共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Yonghua Zheng Weiguo Wan Catalin G. Manole Qiangqiang Zhang 《Journal of cellular and molecular medicine》2015,19(11):2530-2539
It is already accepted that telocytes (TCs) represent a new type of interstitial cells in human dermis. In normal skin, TCs have particular spatial relations with different dermal structures such as blood vessels, hair follicles, arrector pili muscles or segments of sebaceous and/or eccrine sweat glands. The distribution and the density of TCs is affected in various skin pathological conditions. Previous studies mentioned the particular (ultra)structure of TCs and also their immunophenotype, miR imprint or proteome, genome or secretome features. As fibroblast is the most common intersitital cell (also in human dermis), a dedicated comparison between human skin TCs and fibroblasts (Fbs) was required to be performed. In this study, using different techniques, we document several points of difference between human dermis TCs and Fbs. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM), we demonstrated TCs with their hallmark cellular prolongations – telopodes. Thus, we showed their ultrastructural distinctiveness from Fbs. By RayBio Human Cytokine Antibody Array V analyses performed on the supernatant from separately cultured TCs and Fbs, we detected the cytokine profile of both cell types, individually. Two of 79 detected cytokines – epithelial‐derived neutrophil‐activating peptide 78 and granulocyte chemotactic protein‐2 – were 1.5 times higher in the supernatant of TCs (comparing with Fbs). On the other hand, 37 cytokines were at least 1.5 higher in Fbs supernatant (comparing with TCs), and among them six cytokines – interleukin 5, monocyte chemotactic protein‐3 (MCP‐3), MCP‐4, macrophage inflammatory protein‐3, angiogenin, thrombopoietin – being 9.5 times higher (results also confirmed by ELISA testing). In summary, using different techniques, we showed that human dermal TCs and Fbs are different in terms of ultrastructure and cytokine profile. 相似文献
3.
4.
The commitment of regions of the embryo to form particular tissues or organs is a central concept in development, but the mechanisms controlling this process remain elusive. The well‐studied model of lens induction is ideal for dissecting key phases of the commitment process. We find in Xenopus tropicalis, at the time of specification of the lens, i.e., when presumptive lens ectoderm (PLE) can be isolated, cultured, and will differentiate into a lens that the PLE is not yet irreversibly committed, or determined, to form a lens. When transplanted into the posterior of a host embryo lens development is prevented at this stage, while ~ 3 h later, using the same assay, determination is complete. Interestingly, we find that specified lens ectoderm, when cultured, acquires the ability to become determined without further tissue interactions. Furthermore, we show that specified PLE has a different gene expression pattern than determined PLE, and that determined PLE can maintain expression of essential regulatory genes (e.g., foxe3, mafB) in an ectopic environment, while specified PLE cannot. These observations set the stage for a detailed mechanistic study of the genes and signals controlling tissue commitment. genesis 50:728–740, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
5.
Johnson KL Degnan KA Ross Walker J Ingram GC 《The Plant journal : for cell and molecular biology》2005,44(1):114-127
The specification of epidermal (L1) identity occurs early during plant embryogenesis. Here we show that, in Arabidopsis, AtDEK1 encodes a key component of the embryonic L1 cell-layer specification pathway. Loss of AtDEK1 function leads to early embryo lethality characterized by a severe loss of cell organization in the embryo proper and abnormal cell divisions within the suspensor. Markers for L1 identity, ACR4 and ATML1, are not expressed in homozygous mutant embryos. In order to clarify the function of AtDEK1 further, an RNAi knockdown approach was used. This allowed embryos to partially complete embryogenesis before losing AtDEK1 activity. Resulting seedlings showed a specific loss of epidermal cell identity within large portions of the cotyledons. In addition, meristem structure and function was systematically either reduced or entirely lost. AtDEK1 expression is not restricted to the L1 epidermal cell layer at any stage in development. This is consistent with AtDEK1 playing an upstream role in the continuous generation or interpretation of positional information required for epidermal specification. Our results not only identify a specific role for AtDEK1 during embryogenesis, but underline the potential key importance of L1 specification at the globular stage for subsequent progression through embryogenesis. 相似文献
6.
Identification of a distinct subpopulation of fibroblasts from murine dermis: CD73−CD105+ as potential marker of dermal fibroblasts subset with multipotency 下载免费PDF全文
Seung Bum Lee Sehwan Shim Min‐Jung Kim Hye‐Yun Shin Won‐Suk Jang Sun‐Joo Lee Young‐Woo Jin Seung‐Sook Lee Sunhoo Park 《Cell biology international》2016,40(9):1008-1016
7.
Specialized cells of the somatic gonad primordium of nematodes play important roles in the final form and function of the mature gonad. Caenorhabditis elegans hermaphrodites are somatic females that have a two-armed, U-shaped gonad that connects to the vulva at the midbody. The outgrowth of each gonad arm from the somatic gonad primordium is led by two female distal tip cells (fDTCs), while the anchor cell (AC) remains stationary and central to coordinate uterine and vulval development. The bHLH protein HLH-2 and its dimerization partners LIN-32 and HLH-12 had previously been shown to be required for fDTC specification. Here, we show that ectopic expression of both HLH-12 and LIN-32 in cells with AC potential transiently transforms them into fDTC-like cells. Furthermore, hlh-12 was known to be required for the fDTCs to sustain gonad arm outgrowth. Here, we show that ectopic expression of HLH-12 in the normally stationary AC causes displacement from its normal position and that displacement likely results from activation of the leader program of fDTCs because it requires genes necessary for gonad arm outgrowth. Thus, HLH-12 is both necessary and sufficient to promote gonadal regulatory cell migration. As differences in female gonadal morphology of different nematode species reflect differences in the fate or migratory properties of the fDTCs or of the AC, we hypothesized that evolutionary changes in the expression of hlh-12 may underlie the evolution of such morphological diversity. However, we were unable to identify an hlh-12 ortholog outside of Caenorhabditis. Instead, by performing a comprehensive phylogenetic analysis of all Class II bHLH proteins in multiple nematode species, we found that hlh-12 evolved within the Caenorhabditis clade, possibly by duplicative transposition of hlh-10. Our analysis suggests that control of gene regulatory hierarchies for gonadogenesis can be remarkably plastic during evolution without adverse phenotypic consequence. 相似文献
8.
We studied the hair-forming ability of epithelium and the relevant activity of dermal papilla (DP) in mouse vibrissal follicles during the hair cycle. Follicles were transversely cut into four pieces and each of them was associated with an isolated DP and grafted beneath the kidney capsule to induce hair formation. Various hair-cycle combinations of the fragments and DPs were examined. Hairs were generated not only in the follicle fragment containing the bulge (fragment III) but also in the fragment between the bulge and hair bulb (fragment II). The hair-forming frequencies were affected by the hair cycle stages of both the follicle fragments and DPs. Fragment III at late anagen (LA) and fragment II at catagen frequently generated hairs when associated with early anagen (EA)-DPs, but infrequently with mid-anagen (MA)-DPs. Oppositely, anagen fragment II produced hairs at a high frequency with MA-DPs and at a low frequency with EA-DPs. Hair generation in anagen fragment II is an unexpected finding because previous studies suggested that, during anagen, this region does not contain clonogenic epithelial cells that have been believed to be crucial for hair formation. Therefore, non-clonogenic epithelial cells would be able to generate hairs as well as clonogenic ones, and they should have a latent hair-forming ability that could be more effectively awakened by MA-DP than by EA-DP stimuli. Non-clonogenic epithelial cells might be a dormant phase of hair precursor cells. Proliferating follicular epithelial cells were detected in the middle and lower outer root sheath throughout the hair cycle but scarcely at LA. These findings suggest that the hair inductivity of DPs should be altered between EA and MA, and follicular epithelial cells would change their DP stimuli-directed hair-forming ability around LA, probably linked to the proliferative activity. 相似文献
9.
Berrin Ozdil Günnur Güler Eda Acikgoz Duygu Calik Kocaturk Huseyin Aktug 《Journal of cellular biochemistry》2020,121(1):269-283
Embryonic stem cells (ESCs) are promising research materials to investigate cell fate determination since they have the capability to differentiate. Stem cell differentiation has been extensively studied with various microenvironment mimicking structures to modify cellular dynamics associated with the cell-extracellular matrix (ECM) interactions and cell-cell communications. In the current study, our aim was to determine the effect of microenvironmental proteins with different concentrations on the capacity and differentiation capability of mouse ESCs (mESCs), combining the biochemical assays, imaging techniques, Fourier transform infrared (FTIR) spectroscopy, and unsupervised multivariate analysis. Based on our data, coating the surface of mESCs with Matrigel, used as an acellular matrix substrate, resulted in morphological and biochemical changes. mESCs exhibited alterations in their phenotype after growing on the Matrigel-coated surfaces, including their differentiation capacity, cell cycle phase pattern, membrane fluidity, and metabolic activities. In conclusion, mESCs can be stimulated physiologically, chemically, or mechanically to convert them a new phenotype. Thus, identification of ESCs’ behavior in the acellular microenvironment could be vital to elucidate the mechanism of diseases. It might also be promising to control the cell fate in the field of tissue engineering. 相似文献
10.
CCN2 is necessary for the function of mouse embryonic fibroblasts 总被引:13,自引:0,他引:13
Kennedy L Liu S Shi-Wen X Chen Y Eastwood M Sabetkar M Carter DE Lyons KM Black CM Abraham DJ Leask A 《Experimental cell research》2007,313(5):952-964
CCN2 is expressed by mesenchymal cells undergoing active tissue remodeling, and is characteristically overexpressed in connective tissue pathologies such as fibrosis and cancer. However, the physiological roles and mechanism of action of CCN2 are largely unknown. Here, we probe the contribution of CCN2 to the biology of mouse embryonic fibroblasts (MEFs) using genome-wide mRNA expression profiling, proteomic and functional bioassay analyses. We show that ccn2-/- mouse embryonic fibroblasts (MEFs) have significantly reduced the expression of pro-adhesive, pro-inflammatory and pro-angiogenic genes such as interleukin-6 (IL-6), ceruloplasmin, thrombospondin-1, lipocalin-2 and syndecan 4. Anti-syndecan 4 antibody reduced ERK phosphorylation in ccn2+/+ MEFs. In ccn2+/+ MEFs, the MEK inhibitor U0126 and dominant negative ras reduced expression of IL-6 and lipocalin-2. Overexpressing syndecan 4 in ccn2-/- MEFs restored IL-6 and lipocalin-2 mRNA expression. Syndecan 4 has been shown to mediate cell migration. We found that ccn2+/+ MEFs migrated significantly faster than ccn2-/- MEFs; anti-syndecan 4 antibody and U0126 reduced the migration of ccn2+/+ MEFs to that of ccn2-/- MEFs. These results collectively support the notion that syndecan 4 acts downstream of CCN2 in MEFs, and that reduced syndecan 4 expression contributes to at least part of the ccn2-/- phenotype. Further, these results suggest that CCN2 is required for MEFs to contribute to aspects of tissue remodeling. Consistent with this notion, whereas ccn2+/+ MEFs displayed actin stress fibers and focal adhesions at the cell periphery consistent with a migratory phenotype, ccn2-/- MEFs displayed reduced focal adhesions and actin stress fibers, and a reduced ability to transduce forces across a collagen gel matrix. Collectively, these results suggest that CCN2 supplies essential, non-redundant functions required for fibroblasts to properly participate in features of embryogenesis, and further suggest that CCN2 may play essential roles in adult wound healing, tissue repair and fibrogenesis. 相似文献
11.
目的:比较人皮肤成纤维细胞(humandermalfibroblasts,HDFs)与小鼠胚胎成纤维细胞(Mouseembryonicfibroblasts,MEFs)的增殖能力及研究人皮肤成纤维细胞作为饲养层支持人胚胎干细胞(humanembryonicstemcells,hESCs)未分化生长的能力。方法:利用组织贴壁法从人皮肤中分离出HDFs,通过细胞形态的观察和生长曲线的绘制比较HDFs与MEFs的体外增殖能力。将HDFs作为饲养层细胞与hESCs共培养,传代12代后,检测hESCs碱性磷酸酶(AKP)、表面特异性标志及胚胎干细胞特异性转录因子。结果:HDFs可连续传代培养15代以上,10代以下的HDFs增殖迅速,而MEFs自第4代起,增殖能力就明显下降;hESCs在HDFs饲养层上可传代培养12代以上,克隆边界清晰,细胞排列紧密,碱性磷酸酶、表面标志物检测均呈阳性,表达了hESCs特异性转录因子。结论:HDFs比MEFs具有更强的增殖能力;HDFs可作为培养hEscs的饲养层细胞。 相似文献
12.
Olivier Duverger Maria I. Morasso 《Birth defects research. Part C, Embryo today : reviews》2009,87(3):263-272
An intriguing question in developmental biology is how epidermal pattern formation processes are established and what are the molecular mechanisms involved in these events. The establishment of the pattern is concomitant with the formation of ectodermal appendages, which involves complex interactions between the epithelium and the underlying mesenchyme. Among ectodermal appendages, hair follicles are the “mini organs” that produce hair shafts. Several developmental and structural features are common to all hair follicles and to the hair shaft they produce. However, many different hair types are produced in a single organism. Also, different characteristics can be observed depending on the part of the body where the hair follicle is formed. Here, we review the mechanisms involved in the patterning of different hair types during mouse embryonic development as well as the influence of the body axes on hair patterning. Birth Defects Research (Part C) 87:263–272, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
13.
14.
Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells 总被引:7,自引:0,他引:7
Neural stem cells are the most immature progenitor cells in the nervous system and are defined by their ability to self-renew by symmetric division as well as to give rise to more mature progenitors of all neural lineages by asymmetric division (multipotentiality). The interest in neural stem cells has been growing in the past few years following the demonstration of their presence also in the adult nervous system of several mammals, including humans. This observation implies that the brain, once thought to be entirely post-mitotic, must have at least a limited capacity for self-renewal. This raises the possibility that the adult nervous system may still have the necessary plasticity to undergo repair of inborn defects and acquired injuries, if ways can be found to exploit the potential of neural stem cells (either endogenous or derived from other sources) to replace damaged or defective cells. A full understanding of the molecular mechanisms regulating generation and maintenance of neural stem cells, their choice between different differentiation programmes and their migration properties is essential if these cells are to be used for therapeutic applications. Here, we summarize what is currently known of the genes and the signalling pathways involved in these mechanisms. 相似文献
15.
Mitochondrial oxidative stress causes chromosomal instability of mouse embryonic fibroblasts 总被引:1,自引:0,他引:1
Reactive oxygen species are an inevitable by-product of mitochondrial respiration. It has been estimated that between 0.4 and 4% of molecular oxygen is converted to the radical superoxide (O2*-) and this level is significantly influenced by the functional status of the mitochondria. It is well established that exogenous oxidative stress and high doses of mitochondrial poisons such as paraquat and carbonyl cyanide 4 (trifluoromethoxy) phenylhydrazone (FCCP) can lead to genomic instability. In this report we show for the first time that endogenous mitochondrial oxidative stress in standard cell culture conditions results in nuclear genomic instability in primary mouse embryonic fibroblasts (MEFs). We show that lack of mitochondrial superoxide dismutase in MEFs leads to a severe increase of double strand breaks, end-to-end fusions, chromosomal translocations, and loss of cell viability and proliferative capacity. Our results predict that endogenous mitochondrial oxidative stress can induce genomic instability, and therefore may have a profound effect in cancer and aging. 相似文献
16.
17.
We previously reported that partial disruption of the Ankrd26 gene in mice leads to hyperphagia and leptin-resistant obesity. To determine whether the Ankrd26 mutation can affect the development of adipocytes, we studied mouse embryo fibroblasts (MEFs) from the mutant mice. We found that Ankrd26(-/-) MEFs have a higher rate of spontaneous adipogenesis than normal MEFs and that adipocyte formation is greatly increased when the cells are induced with troglitazone alone or with a mixture of troglitazone, insulin, dexamethasone, and methylisobutylxanthine. Increased adipogenesis was detected as an increase in lipid droplet formation and in the expression of several markers of adipogenesis. There was an increase in expression of early stage adipogenesis genes such as Krox20, KLF5, C/EBPβ, C/EBPδ, and late stage adipogenesis regulators KLF15, C/EBPα, PPARγ, and aP2. There was also an increase in adipocyte stem cell markers CD34 and Sca-1 and preadipocyte markers Gata2 and Pref-1, indicating an increase in both stem cells and progenitor cells in the mutant MEFs. Furthermore, ERK was found constitutively activated in Anrd26(-/-) MEFs, and the addition of MEK inhibitors to mutant cells blocked ERK activation, decreased adipogenesis induction, and significantly reduced expression of C/EBPδ, KLF15, PPARγ2, CD34, and Pref-1 genes. We conclude that Ankrd26 gene disruption promotes adipocyte differentiation at both the progenitor commitment and differentiation steps and that ERK activation plays a role in this process. 相似文献
18.
19.