首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Locating QTL for osmotic adjustment and dehydration tolerance in rice   总被引:31,自引:3,他引:28  
Research was conducted to identify and map quantitative traitloci (QTL) associated with dehydration tolerance and osmoticadjustment of rice. Osmotic adjustment capacity and lethal osmoticpotential were determined for 52 recombinant inbred lines grownin a controlled environment under conditions of a slowly developedstress. The lines were from a cross between an Indica cultivar,Co39, of lowland adaptation and a Japonica cultivar, Moroberekan,a traditional upland cultivar. The QTL analysis was conductedusing single marker analysis (ANOVA) and interval analysis (Mapmaker/QTL).The measurements obtained and the QTL identified were comparedto root traits and leaf rolling scores measured on the samelines. One major locus was associated with osmotic adjustment. Theputative locus for osmotic adjustment may be homoeologous witha single recessive gene previously identified for the same traitin wheat. The putative osmotic adjustment locus and two of thefive QTL associated with dehydration tolerance were close tochromosomal regions associated with root morphology. In thispopulation, osmotic adjustment and dehydration tolerance werenegatively associated with root morphological characters associatedwith drought avoidance. High osmotic adjustment and dehydrationtolerance were associated with Co39 alleles and extensive rootsystems were associated with Moroberekan alleles. To combinehigh osmotic adjustment with extensive root systems, the linkagebetween these traits will need to be broken. Alternatively,if the target environment is a lowland environment with onlybrief water deficit periods, selection for drought tolerancecharacteristics without consideration of the root system maybe most appropriate. Key words: Drought, rice, osmotic adjustment, dehydration tolerance, molecular markers, QTL, breeding  相似文献   

2.
Freezing of spinach leaf discs ( Spinacia aleracea L. cv. Estivato) resulted in an irreversible and parallel loss of protein-sulfhydryl (SH) and water-soluble protein. This decrease was inversely related to the increase in freezing injury as determined by the loss of electrolytes from the tissue after thawing. Loss of proteins and protein-SH occurred during freezing of the tissue and was not enhanced by thawing. The parallel decreases in content of soluble proteins and SH groups make it impossible to determine whether oxidation of protein-SH groups is the primary step in decline of protein content. During freezing the content of non-protein-SH compounds, mainly glutathione (GSH), was decreased to a lesser extent than that of protein-SH. Contrary to protein-SH, the levels of non-protein-SH declined substantially after thawing. The data indicate that GSH is not directly involved in protection of soluble proteins against freezing-induced denaturation.  相似文献   

3.
Pearl millet, Pennisetum glaucum , is capable of adapting to severely dry environmental conditions. In order to elucidate the mechanism of adaptation to highly dehydrated conditions, we selected both tolerant (IP8210) and susceptible (IP8949) accessions from a total of 15 pearl millet accessions and characterized their morphological and physiological responses to severe drought stress. When these selected accessions were stressed with a severe drought treatment, the leaves of IP8210 exhibited upright folding, a response that effectively reduces the evaporative surface area of the canopy. On the contrary, the leaves of IP8949 exhibited wilting and did not appear to adapt to the drought stress. In comparison with IP8949, the capacity of osmotic adjustment (OA) was greater in both younger leaves and stems of IP8210, while their decrease in relative water content was different. IP8210 accumulated higher concentrations of NO3 than IP8949 in response to drought stress. In addition to inorganic solutes, several organic components such as sucrose, glucose, quaternary ammonium compounds, and amino acids including proline were also accumulated. IP8210 tended to accumulate more amino acids, typically due to the accumulation of asparagine and proline, while IP8949 accumulated more soluble sugars. While it is possible that K+ and NO3 were the major components contributing to osmotic regulations, sugars and amino acids might also function as a cytoprotectant, in addition to their role as osmoprotectants. Collectively, these results demonstrate that the morphological adaptation of leaf folding, OA in both the younger leaves and the stem, and the accumulation of NO3 and amino acids during earlier stress period contribute to superior drought tolerance that was exhibited in IP8210 of pearl millet.  相似文献   

4.
Water-extractable sulfhydryl content of spinach leaf discs increased up to four-fold when they were incubated with sulphate (10–100 m M ) for 20 h in light or darkness. The accumulated sulfhydryl compound was reduced glutathione. An increased glutathione content did not result in a higher frost-tolerance of the spinach leaf discs. Both freezing temperature and time of exposure to freezing, determined as the point at which 50% of the cells were killed, remained unchanged after incubation with sulphate. These observations suggest that a sulfhydryl compound as glutathione does not play a direct role in protection of plants against freezing injury.  相似文献   

5.
Abstract Water-stressed pigeonpea leaves have high levels of osmotic adjustment at low leaf water potentials. The possible contribution of this adjustment of dehydration tolerance of leaves was examined in plants grown in a controlled environment. Osmotic adjustment was varied by withholding water from plants growing in differing amounts of soil, which resulted in different rates of decline of leaf water potential. The level of osmotic adjustment was inversely related to leaf water potential in all treatments. In addition, at any particular water potential, plants that had experienced a rapid development of stress exhibited less osmotic adjustment than plants that experienced a slower development of stress. Leaves with different levels of osmotic adjustment died at water potentials between –3.4 and –6.3 MPa, but all leaves died at a similar relative water content (32%). Consequently, leaves died when relative water content reached a lethal value, rather than when a lethal leaf water potential was reached. Osmotic adjustment delayed the time and lowered the leaf water potential when the lethal relative water content occurred, because it helped maintain higher relative water contents at low leaf water potentials. The consequences of osmotic adjustment for leaf survival in water-stressed pigeonpea are discussed.  相似文献   

6.
The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψπ) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψπ during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψπ,100) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was −0.7 MPa for G. urceolata and −0.8 MPa for G. procumbens. In vivo concentrations of anthocyanin (3–10 mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψπ,100 in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψπ,100. We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an osmoprotectant role.  相似文献   

7.
The influence of arbuscular mycorrhizal (AM) fungus Glomus versiforme on plant growth, osmotic adjustment and photosynthesis of tangerine (Citrus tangerine) were studied in potted culture under well-watered and water stress conditions. Seven-day-old seedlings of tangerine were transferred to pots containing Glomus versiforme or non-AMF. After 97 days, half of the seedlings were subject to water stress and the rest were well-watered for 80 days. AM colonization significantly stimulated plant growth and biomass regardless of water status. The soluble sugar of leaves and roots, the soluble starch of leaves, the total non-structural carbohydrates (NSC) of leaves and roots, and the Mg(2+) of leaves were higher in AM seedlings than those in corresponding non-AM seedlings. The levels of K(+) and Ca(2+) in leaves and roots were higher in AM seedlings than those in non-AM seedlings, but differences were only significant under water stress conditions. Moreover, AM colonization increased the distributed proportions of soluble sugar and NSC to roots. However, the proline was lower in AM seedlings compared with that in non-AM seedlings. AM seedlings had higher leaf water potential (Psi), transpiration rates (E), photosynthetic rates (Pn), stomatal conductance (g(s)), relative water content (RWC), and lower leaf temperature (Lt) than corresponding non-AM seedlings. This research also suggested that AM colonization improved the osmotic adjustment originating not from proline but from NSC, K(+), Ca(2+) and Mg(2+), resulting in the enhancement of drought tolerance.  相似文献   

8.
9.
1. ATP sulphurylase was purified up to 1000-fold from spinach leaf tissue. Activity was measured by sulphate-dependent [(32)P]PP(i)-ATP exchange. The enzyme was separated from Mg(2+)-requiring alkaline pyrophosphatase (which interferes with the PP(i)-ATP-exchange assay) and from other PP(i)-ATP-exchange activities. No ADP sulphurylase activity was detected. 2. Sulphate was the only form of inorganic sulphur that catalysed PP(i)-ATP exchange; K(m) (sulphate) was 3.1mm, K(m) (ATP) was 0.35mm and the pH optimum was 7.5-9.0. The enzyme was insensitive to thiol-group reagents and required either Mg(2+) or Co(2+) for activity. 3. The enzyme catalysed [(32)P]PP(i)-dATP exchange; K(m) (dATP) was 0.84mm and V (dATP) was 30% of V (ATP). Competition between ATP and dATP was demonstrated. 4. Selenate catalysed [(32)P]PP(i)-ATP exchange and competed with sulphate; K(m) (selenate) was 1.0mm and V (selenate) was 30% of V (sulphate). No AMP was formed with selenate as substrate. Molybdate did not catalyse PP(i)-ATP exchange, but AMP was formed. 5. Synthesis of adenosine 5'-[(35)S]sulphatophosphate was demonstrated by coupling purified ATP sulphurylase and Mg(2+)-dependent alkaline pyrophosphatase (also prepared from spinach) with [(35)S]sulphate and ATP as substrates; adenosine 5'-sulphatophosphate was not synthesized in the absence of pyrophosphatase. Some parameters of the coupled system are reported.  相似文献   

10.
The effects of three concentrations of sodium chloride (NaCl) on seven citrus rootstocks were studied under greenhouse conditions. Leaf and root mineral concentrations and seedling growth were measured. Sodium chloride was added to the nutrient solution to achieve final osmotic potentials of –0.10, –0.20, and –0.35 MPa. Increasing the concentration of NaCl in the nutrition solution reduced growth proportionally and altered leaf and root mineral concentrations of all rootstocks. Significant differences in leaf and root mineral concentration among rootstocks were also found under stressed and non-stressed conditions. Salinity caused the greatest growth reduction in Milam lemon and trifoliate orange and the least reduction in sour orange and Cleopatra mandarin. No specific nutrient deficiency was the sole factor reducing growth and causing injury to citrus rootstocks. Sodium chloride sensitivity of citrus rootstocks in terms of leaf burn symptoms and growth reduction could be attributed more to Cl than to Na. Sodium and Cl concentrations were greater in the leaves than in the roots, particularly at the medium and high salinity levels. Root Cl was not useful for assessing injury because no differences were found in root Cl concentrations among rootstocks. Increasing salinity level did not affect the level of N and Ca in the roots but did reduce N and Ca levels in the leaves. No relationship in mineral concentration or accumulation seemed to exist between citrus leaves and roots. At the –0.10 MPa salinity level, sour orange, rough lemon, and Milam were not able to exclude either Na or Cl from their leaves. Trifoliate orange and its two hybrids (Swingle citrumelo and Carrizo citrange) excluded Na at the lowest salt level used, but were unable to exclude Na at the higher salinity levels. Similarly, Cleopatra mandarin excluded Cl at the lowest salt level, but was not able to exclude Cl at higher salt concentrations. Hence, the ability of citrus rootstocks to exclude Na or Cl breaks down at higher salt concentrations.Florida Agricultural Experiment Station Journal Series No. R-02276.  相似文献   

11.
12.
13.
14.
The effect of osmotically active substances on the alteration of endogenous jasmonates was studied in barley (Hordeum vulgare L. cv. Salome) leaf tissue. Leaf segments were subjected to solutions of d-sorbitol, d-mannitol, polyethylene glycol 6000, sodium chloride, or water as a control. Alterations of endogenous jasmonates were monitored qualitatively and quantitatively using immunoassays. The structures of jasmonates isolated were determined on the basis of authentic substances by capillary gas chromatography-mass spectrometry. The stereochemistry of the conjugates was confirmed by high performance liquid chromatography with diastereoisomeric references. In barley leaves, jasmonic acid and its amino acid conjugates, for example, with valine, leucine, and isoleucine, are naturally occurring jasmonates. In untreated leaf segments, only low levels of these native jasmonates were found. After treatment of the leaf tissues with sorbitol, mannitol, as well as with polyethylene glycol, an increase of both jasmonic acid and its conjugates could be observed, depending on the stress conditions used. In contrast, salt stress was without any stimulating effect on the levels of endogenous jasmonates. From barley leaf segments exposed to sorbitol (1m) for 24 h, jasmonic acid was identified as the major accumulating compound. Jasmonic acid-amino acid conjugates increased likewise upon stress treatment.Abbreviations JM methyl jasmonate - JA jasmonic acid - JIP(s) jasmonate-induced protein(s) - PEG polyethylene glycol - RIA radioimmunoassay - ELISA enzyme-linked immunosorbent assay - HPLC high performance liquid chromatography - GC-MS gas chromatography-mass spectrometry - R t retention time - IAA indole-3-acetic acid  相似文献   

15.
在盆栽条件下,研究了开花期和灌浆期干旱胁迫(土壤含水量为田间最大持水量的45%~50%)对持绿性高粱(B35)和非持绿性高粱(三尺三)叶片水分、渗透调节物质以及叶绿体超微结构的影响.结果表明: 干旱胁迫下,两高粱品系叶片自由水含量下降,束缚水含量增加,相对含水量降低,水分饱和亏缺增加,相对电导率增大,但三尺三各指标的变化幅度均大于B35.对于渗透调节物质,干旱胁迫下,三尺三可溶性糖含量的增幅大于B35,脯氨酸含量的增幅小于B35,可溶性蛋白含量的降幅大于B35.干旱胁迫下,B35与三尺三的叶绿体超微结构均受到一定程度的破坏,但B35叶绿体结构保持相对完好,受损程度明显小于三尺三.在干旱胁迫下,持绿性高粱通过较强的渗透调节表现出更好的干旱适应能力.
  相似文献   

16.
Atriplex (Halimione) portulacoides is a halophyte with potential interest for saline soil reclamation and phytoremediation. Here, we assess the impact of salinity reaching up to two-fold seawater concentration (0–1000 mM NaCl) on the plant growth, leaf water status and ion uptake and we evaluate the contribution of inorganic and organic solutes to the osmotic adjustment process. A. portulacoides growth was optimal at 200 mM NaCl but higher salinities (especially 800 and 1000 mM NaCl) significantly reduced plant growth. Na+ and Cl contents increased upon salt exposure especially in the leaves compared to the roots. Interestingly, no salt-induced toxicity symptoms were observed and leaf water content was maintained even at the highest salinity level. Furthermore, leaf succulence and high instantaneous water use efficiency (WUEi) under high salinity significantly contributed to maintain leaf water status of this species. Leaf pressure–volume curves showed that salt-challenged plants adjusted osmotically by lowering osmotic potential at full turgor (Ψπ100) along with a decrease in leaf cell elasticity (values of volumetric modulus elasticity (ε) increased). As a whole, our findings indicate that A. portulacoides is characterized by a high plasticity in terms of salt-response. Preserving leaf hydration and efficiently using Na+ for the osmotic adjustment especially at high salinities (800–1000 mM NaCl), likely through its compartmentalization in leaf vacuoles, are key determinants of such a performance. The selective absorption of K+ over Na+ in concomitance with an increase in the K+ use efficiency also accounted for the overall plant salt tolerance.  相似文献   

17.
Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (K(leaf)) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that K(leaf) relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of K(leaf) to damage; severing the midrib caused K(leaf) and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces K(leaf), we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of K(leaf), was lower with greater major vein density and smaller leaf size (|r| = 0.85-0.90; P < 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size.  相似文献   

18.
Abstract. Drought avoidance due to cuticular control increases with leaf number to a maximum in the intermediate leaves, decreasing to a minimum in the upper leaves. Dehydrated intermediate leaves do not rehydrate detectably when floated on water for several days. Excision of their petioles when submerged, permits full rehydration, presumably via the xylem. Stressing the plant by withholding water for 1–3 weeks fails to increase this already high resistance to water movement through the leaf surface. It does, however, markedly decrease the loss of water from the fully rehydrated (100% RWC) leaves during the first hour of dehydration, presumably due to a more rapid stomatal closure than in the non-stressed leaves. Dehydration tolerance increases with leaf number, without an intermediate maximum. The intermediate and upper leaves were markedly more tolerant of dehydration after drought-induced stress than when non-stressed. Dehydration tolerance in some cases, was inversely proportional to dehydration rate. It was possible, however, to equalize the rates of dehydration of drought-stressed and non-drought-stressed leaves without affecting the greater tolerance of the drought-stressed leaves. Dehydration avoidance by osmotic adjustment was markedly developed in the slowly dehydrated attached leaves of drought-stressed plants, but not in the rapidly dehydrated excised leaves. This is evidence of drought acclimation. It must, therefore, be concluded that the slow dehydration of the drought-stressed plants also leads to the increase in dehydration tolerance by permitting drought-induced acclimation. The overall drought resistance of cabbage leaves depends on the three components: drought avoidance, dehydration avoidance and dehydration tolerance. The latter two increase during acclimation but the cuticular control of drought avoidance does not.  相似文献   

19.
Glutathione reductase (GR) (EC 1.6.4.2) was studied in crude and partially purified extracts from nonhardened (25/20 °C D/N) and hardened (5/5 °C D/N) spinach-leaf tissue. Crude extracts of hardened tissue showed a 66% increase in glutathione reductase activity over that of nonhardened tissue. The enzyme was purified by ammonium sulfate precipitation, Sephadex G-150 chromatography, 2′, 5′ ADP-Sepharose affinity chromatography, and DEAE-Sephadex A-50 ion-exchange chromatography. The partially purified enzyme from the two sources showed different kinetic characteristics, heat inactivation, freezing inactivation, and electrophoretic mobilities. Hardened leaves contain different forms of glutathione reductase than do nonhardened leaves. GR from hardened spinach has greater stability against freezing and a higher affinity for substrates at low temperature than does GR from nonhardened spinach.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号