共查询到20条相似文献,搜索用时 15 毫秒
1.
Locating QTL for osmotic adjustment and dehydration tolerance in rice 总被引:28,自引:3,他引:28
Lilley J.M.; Ludlow M. M.; McCouch S.R.; O'Toole J.C. 《Journal of experimental botany》1996,47(9):1427-1436
Research was conducted to identify and map quantitative traitloci (QTL) associated with dehydration tolerance and osmoticadjustment of rice. Osmotic adjustment capacity and lethal osmoticpotential were determined for 52 recombinant inbred lines grownin a controlled environment under conditions of a slowly developedstress. The lines were from a cross between an Indica cultivar,Co39, of lowland adaptation and a Japonica cultivar, Moroberekan,a traditional upland cultivar. The QTL analysis was conductedusing single marker analysis (ANOVA) and interval analysis (Mapmaker/QTL).The measurements obtained and the QTL identified were comparedto root traits and leaf rolling scores measured on the samelines. One major locus was associated with osmotic adjustment. Theputative locus for osmotic adjustment may be homoeologous witha single recessive gene previously identified for the same traitin wheat. The putative osmotic adjustment locus and two of thefive QTL associated with dehydration tolerance were close tochromosomal regions associated with root morphology. In thispopulation, osmotic adjustment and dehydration tolerance werenegatively associated with root morphological characters associatedwith drought avoidance. High osmotic adjustment and dehydrationtolerance were associated with Co39 alleles and extensive rootsystems were associated with Moroberekan alleles. To combinehigh osmotic adjustment with extensive root systems, the linkagebetween these traits will need to be broken. Alternatively,if the target environment is a lowland environment with onlybrief water deficit periods, selection for drought tolerancecharacteristics without consideration of the root system maybe most appropriate. Key words: Drought, rice, osmotic adjustment, dehydration tolerance, molecular markers, QTL, breeding 相似文献
2.
Freezing of spinach leaf discs ( Spinacia aleracea L. cv. Estivato) resulted in an irreversible and parallel loss of protein-sulfhydryl (SH) and water-soluble protein. This decrease was inversely related to the increase in freezing injury as determined by the loss of electrolytes from the tissue after thawing. Loss of proteins and protein-SH occurred during freezing of the tissue and was not enhanced by thawing. The parallel decreases in content of soluble proteins and SH groups make it impossible to determine whether oxidation of protein-SH groups is the primary step in decline of protein content. During freezing the content of non-protein-SH compounds, mainly glutathione (GSH), was decreased to a lesser extent than that of protein-SH. Contrary to protein-SH, the levels of non-protein-SH declined substantially after thawing. The data indicate that GSH is not directly involved in protection of soluble proteins against freezing-induced denaturation. 相似文献
3.
Sulphate induced accumulation of glutathione and frost-tolerance of spinach leaf tissue 总被引:1,自引:0,他引:1
Luit J. de Kok Peter J. L. de Kan Otto G. Tánczos Pieter J. C. Kuiper 《Physiologia plantarum》1981,53(4):435-438
Water-extractable sulfhydryl content of spinach leaf discs increased up to four-fold when they were incubated with sulphate (10–100 m M ) for 20 h in light or darkness. The accumulated sulfhydryl compound was reduced glutathione. An increased glutathione content did not result in a higher frost-tolerance of the spinach leaf discs. Both freezing temperature and time of exposure to freezing, determined as the point at which 50% of the cells were killed, remained unchanged after incubation with sulphate. These observations suggest that a sulfhydryl compound as glutathione does not play a direct role in protection of plants against freezing injury. 相似文献
4.
Abstract Water-stressed pigeonpea leaves have high levels of osmotic adjustment at low leaf water potentials. The possible contribution of this adjustment of dehydration tolerance of leaves was examined in plants grown in a controlled environment. Osmotic adjustment was varied by withholding water from plants growing in differing amounts of soil, which resulted in different rates of decline of leaf water potential. The level of osmotic adjustment was inversely related to leaf water potential in all treatments. In addition, at any particular water potential, plants that had experienced a rapid development of stress exhibited less osmotic adjustment than plants that experienced a slower development of stress. Leaves with different levels of osmotic adjustment died at water potentials between –3.4 and –6.3 MPa, but all leaves died at a similar relative water content (32%). Consequently, leaves died when relative water content reached a lethal value, rather than when a lethal leaf water potential was reached. Osmotic adjustment delayed the time and lowered the leaf water potential when the lethal relative water content occurred, because it helped maintain higher relative water contents at low leaf water potentials. The consequences of osmotic adjustment for leaf survival in water-stressed pigeonpea are discussed. 相似文献
5.
Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening 总被引:1,自引:0,他引:1
The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψπ) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψπ during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψπ,100) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was −0.7 MPa for G. urceolata and −0.8 MPa for G. procumbens. In vivo concentrations of anthocyanin (3–10 mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψπ,100 in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψπ,100. We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an osmoprotectant role. 相似文献
6.
Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions 总被引:12,自引:0,他引:12
The influence of arbuscular mycorrhizal (AM) fungus Glomus versiforme on plant growth, osmotic adjustment and photosynthesis of tangerine (Citrus tangerine) were studied in potted culture under well-watered and water stress conditions. Seven-day-old seedlings of tangerine were transferred to pots containing Glomus versiforme or non-AMF. After 97 days, half of the seedlings were subject to water stress and the rest were well-watered for 80 days. AM colonization significantly stimulated plant growth and biomass regardless of water status. The soluble sugar of leaves and roots, the soluble starch of leaves, the total non-structural carbohydrates (NSC) of leaves and roots, and the Mg(2+) of leaves were higher in AM seedlings than those in corresponding non-AM seedlings. The levels of K(+) and Ca(2+) in leaves and roots were higher in AM seedlings than those in non-AM seedlings, but differences were only significant under water stress conditions. Moreover, AM colonization increased the distributed proportions of soluble sugar and NSC to roots. However, the proline was lower in AM seedlings compared with that in non-AM seedlings. AM seedlings had higher leaf water potential (Psi), transpiration rates (E), photosynthetic rates (Pn), stomatal conductance (g(s)), relative water content (RWC), and lower leaf temperature (Lt) than corresponding non-AM seedlings. This research also suggested that AM colonization improved the osmotic adjustment originating not from proline but from NSC, K(+), Ca(2+) and Mg(2+), resulting in the enhancement of drought tolerance. 相似文献
7.
Salinity tolerance of citrus rootstocks: Effects of salt on root and leaf mineral concentrations 总被引:2,自引:0,他引:2
The effects of three concentrations of sodium chloride (NaCl) on seven citrus rootstocks were studied under greenhouse conditions. Leaf and root mineral concentrations and seedling growth were measured. Sodium chloride was added to the nutrient solution to achieve final osmotic potentials of –0.10, –0.20, and –0.35 MPa. Increasing the concentration of NaCl in the nutrition solution reduced growth proportionally and altered leaf and root mineral concentrations of all rootstocks. Significant differences in leaf and root mineral concentration among rootstocks were also found under stressed and non-stressed conditions. Salinity caused the greatest growth reduction in Milam lemon and trifoliate orange and the least reduction in sour orange and Cleopatra mandarin. No specific nutrient deficiency was the sole factor reducing growth and causing injury to citrus rootstocks. Sodium chloride sensitivity of citrus rootstocks in terms of leaf burn symptoms and growth reduction could be attributed more to Cl than to Na. Sodium and Cl concentrations were greater in the leaves than in the roots, particularly at the medium and high salinity levels. Root Cl was not useful for assessing injury because no differences were found in root Cl concentrations among rootstocks. Increasing salinity level did not affect the level of N and Ca in the roots but did reduce N and Ca levels in the leaves. No relationship in mineral concentration or accumulation seemed to exist between citrus leaves and roots. At the –0.10 MPa salinity level, sour orange, rough lemon, and Milam were not able to exclude either Na or Cl from their leaves. Trifoliate orange and its two hybrids (Swingle citrumelo and Carrizo citrange) excluded Na at the lowest salt level used, but were unable to exclude Na at the higher salinity levels. Similarly, Cleopatra mandarin excluded Cl at the lowest salt level, but was not able to exclude Cl at higher salt concentrations. Hence, the ability of citrus rootstocks to exclude Na or Cl breaks down at higher salt concentrations.Florida Agricultural Experiment Station Journal Series No. R-02276. 相似文献
8.
Heat-induced sensitivity to osmotic shock in Escherichia coli and its relationship to cellular potassium content 总被引:1,自引:0,他引:1
M C Allwood 《Microbios》1971,4(14):93-96
9.
Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue 总被引:9,自引:0,他引:9
R. Kramell R. Atzorn G. Schneider O. Miersch C. Brückner J. Schmidt G. Sembdner B. Parthier 《Journal of Plant Growth Regulation》1995,14(1):29-36
The effect of osmotically active substances on the alteration of endogenous jasmonates was studied in barley (Hordeum vulgare L. cv. Salome) leaf tissue. Leaf segments were subjected to solutions of d-sorbitol, d-mannitol, polyethylene glycol 6000, sodium chloride, or water as a control. Alterations of endogenous jasmonates were monitored qualitatively and quantitatively using immunoassays. The structures of jasmonates isolated were determined on the basis of authentic substances by capillary gas chromatography-mass spectrometry. The stereochemistry of the conjugates was confirmed by high performance liquid chromatography with diastereoisomeric references. In barley leaves, jasmonic acid and its amino acid conjugates, for example, with valine, leucine, and isoleucine, are naturally occurring jasmonates. In untreated leaf segments, only low levels of these native jasmonates were found. After treatment of the leaf tissues with sorbitol, mannitol, as well as with polyethylene glycol, an increase of both jasmonic acid and its conjugates could be observed, depending on the stress conditions used. In contrast, salt stress was without any stimulating effect on the levels of endogenous jasmonates. From barley leaf segments exposed to sorbitol (1m) for 24 h, jasmonic acid was identified as the major accumulating compound. Jasmonic acid-amino acid conjugates increased likewise upon stress treatment.Abbreviations JM
methyl jasmonate
- JA
jasmonic acid
- JIP(s)
jasmonate-induced protein(s)
- PEG
polyethylene glycol
- RIA
radioimmunoassay
- ELISA
enzyme-linked immunosorbent assay
- HPLC
high performance liquid chromatography
- GC-MS
gas chromatography-mass spectrometry
-
R
t
retention time
- IAA
indole-3-acetic acid 相似文献
10.
Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture 总被引:1,自引:0,他引:1
Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (K(leaf)) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that K(leaf) relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of K(leaf) to damage; severing the midrib caused K(leaf) and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces K(leaf), we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of K(leaf), was lower with greater major vein density and smaller leaf size (|r| = 0.85-0.90; P < 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size. 相似文献
11.
Atriplex (Halimione) portulacoides is a halophyte with potential interest for saline soil reclamation and phytoremediation. Here, we assess the impact of salinity reaching up to two-fold seawater concentration (0–1000 mM NaCl) on the plant growth, leaf water status and ion uptake and we evaluate the contribution of inorganic and organic solutes to the osmotic adjustment process. A. portulacoides growth was optimal at 200 mM NaCl but higher salinities (especially 800 and 1000 mM NaCl) significantly reduced plant growth. Na+ and Cl− contents increased upon salt exposure especially in the leaves compared to the roots. Interestingly, no salt-induced toxicity symptoms were observed and leaf water content was maintained even at the highest salinity level. Furthermore, leaf succulence and high instantaneous water use efficiency (WUEi) under high salinity significantly contributed to maintain leaf water status of this species. Leaf pressure–volume curves showed that salt-challenged plants adjusted osmotically by lowering osmotic potential at full turgor (Ψπ100) along with a decrease in leaf cell elasticity (values of volumetric modulus elasticity (ε) increased). As a whole, our findings indicate that A. portulacoides is characterized by a high plasticity in terms of salt-response. Preserving leaf hydration and efficiently using Na+ for the osmotic adjustment especially at high salinities (800–1000 mM NaCl), likely through its compartmentalization in leaf vacuoles, are key determinants of such a performance. The selective absorption of K+ over Na+ in concomitance with an increase in the K+ use efficiency also accounted for the overall plant salt tolerance. 相似文献
12.
Characterization of partially purified glutathione reductase from cold-hardened and nonhardened spinach leaf tissue 总被引:1,自引:0,他引:1
Glutathione reductase (GR) (EC 1.6.4.2) was studied in crude and partially purified extracts from nonhardened (25/20 °C D/N) and hardened (5/5 °C D/N) spinach-leaf tissue. Crude extracts of hardened tissue showed a 66% increase in glutathione reductase activity over that of nonhardened tissue. The enzyme was purified by ammonium sulfate precipitation, Sephadex G-150 chromatography, 2′, 5′ ADP-Sepharose affinity chromatography, and DEAE-Sephadex A-50 ion-exchange chromatography. The partially purified enzyme from the two sources showed different kinetic characteristics, heat inactivation, freezing inactivation, and electrophoretic mobilities. Hardened leaves contain different forms of glutathione reductase than do nonhardened leaves. GR from hardened spinach has greater stability against freezing and a higher affinity for substrates at low temperature than does GR from nonhardened spinach. 相似文献
13.
14.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3ol] was applied to soil at 0, 100, or 250 mg/3.78-liter pot containing seedlings of Swingle citrumelo, Carrizo citrange, Cleopatra mandarin, sour orange, rough lemon, and Sun Chu Sha. All cultivars were sensitive to paclobutrazol, which caused a proliferation of shorter/thicker roots, and top growth showed shorter internodes and lower dry weight. Induced changes resulted in greater root/shoot ratios, and paclobutrazol treatments showed higher concentrations of nitrogen, calcium, boron, iron, and manganese in the leaves of different cultivars. Paclobutrazol-treated seedlings did not show a greater ability to tolerate flooded soil for 60 continuous days under greenhouse conditions nor survive-6.7°C controlled freeze tests. Paclobutrazol is a potentially useful plant growth regulator to dwarf citrus, but it apparently is not a strong candidate for increasing flooding and freezing tolerance in citrus rootstock seedlings.Abbreviations PPFD
photosynthetic photon flux density
- ANOVA
analysis of variance 相似文献
15.
16.
Microtubules in mesophyll cells of nonacclimated and cold-acclimated spinach : visualization and responses to freezing, low temperature, and dehydration
下载免费PDF全文

Responses of cortical microtubules in spinach (Spinacia oleracea L. cv Bloomsdale) mesophyll cells to freezing, thawing, supercooling, and dehydration were assessed. Microtubules were visualized using a modified procedure for indirect immunofluorescence microscopy. Leaf sections of nonacclimated and cold-acclimated spinach were slowly frozen to various temperatures, fixed while frozen, and microtubules immunolabelled. Both nonacclimated and cold-acclimated cells exhibited nearly complete microtubule depolymerization after ice formation. After 1 hour thawing at 23°C, microtubules in both nonacclimated and cold-acclimated cells repolymerized. With time, however, microtubules in nonacclimated cells again depolymerized. Since microtubules in cells of leaf tissue frozen slowly are subjected to dehydration as well as subzero temperatures, these stresses were applied separately and their effects on microtubules noted. Supercooling induced microtubule depolymerization in both nonacclimated and cold-acclimated cells, but to a smaller extent than did freezing. Exposing leaf sections to solutions of sorbitol (a cell wall-penetrating osmoticum) or polyethylene glycol 10,000 (a nonpenetrating osmoticum) at room temperature caused microtubule depolymerization. The effects of low temperature and dehydration are roughly additive in producing the observed microtubule responses during freezing. Only small differences in microtubule stability were resolved between nonacclimated and cold-acclimated cells. 相似文献
17.
Sinclair BJ Marshall DJ Singh S Chown SL 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2004,174(8):617-624
All intertidal gastropods for which cold tolerance strategies have been assessed have been shown to be freeze tolerant. Thus, freeze tolerance is considered an adaptation to the intertidal environment. We investigated the cold tolerance strategies of three species of subtropical and temperate snails (Gastropoda: Littorinidae) to determine whether this group is phylogenetically constrained to freeze tolerance. We exposed dry acclimated and wet rehydrated snails to low temperatures to determine temperature of crystallisation (Tc), lower lethal temperature and LT50 and to examine the relationship between ice formation and mortality. Tc was lowest in dry Afrolittorina knysnaensis (–13.6±0.4 °C), followed by dry Echinolittorina natalensis (–10.9±0.2 °C) and wet A. knysnaensis (–10.2±0.2 °C). The Tc of both A. knysnaensis and E. natalensis increased with rehydration, whereas Tc of dry and wet Afrolittorina africana did not differ (–9.6±0.2 and –9.0±0.2 °C respectively). Wet snails of all species exhibited no or low survival of inoculative freezing, whereas dry individuals of A. knysnaensis could survive subzero temperatures above –8 °C when freezing was inoculated with ice. In the absence of external ice, Afrolittorina knysnaensis employs a freeze-avoidance strategy of cold tolerance, the first time this has been reported for an intertidal snail, indicating that there is no family-level phylogenetic constraint to freeze tolerance. Echinolittorina natalensis and A. africana both showed pre-freeze mortality and survival of some internal ice formation, but were not cold hardy in any strict sense. 相似文献
18.
Biochemistry of natural freeze tolerance in animals: molecular adaptations and applications to cryopreservation 总被引:1,自引:0,他引:1
K B Storey 《Biochimie et biologie cellulaire》1990,68(4):687-698
For a wide variety of animals, winter survival in cold climates includes the ability to tolerate ice formation in extracellular body fluids. Among terrestrially hibernating vertebrates, freeze tolerance has been documented for five amphibian and two reptile species. These species may survive for days or weeks in a frozen state with no breathing and no heart beat, and with up to 65% of total body water as extracellular ice. The biochemical mechanisms involved in natural freeze tolerance include (i) the regulation of extracellular ice formation by proteinaceous ice nucleators in body fluids, (ii) the accumulation of high concentrations of low molecular weight carbohydrates as cryoprotectants to regulate cell volume reduction during freezing and stabilize macromolecular structure, and (iii) a well-developed ischemia tolerance that supports the survival of individual organs while frozen. The present article focuses on recent advances in our understanding of the biochemistry of natural freeze tolerance in lower vertebrates and the application of these studies to the improvement of cryopreservation technology for transplantable mammalian organs. 相似文献
19.
Charles Yu David L. Claybrook Anthony H.C. Huang 《Archives of biochemistry and biophysics》1983,227(1):180-187
The transport of radioactive glycine, serine, and proline into the matrix of spinach leaf mitochondria was studied using the silicone oil centrifugation technique. The uptake of all three amino acids showed a biphasic characteristic. At concentrations higher than 0.5 mm, an apparent diffusion process dominated. The uptake was not saturable at increasing amino acid concentrations, and there was no accumulation of amino acid in the matrix (i.e., concentration was similar to that in the medium). At concentrations lower than 0.5 mm, in addition to the diffusion process, an active uptake system that accumulated amino acid in the matrix became apparent. This system was partially inhibited by rotenone, antimycin A, and carbonylcyanide-m-chlorophenyl hydrazone. Also, uptake of glycine and serine was mutually inhibitory. These two amino acids exhibited comparatively less inhibitory effect on proline uptake, and proline also did not inhibit glycine or serine uptake. The results suggest that the active uptake system consists of at least two components with different degrees of amino acid specificity. The diffusion process dominates at amino acid concentrations of 0.5 mm or higher, whereas the active uptake system becomes more prominent as the amino acid concentration decreases. 相似文献
20.
Welbaum G.E.; Bian D.; Hill D.R.; Grayson R.L.; Gunatilaka M.K. 《Journal of experimental botany》1997,48(3):643-654
The freezing tolerance of many plants, such as pea (Pisum sativum),is increased by exposure to low temperature or abscisic acidtreatment, although the physiological basis of this phenomenonis poorly understood. The freezing tolerance of pea shoot tips,root tips, and epicotyl tissue was tested after cold acclimationat 2C, dehydration/rehydration, applications of 104M abscisic acid (ABA), and deacclimation at 25C. Tests wereconducted using the cultivar Alaska, an ABA-deficientmutant wil, and its wildtype. Freezinginjury was determined graphically as the temperature that caused50% injury (T50) from electrical conductivity. Endogenous ABAwas measured using an indirect enzyme-linked immunosorbant assay,and novel proteins were detected using 2-dimensional polyacrylamidegel electrophoresis. The maximum decrease in T50 for root tissuewas 1C for all genotypes, regardless of treatment. For Alaskashoot tips and epicotyl tissue, exogenous ABA increased thefreezing tolerance by 1.5 to 4.0C, while coldtreatment increased the freezing tolerance by 7.5 to14.8C. Cold treatment increased the freezing toleranceof shoot tips by 9 and 15C for wiland wild-type, respectively. Cold acclimationincreased endogenous ABA concentrations in Alaskashoot tips and epicotyls 3- to 4-fold. Immunogold labeling increasednoticeably in the nucleus and cytoplasm of the epicotyl after7 d at 2C and was greatest after 30 d at the time of maximumfreezing tolerance and soluble ABA concentration. Cold treatmentinduced the production of seven, three, and two proteins inshoot, epicotyl, and root tissue of Alaska, respectively.In Alaska shoot tissue, five out of seven novelproteins accumulated in response to both ABA and cold treatment.However, only a 24 kDa protein was produced in wiland wild-type shoot and epicotyl tissues aftercold treatment. Abscisic acid and cold treatment additivelyincreased the freezing tolerance of pea epicotyl and shoot tissuesthrough apparently independent mechanisms that both resultedin the production of a 24 kDa protein. Key words: Pisum sativum, cold acclimation, immuno-localization 相似文献