and skin fibroblasts were cultured in collagen sponges and compared with respect to wound healing. Results indicated that there was no significant difference in wound contraction and angiogenesis among the cell types. Further, dermal sheath cells exhibited relatively poor results compared with other cells in new collagen synthesis. Finally, basement membrane reformation and new collagen synthesis for the dermal papilla cell grafts was superior to those of the dermal sheath cells or fibroblasts.  相似文献   

20.
Mammary glands, like other skin appendages such as hair follicles and teeth, develop from the surface epithelium and underlying mesenchyme; however, the molecular controls of embryonic mammary development are largely unknown. We find that activation of the canonical WNT/beta-catenin signaling pathway in the embryonic mouse mammary region coincides with initiation of mammary morphogenesis, and that WNT pathway activity subsequently localizes to mammary placodes and buds. Several Wnt genes are broadly expressed in the surface epithelium at the time of mammary initiation, and expression of additional Wnt and WNT pathway genes localizes to the mammary lines and placodes as they develop. Embryos cultured in medium containing WNT3A or the WNT pathway activator lithium chloride (LiCl) display accelerated formation of expanded placodes, and LiCl induces the formation of ectopic placode-like structures that show elevated expression of the placode marker Wnt10b. Conversely, expression of the secreted WNT inhibitor Dickkopf 1 in transgenic embryo surface epithelium in vivo completely blocks mammary placode formation and prevents localized expression of all mammary placode markers tested. These data indicate that WNT signaling promotes placode development and is required for initiation of mammary gland morphogenesis. WNT signals play similar roles in hair follicle formation and thus may be broadly required for induction of skin appendage morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号