首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary An attempt at cytochemical demonstration of acidification proton-translocating ATPase (H+-ATPase) of Golgi complex in rat pancreatic acinar cells has been made by using p-nitrophenylphosphatase (NPPase) cytochemistry which is used for detecting of Na+-K+-ATPase (Mayahara et al. 1980) and gastric H+-K+-ATPase (Fujimoto et al. 1986). K+-independent NPPase activity was observed on the membrane of the trans cisternae of Golgi complex, but not inside of cisternae. The localization of NPPase activity is different from that of acid phosphatase activity where reaction products were seen on the inside of the trans Golgi cisternae. Since this activity was insensitive to vanadate, ouabain and independent of potassium ions, it was distinct from plasma membranous ATPases such as Na+-K+-ATPase and Ca2+-ATPase. The K+-independent NPPase activity was diminished by the inhibitors of H+-ATPase such as N-ethylmaleimide (NEM) and 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS). The NPPase reaction products were also seen on the membranes of other acidic organelles, i.e., lysosomes, endosomes, autophagosomes and coated vesicles. These results suggest that NPPase activity on the membrane of the Golgi complex and other acidic organelles corresponds with H+-ATPase which plays a role in acidification.  相似文献   

2.
Previous studies have shown that the large polypeptide of purified (Na+ + K+)-dependent adenosine triphosphatase (NaK ATPase) reacts to form a dimer and other higher oligomeric structures of the enzyme as a result of cross-linking with (o-phenanthroline)2-cupric sulfate (CP). In the present communication, I show that both NaK ATPase activity and p-nitrophenylphosphatase (NPPase) activity decline rapidly and nearly in parallel when the enzyme is reacted with CP. Similarly, ATP binding is lost with kinetics close to those of ATPase activity and NPPase activity. The loss of ATPase activity, NPPase activity, and ATP binding occurs at a considerably faster rate than cross-linking of the large polypeptide, suggesting that CP may also be forming intrachain disulfide bonds. The binding of ouabain to NaK ATPase is also altered as a result of reacting the enzyme with CP. In marked contrast to ATP binding, however, ouabain binding is lost at a slower rate which closely parallels the rate of reaction of the large polypeptide to form cross-linked oligomeric structures.  相似文献   

3.
Abstract— A comparison was made between K+-Mg2+ activated p-nitrophenyl phosphatase and Na+-K+-Mg2+ activated adenosine triphosphatase with a solubilized enzyme preparation from a membrane fraction of cerebral cortex. The NPPase showed activity even in the absence of phospholipid, whereas the ATPase required the lipid for its activity. More varied types of phospholipids were effective in activating the NPPase than the ATPase, and with each phospholipid the extent and the pattern of the NPPase activation differed from that of the ATPase. By deoxycholate treatment the pH optimum of the NPPase was shifted independently from the pH optimum shift of the ATPase. The specific activity ratio of the NPPase to the ATPase was not constant during purification. These two enzymes were, however, not separable with ammonium sulphate fractionation, and their thermo-lability was identical regardless of the presence of phospholipid. The results suggested two possibilities: (1) the NPPase is a separate enzyme entity from the ATPase; (2) although the NPPase is a part of the ATPase system, the mechanism of action of lipids on the former part differs from that on the rest of the system.  相似文献   

4.
Alkaline phosphatase (ALP) activity expressed on the external surface of cultured fetal rat calvaria cells and its relationship with mineral deposition were investigated under pH physiological conditions. After replacement of culture medium by assay buffer and addition of p-nitrophenyl phosphate (pNPP), the rate of substrate hydrolysis catalyzed by whole cells remained constant for up to seven successive incubations of 10 min and was optimal over the pH range 7.6–8.2. It was decreased by levamisole by a 90% inhibition at 1 mM which was reversible within 10 min, dexamisole having no effect. Values of apparent Km for pNPP were close to 0.1 mM, and inhibition of pNPP hydrolysis by levamisole was uncompetitive (Ki = 45 μM). Phosphatidylinositol-specific phospholipase C (PI-PLC) produced the release into the medium of a p-nitrophenyl phosphatase (pNPPase) sensitive to levamisole at pH 7.8. The released activity whose rate was constant up to 75 min represented after 15 min 60% of the value of ecto-pNPPase activity. After 75 min of PI-PLC treatment the ecto-pNPPase activity remained unchanged despite the 30% decrease in Nonidet P-40-extractable ALP activity. High levels of 45Ca incorporation into cell layers used as index of mineral deposition were decreased by levamisole in a stereospecific manner after 4 h, an effect which was reversed within 4 h after inhibitor removal, in accordance with ecto-pNPPase activity variations. These results evidenced the levamisole-sensitive activity of a glycosylphosphatidylinositol-anchored pNPPase consistent with ALP acting as an ecto-enzyme whose functioning under physiological conditions was correlated to 45Ca incorporation and permit the prediction of the physiological importance of the enzyme dynamic equilibrium at the cell surface in cultured fetal calvaria cells. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The Wachstein and Meisel incubation medium was used to detect ATPase activity in epimastigote, spheromastigote (amastigote), and bloodstream trypomastigote forms of Trypanosoma cruzi. Reaction product, indicative of enzyme activity, was associated with the plasma membrane covering the cell body and the flagellum of the parasite. No reaction product was found in the portion of the plasma membrane lining the flagellar pocket. The plasma membrane-associated ATPase activity was not inhibited by ouabain or oligomycin, was detected in incubation medium without K+, was inhibited by prolonged glutaraldehyde fixation, and its activity was diminished when Mg2+ was omitted from the incubation medium. The Ernst medium was used to detect Na+-K+-ATPase activity in T. cruzi. No reaction product indicative of the presence of this enzyme was detected. Reaction product indicative of 5'-nucleotidase was not detected in T. cruzi. Acid phosphatase activity was detected in lysosomes. These results indicate that a Mg2+-activated ATPase is present in the plasma membrane of T. cruzi and that it can be used as an enzyme marker, provided that the mitochondrial and flagellar ATPases are inhibited, to assess the purity of plasma membrane fractions isolated from this parasite.  相似文献   

6.
The proton pumping activity of phase-partitioning purified plasma membrane fraction from spinach leaves was tested in vitro in the presence of exogenous indole-3-acetic acid. The sensitivity of the H+ pumping activity to the auxin was changed after flowering induction. We investigated the effect of whole spinach leaf treatments with substances affecting the phosphatidylinositol diphosphate transduction pathway on the in vitro sensitivity modification by photoperiodic induction. A role of calcium ions was supported by studies on leaves treated with a specific Ca2+ chelator (EGTA), a synthetic Ca2+ ionophore (A23187) or with calcium channel blokers (verapamil, lanthan chloride). An experiment using the transduction pathway inhibitor, lithium chloride, indicated that the intracellular concentration of Ca2+ was increased by inositol triphosphate.  相似文献   

7.
An attempt at cytochemical demonstration of acidification proton-translocating ATPase (H(+)-ATPase) of Golgi complex in rat pancreatic acinar cells has been made by using p-nitrophenylphosphatase (NPPase) cytochemistry which is used for detecting of Na(+)-K(+)-ATPase (Mayahara et al. 1980) and gastric H(+)-K(+)-ATPase (Fujimoto et al. 1986). K(+)-independent NPPase activity was observed on the membrane of the trans cisternae of Golgi complex, but not inside of cisternae. The localization of NPPase activity is different from that of acid phosphatase activity where reaction products were seen on the inside of the trans Golgi cisternae. Since this activity was insensitive to vanadate, ouabain and independent of potassium ions, it was distinct from plasma membranous ATPases such as Na(+)-K(+)-ATPase and Ca2(+)-ATPase. The K(+)-independent NPPase activity was diminished by the inhibitors of H(+)-ATPase such as N-ethylmaleimide (NEM) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The NPPase reaction products were also seen on the membranes of other acidic organelles, i.e., lysosomes, endosomes, autophagosomes and coated vesicles. These results suggest that NPPase activity on the membrane of the Golgi complex and other acidic organelles corresponds with H(+)-ATPase which plays a role in acidification.  相似文献   

8.
Mullerian inhibiting substance (MIS), a glycoprotein from the fetal testis causing regression of the embryonic Mullerian duct, can be inhibited in vitro in the presence of Mn2+ by a wide range of nucleotides including GTP, NAD, ATP, AMP, and several nonhydrolyzable synthetic ATP analogs. Extracellular nucleotide pyrophosphatase (NPPase), an enzyme able to hydrolyze the wide variety of the nucleotides and analogs found to inhibit Mullerian duct regression, was studied by histochemical staining (H. Sierakowska and D. Shugar (1963) to determine if NPPase localized in or around the Mullerian duct during regression. Frozen sections of urogenital ridges from to rat fetuses (n = 77) were incubated with a-naphthyl thymidine-5′-phosphate (naphthyl TMP) and Fast Red TR. Nucleotide pyrophosphatase hydrolyzes naphthyl TMP, releasing naphthol, which then reacts with Fast Red to produce color at the enzyme site. Nucleotide hydrolysis was detected around regressing male (n = 16) Mullerian duct cells at days of gestation, but no hydrolysis was detected around female (n = 17) Mullerian duct cells at any stage. Controls (n = 24) incubated without substrate did not stain. Addition of exogenous ATP (n = 20) to the histochemical incubation medium inhibited nucleotide hydrolysis on male Mullerian ducts, suggesting that this staining is specific for pyrophosphatase activity. Results in vivo were confirmed in vitro by incubating day female rat urogenital ridges with MIS for 72 hr prior to histochemical staining. The addition of testosterone to MIS was obligatory to detect staining in vitro (n = 10). The localized NPPase activity around the regressing Mullerian duct suggests that NPPase may appear as a consequence of duct regression and may act to control the degree of membrane phosphorylation by degrading excess trinucleotides.  相似文献   

9.
We have studied the correlation between [3H]ouabain binding sites, (Na++K+)ATPase (EC 3.6.1.3) activity and acetylcholine (ACh) release in different subcellular fractions ofTorpedo marmorata electric organ (homogenate, synaptosomes, presynaptic plasma membranes). Presynaptic plasma membranes contained the greater number of [3H]ouabain binding sites in good agreement with the high (Na++K+)ATPase activity found in this fraction. Blockade of this enzymatic activity by ouabain dose-dependently induced ACh release from pure cholinergic synaptosomes, either in the presence or absence of extracellular calcium ions. We suggest that one of the mechanisms involved in the ouabain-induced ACh release in the absence of Ca2+ o may be an increase in Na+ i that could (a) evoke Ca2+ release from internal stores and (b) inhibit ATP-dependent Ca2+ uptake by synaptic vesicles.  相似文献   

10.
As a preliminary to a study of the biogenesis of individual plasma membrane glycoproteins, the marker enzyme nucleotide pyrophosphatase (NPPase) and a major rat liver plasma membrane sialoprotein, subsequently found to be identical with the enzyme dipeptidyl peptidase IV (DPP IV), were purified 10,000- and 2,000-fold, respectively, from rat liver. Both were amphipathic proteins which formed defined micellar complexes with detergents and aggregated in their absence. Gel filtration, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the Triton X-100 complex of NPPase to contain a single 150,000-dalton peptide, while that of DPP IV was composed of two 120,000-dalton subunits; each complex also contained about 150,000-dalton Triton X-100. Trypsin cleaved the detergent complexes with release of major hydrophilic fragments which no longer bound detergent micelles; the accompanying change in peptide size was small for NPPase and undetectable for DPP IV, which also retained the dimer structure of its native form. DPP IV was the only major glycoprotein in rat liver plasma membrane which bound strongly to wheat germ agglutinin. Monospecific rabbit antibodies against NPPase and DPP IV precipitated the antigens without affecting their enzymatic activities.  相似文献   

11.
Summary In this study, the consequences of modification of human erythrocyte membrane sulfhydryl groups by N-ethyl maleimide (NEM), 5,5dithiobis-(2-nitrobenzoic acid) (DTNB) andp-hydroxymercuriphenyl sulfonate (PHMPS) were investigated. These reagents differ in chemical reactivity, membrane penetrability and charge characteristics.Results of sulfhydryl modification were analyzed in terms of inhibitory effects on activities of five membrane enzymes; Mg++- and Na+, K+-ATPase, K+-dependent and independentp-nitrophenyl phosphatase (NPPase) and DPNase. Structural considerations involved in the sulfhydryl-mediated inhibition were evaluated by studying the changes in susceptibility to sulfhydryl alteration produced by shearing membranes into microvesicles and by the addition of the membrane modifiers, Mg++ and ATP.Conclusions from the data suggest that the effects of NEM appeared to result from modification of a single class of sulfhydryls; DTNB interacted with two different sulfhydryl classes. Increasing concentrations of PHMPS resulted in the sequential modification of many types of sulfhydryls, presumably as a result of increasing membrane structural disruption. DTNB and PHMPS caused solubilization of about 15% of membrane protein at concentrations giving maximal enzyme inhibition.In contrast to the usually observed parallels between Na+, K+-ATPase and K+-dependent NPPase, activities of Mg++-ATPase, Na+, K+-ATPase and K+-dependent NPPase varied independently as a result of sulfhydryl modification. We suggest complex structural and functional relationships exist among these components of the membrane ATP-hydrolyzing system.Our studies indicate that the effects of sulfhydryl group reagents on these membrane systems should not be ascribed to sulfhydryl modificationper se, but rather to the resulting structural perturbations. These effects depend upon the structural characteristics of the particular membrane preparation studied and on the chemical characteristics of the sulfhydryl group reagent used.  相似文献   

12.
Treatment by EDTA of purified plasma membranes from MF2S cells (a variant of the murine plasmacytoma MOPC 173) solubilized proteins and increased by a 1000-fold the sensitivity of (Na+ + K+)-ATPase to ouabain. When added back with Ca2+ to treated plasma membranes, these EDTA-solubilized proteins restored the initial sensitivity of the enzyme to its inhibitor. We report the purification of a protein of Mr 32000, isolated from the EDTA-treated membrane supernatant. This protein was purified by a one-step procedure involving a preparative polyacrylamide gel electrophoresis without detergent. In the presence of Ca2+ it was able to restore the original sensitivity to ouabain of (Na+ + K+)-ATPase from EDTA-treated membrane. This protein was shown to be similar to the beta-actinin described by Maruyama by the following criteria: (1) molecular weight and amino acid composition; (2) cross-reactivity with their respective antisera; (3) in the presence of Ca2+ the same quantitative biological activity on ouabain sensitivity of the (Na+ + K+)-ATPase. A possible interaction between beta-actinin, calmodulin and membrane-bound (Na+ + K+)-ATPase is discussed.  相似文献   

13.
We have already described the separation of two brain soluble fractions by Sephadex G-50, one of which stimulates (peak I) and the other inhibits (peak II) Na+, K+-ATPase and K+-p-nitrophenylphosphatase (K+-p-NPPase) activities. Here we examine the features of synaptosomal membrane p-NPPase activity in the presence and absence of brain peak I. It was observed that stimulation of Mg2+, K+-p-NPPase activity by peak I was concentration dependent, The ability of peak I to stimulate p-NPPase activity was lost by heat treatment followed by brief centrifugation. Pure serum albumin also stimulated enzyme activity. K+-p-NPPase stimulation by peak I proved dependent on K+ concentration but independent of Mg2+ and substrate p-nitrophenylphosphate concentrations. Since our determinations were performed in a non-phosphorylating condition reflecting the Na+, K+-ATPase Na+ site, it is suggested that peak I may stimulate the Na+-dependent enzyme phosphorylation known to take place from the internal cytoplasmic side.  相似文献   

14.
The properties and kinetics of ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activities of plasma membrane H+-ATPase from the two reed ecot ypes, swamp reed (SR) and dune reed (DR), were investigated. The pH optimum of the plasma membrane H+-ATPase in both reed ecotypes was similar but the sensitivity of the enzyme to the reaction medium pH seemed to be higher in DR than that in SR. Compared to SR, the DR exhibited a higher Vmax value for ATP hydrolysis whereas the Km value was almost similar in both reed ecotypes. The PNPP hydrolysis of the plasma membrane H+-ATPase was also studied in both reed ecotypes at increasing PNPP concentrations. Km and Vmax for PNPP hydrolysis showed great differences in the two reed ecotypes and in DR the Km and Vmax values were 2- and 10-fold, respectively, higher than those in SR. The ATP hydrolysis activity of the plasma membrane was markedly inhibited by hydroxylamine in both reed ecotypes, and the percentage inhibition of ATP hydrolysis rate seemed higher in DR than that in SR. In addition, the structure or property of the C-terminal end of the plasma membrane H+-ATPase were also different in the two reed ecotypes. These data suggest that different isoforms of the plasma membrane H+-ATPase might be developed and involved in the adaptation of the plant to the long-term drought-prone habitat.This research was supported by Natural Science Foundation of China (No. 30270238 & No. 30470274) and the National Key Basic Research Special Funds of China (G1999011705).  相似文献   

15.
Summary Inhibition of NADH oxidase activity of plasma membranes isolated from a series of human xenografts and cell lines by the antitumor sulfonylurea, N-(4-methylphenylsulfonyl)-N-(4-chlorophenyl) urea (LY 181984), correlated with the ability of the sulfonylurea to inhibit cell growth. Growth of rat kidney cells either untransformed or transformed with Kirsten-ras (K-ras) were unaffected by the sulfonylurea. Similarly, the NADH oxidase activity of isolated plasma membranes from K-ras transformed cells was unaffected by LY 181984. In contrast, when transformed with Harvey-ras (H-ras), both growth and NADH oxidase activity were inhibited. With the inactive but structurally related LY 181985 (N-4-methylphenyl-sulfonyl)-N-(phenyl)urea), neither growth nor plasma membrane NADH oxidase activity of either sulfonylurea-susceptible or -resistant tissues or cell lines was inhibited. Both sulfonylureas were inactive with rat liver plasma membranes but NADH oxidase activity of plasma membranes and growth with HeLa cells was inhibited by the active (LY 181984) but not by the inactive (LY 181985) sulfonylurea. The findings suggest a possible correlation between inhibition of plasma membrane NADH oxidase activity by the antitumor sulfonylureas and their oncolytic action.  相似文献   

16.
In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K+-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K+-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K+-ATPase was analyzed under several experimental conditions, using ATP orp-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K+-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K+-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K+-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K+-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K+-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.  相似文献   

17.
Summary Plasma membrane vesicles isolated from onion roots showed oxaloacetate reductase activity as well as other oxidoreductase activities. Purification and further sequencing showed that the protein responsible for the activity is a 40 kDa protein which corresponds to the cytosolic soluble malate dehydrogenase. However, the activity remained bound to the membrane after repeated freezing and thawing cycles and further washing, excluding a cytosolic contamination as the source of the activity. Furthermore, a second 28 kDa protein has been copurified together with the 40 kDa protein. The plasmalemma oxaloacetate reductase activity shows both donor and acceptor sites located towards the cytoplasmic side of the plasma membrane. This enzyme catalyzed the oxidation of NADH by oxaloacetate and the reduction of NAD+ by malate in the presence of an oxaloacetate-withdrawing system. We conclude that a significant amount of the cytosolic malate dehydrogenase can be specifically attached to the cytosolic face of the plasmalemma. A possible role in a putative malate shuttle associated to the plasma membrane is discussed.Abbreviations AFR ascorbate free radical - DQ duroquinone - OA oxaloacetate - DPIP dichlorophenolindophenol - MDH malate dehydrogenase - PHMB p-hydroxymercuribenzoate  相似文献   

18.
The effect of the hydrolysis product Pi and the artificial substrate p-nitrophenyl phosphate (p-nitrophenyl-P) on ouabain binding to (Na+ + K+)-activated ATPase was investigated.The hypothesis that (Mg2+ + p-nitrophenyl-P)-supported ouabain binding might be due to Pi release and thus (Mg2+ + Pi)-supported could not be confirmed.The enzyme · ouabain complexes obtained with different substrates were characterized according to their dissociation rates after removal of the ligands facilitating binding. The character of the enzyme · ouabain complex is determined primarily by the monovalent ion present during ouabain binding, but, qualitatively at least, it is immaterial whether binding was obtained with p-nitrophenyl phosphate or Pi.The presence or absence of Na+ during binding has a special influence upon the character of the enzyme · ouabain complex. Without Na+ and in the presence of Tris ions the complex obtained with (Mg2+ + Pi) and that obtained with (Mg2+ + p-nitrophenyl-P) behaved in a nearly identical manner, both exhibiting a slow decay. High Na+ concentration diminished the level of Pi-supported ouabain binding, having almost no effect on p-nitrophenyl phosphate-supported binding. Both enzyme · ouabain complexes, however, now resembled the form obtained with (Na+ + ATP), as judged from their dissociation rates and the K+ sensitivity of their decay. The complexes obtained at a high Na+ concentration underwent a very fast decay which could be slowed considerably after adding a low concentration of K+ to the resuspension medium. The most stable enzyme · ouabain complex was obtained in the presence of Tris ions only, irrespective of whether p-nitrophenyl phosphate or Pi facilitated complex formation. The presence of K+ gave rise to a complex whose dissociation rate was intermediate between those of the complexes obtained in the presence of Tris and a high Na+ concentration.It is proposed that the different ouabain dissociation rates reflect different reactive state of the enzyme. The resemblance between the observations obtained in phosphorylation and ouabain binding experiments is pointed out.  相似文献   

19.
The association of K+-stimulated, Mg2+-dependent ATPase activity with plasma membranes from higher plants has been used as a marker for the isolation and purification of a plasma membrane-enriched fraction from cauliflower (Brassica oleraceae L.) buds. Plasma membranes were isolated by differential centrifugation followed by density gradient centrifugation of the microsomal fraction. The degree of purity of plasma membranes was determined by increased sensitivity of Mg2+-ATPase activity to stimulation by K+ and by assay of approximate marker enzymes. In the purified plasma membrane fraction, Mg2+-ATPase activity was stimulated up to 700% by addition of K+. Other monovalent cations also markedly stimulated the enzyme, but only in the presence of the divalent cation Mg2+. Ca2+ was inhibitory to enzyme activity. ATPase was the preferred substrate for hydrolysis, there being little hydrolysis in the presence of ADP, GTP, or p-nitrophenylphosphate. Monovalent cation-stimulated activity was optimum at alkaline pH. Enzyme activity was inhibited nearly 100% by AgNO3 and about 40% by diethylstilbestrol.  相似文献   

20.
Seedlings exposed to salt stress are expected to show modulation of intracellular accumulation of sodium ions through a variety of mechanisms. Using a new methodology, this work demonstrates ouabain (OU)‐sensitive ATPase activity in the roots of sunflower seedlings subjected to salt stress (120 mM NaCl). 9‐Anthroylouabain (a derivative of ouabain known to inhibit Na+,K+‐ATPase activity in animal systems, EC 3.6.3.9) has been used as a probe to analyze OU‐sensitive ATPase activity in sunflower (Helianthus annuus) seedling roots by spectrofluorometric estimation and localization of its spatial distribution using confocal laser scanning microscopy. Salt stress for 48 h leads to a significant induction of OU‐sensitive ATPase activity in the meristematic region of the seedling roots. Calcium ions (10 mM) significantly inhibit enzyme activity and a parallel accumulation of sodium ions in the cytosol of the columella cells, epidermis and in the cells of the meristematic region of the roots is evident. As a rapid response to NaCl stress, the activity of OU‐sensitive ATPase gets localized in the nuclear membrane of root protoplasts and it gets inhibited after treatment with calcium ions. Nuclear membrane localization of the OU‐sensitive ATPase activity highlights a possible mechanism to efflux sodium ions from the nucleus. Thus, a correlation between OU‐sensitive ATPase activity, its modulation by calcium ions and accumulation of sodium ions in various regions of the seedling roots, has been demonstrated using a novel approach in a plant system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号