首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The production and secretion of multiple peptide hormones and tyrosine hydroxylase by the human neuroblastoma cell line NB-1 and the effects of dibutyryl cAMP (Bt2cAMP) and phorbol esters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on them were investigated. The presence of messenger RNAs (mRNAs) of vasoactive intestinal peptide (VIP)/peptide histidine methionine (PHM), preprotachykinin, and tyrosine hydroxylase was detectable in the cytoplasm of cultured NB-1 cells by in situ hybridization. Treatment with Bt2cAMP and TPA markedly increased the number of cells immunoreactive to VIP, PHM, neuropeptide Y, Met-enkephalin, substance P and tyrosine hydroxylase and also the contents of VIP and Met-enkephalin in the culture medium. Bt2cAMP and TPA induced morphological changes characteristic of endocrine differentiation, such as an increase in neuroendocrine granules and the development of rough endoplasmic reticulum and Golgi apparatus. The results indicated that treatment with Bt2cAMP and TPA induces the expression of multiple genes of peptide hormone and tyrosine hydroxylase and increases hormone production and secretion through morphological changes into endocrine cells.  相似文献   

2.
The production and secretion of multiple peptide hormones and tyrosine hydroxylase by the human neuroblastoma cell line NB-1 and the effects of dibutyryl cAMP (Bt2cAMP) and phorbol esters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on them were investigated. The presence of messenger RNAs (mRNAs) of vasoactive intestinal peptide (VIP)/peptide histidine methionine (PHM), preprotachykinin, and tyrosine hydroxylase was detectable in the cytoplasm of cultured NB-1 cells by in situ hybridization. Treatment with Bt2cAMP and TPA markedly increased the number of cells immunoreactive to VIP, PHM, neuropeptide Y, Met-enkephalin, substance P and tyrosine hydroxylase and also the contents of VIP and Met-enkephalin in the culture medium. Bt2cAMP and TPA induced morphological changes characteristic of endocrine differentiation, such as an increase in neuroendocrine granules and the development of rough endoplasmic reticulum and Golgi apparatus. The results indicated that treatment with Bt2cAMP and TPA induces the expression of multiple genes of peptide hormone and tyrosine hydroxylase and increases hormone production and secretion through morphological changes into endocrine cells.  相似文献   

3.
4.
Treatment of hamster BHK cells with N6,O2'-dibutyryl adenosine 3':5'-monophosphate (Bt2cAMP), aminophylline, theophylline, or papaverine increased the level of aryl hydrocarbon (benzo(a)pyrene) hydrolxylase activity. The highese increase, 100-fold, was obtained with Bt2cAMP plus aminophylline or theophylline. N2,O2-Dibutyryl guanosine 3':5'-monophosphate gave a lower induction than Bt2cAMP. The level of hydroxylase activity started to decrease 6 hours after treatment with the inducer and was reduced to almost the uninduced level after 24 hours. Repeated addition of Bt2cAMP and aminophylline did not prevent this decrease. The hydroxylase can also be induced by treating cells with benz(a)anthracene, and the level of this induced activity was maintained for 24 hours. Aminophylline gave a 2- to 8-fold stimulation of the induction by benz(a)anthracene. The enzyme activity induced by Bt2cAMP, aminophylline, and benz(a)anthracene converted benzo(a)pyrene to similar alkali-extractable metabolities with a fluorescence spectra similar to that of 3-hydroxybenzo(a)pyrene. These induced enzyme activities also showed a similar heat stability. Induction by Bt2cAMP and aminophylline, like induction by benz(a)anthracene, required continued protein synthesis and only an initial period of RNA synthesis. Compared to the benz(a)anthracene-induced hydroxylase with a Km of 4.3 muM, the hydroxylase induced by Bt2cAMP and aminophylline showed a Km of 0.14 muM, and was 100-fold more sensitive to inhibition by 7,8-benzoflavone. Increasing the serum concentration in the culture medium stimulated the induction by aminophylline but did not stimulate induction by benz(a)anthracene. The results indicate that aryl hydrocaarbon (benzo(a)pyrene) hydroxylase can be induced by compounds that increase the level of adenosine 3':5'-monophosphate and that this induction and induced enzyme activity differs from that caused by benz(a)anthracene.  相似文献   

5.
Differentiation of the human promyelocytic leukemia cell line HL-60 into monocytes or macrophages is associated with increased expression of cell surface insulin receptors, while differentiation of these cells into granulocytes is associated with receptor loss. Here we demonstrate that differentiation of HL-60 cells into monocytes or granulocytes induced by 1;25(OH)2vitD3 or Bt2cAMP, respectively, has no major effect on the specific activity of the insulin receptor kinase (IRK). By contrast, when HL-60 cells are incubated with a combination of 1;25(OH)2vitD3 and Bt2cAMP, their differentiation into adherent macrophages-like cells is accompanied by a 50% reduction in the specific activity of IRK. These findings suggest that acquisition or loss of insulin receptors during differentiation of HL-60 involves selective alterations in the functional aspects of these receptors. Our results also implicate the generation of specific regulatory signals that inhibit IRK activity when HL-60 cells are stimulated with a combination of 1;25(OH)2vitD3 and Bt2cAMP.  相似文献   

6.
Cultured human neuroblastoma (GOTO) cells were induced to differentiate by dibutyryl cyclic AMP (Bt2cAMP) and/or retinoic acid (RA). A combination of Bt2cAMP (1 mM) and RA (1 microM) yielded the most significant networks of neurites after 3 to 4 days, this being associated with the reduction of N-myc mRNA levels. Next, we examined several cellular genes that were possibly linked with changes in N-myc gene expression under these conditions. Among the genes examined, both nucleolin and a major heat-shock protein (hsp70) mRNAs showed changes concomitant with those in N-myc mRNA levels when induced by Bt2cAMP and RA. Dibutyryl cAMP alone induced several short cellular processes and caused a marked decrease in N-myc mRNA within 2 days. RA alone induced a few long and straight neurites along the longitudinal axis of individual cells and a significant decrease in growth rate but showed neither network formation nor a decrease in N-myc gene expression. These results indicate differential effects of Bt2cAMP and RA on the regulatory mechanisms of both cell proliferation and differentiation and also indicate a possible association of expression of N-myc gene with those of hsp70 and nucleolin genes.  相似文献   

7.
The role of protein kinase C activation in changes in muscarinic receptor functions and in the appearance of biochemical properties characteristic of neuronal cells was studied in SH-SY5Y human neuroblastoma cells induced to differentiate with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). A decrease in muscarinic receptor sensitivity with respect to agonist induced Ca2+ mobilization and receptor number parallelled the increase in membrane-associated protein kinase C (PK-C) activity. These changes occurred during the first 6 h of culture, and they were associated with rounding-up of cells. A subsequent decrease in particulate PK-C activity was followed by an increase in noradrenaline content, the appearance of an electrically excitable membrane, and an increase in the level of neuron-specific enolase. These changes were accompanied by a pronounced neurite outgrowth. 1-(5-Isoquinolinesulphonyl)-2-methylpiperazine (H-7), an inhibitor of PK-C and cyclic nucleotide-dependent protein kinases, enhanced the morphological differentiation induced by TPA, whereas N-(2-guanidinoethyl)-5-isoquinolinesulphonamide (HA-1004), which primarily inhibits cyclic nucleotide-dependent protein kinases, had no effect on the TPA-induced phenotypic differentiation. H-7 inhibited the decrease in muscarinic receptor sensitivity and receptor number, but had no effect on the appearance of the electrically excitable membrane or on the increase in the neuron-specific enolase level. Both H-7 and HA-1004 inhibited the TPA-induced increase in noradrenaline content.  相似文献   

8.
The effects of brain-derived neurotrophic factor (BDNF) and cAMP on the neuronal serotoninergic phenotype were studied in primary cultures of E14 rat embryonic rostral raphe. Short treatments (for 18 h) with BDNF or dibutyryl-cAMP induced an almost two-fold increase in the number of serotoninergic neurones and a dramatic extension and ramification of their neurites. These changes were associated with marked increases in the levels of mRNAs encoding the serotonin transporter, the 5-HT1A and 5-HT1B receptors and the BDNF receptor tyrosine kinase B (TrkB). Concomitant blockade of tyrosine kinases by genistein suppressed all the up-regulating effects of BDNF and cAMP on 5-hydroxytryptamine (5-HT) neurones. These findings suggest that an auto-amplifying mechanism underlies the promoting effect of BDNF on the differentiation of serotoninergic neurones through TrkB activation, which is also triggered by cAMP.  相似文献   

9.
10.
Previous work from this laboratory has shown that the serotonin (5-HT) induced response is significantly augmented in differentiated NG108-15 (NG) cells treated with dibutyryl cAMP (Bt(2)cAMP) due to qualitative and quantitative changes in the expression of the 5-HT(3) receptor as demonstrated by specific [(3)H] LY-278584 (a selective 5HT(3) receptor antagonist) binding. In this study, we investigated whether there is any change in the relative expression of the 5-HT(3A) and 5-HT(3B) subunits in NG cells differentiated following Bt(2)cAMP treatment cells. The major findings of this study were that the relative amount of 5-HT(3B) subunit mRNA in Bt(2)cAMP-treated NG cells 5 days following Bt(2)cAMP-treatment was greater than that in the untreated cells. In contrast, the relative expression of the 5-HT(3B) subunit protein in the Bt(2)cAMP-treated NG cells was much less than in the untreated cells, but the relative expression of the 5-HT(3A) subunit in the Bt(2)cAMP-treated NG cells was similar to the untreated cells. Therefore, no relationship between mRNA and protein expression for 5-HT(3A) and 5-HT(3B) subunits in Bt(2)cAMP treated and untreated NG cells were observed. It was also found that fluorescent intensity for the 5-HT(3B) subunit in the cell body of the Bt(2)cAMP treated and untreated NG cells gradually decreased from the day 1-5 after Bt(2)cAMP treatment. However, in specific areas such as the varicosity and nerve endings of the Bt(2)cAMP treated cells, staining intensity for the 5-HT(3B) subunits was stronger than in the untreated cells at the all time points, peaking at day 5 post-treatment. These results suggest that the augmented response induced by 5-HT acting via 5-HT(3) receptors in differentiated NG cells may be due to changes in the relative amount of the 5-HT(3B) subunit, particularly the ratio and distribution of the 5-HT(3A) to (3B) subunits.  相似文献   

11.
Intracellular calcium homeostasis and its modulation by different agents was studied in control and differentiated IMR32 human neuroblastoma cells by using the Ca2+-sensitive fluorescent dye quin2. The results obtained demonstrate the existence in IMR32 cells of (a) voltage-dependent, verapamil sensitive, Ca2+ channels, which are expressed before differentiation; (b) muscarinic receptors whose activation triggers both Ca2+ influx and Ca2+ redistribution from intracellular stores, whereas nicotinic receptors and alpha-bungarotoxin binding sites do not; and (c) receptors for alpha-latrotoxin (the major toxin of the black widow spider venom), which are well-known markers of the neuronal presynaptic membrane. Up to now, no cell lines of human origin sensitive to this toxin have been identified. These results confirm that IMR32 cells are very convenient model cells for studying specific aspects of the neurochemistry and neurobiology of the human neuron at the molecular and cellular levels.  相似文献   

12.
When a clonal line of rat pheochromocytoma (PC12) was exposed to beta-nerve growth factor (beta NGF), N6, O2-dibutyryl adenosine 3':5' cyclic monophosphate (Bt2cAMP), or a combination of the two, 10, 26, or 70% of the cell clumps, respectively, displayed neurites after 1.d. Increases in the cellular RNA concentration were also found to be additive or greater when both agents were present. Neurites induced by Bt2cAMP alone were not maintained after replacement with beta NGF. The degree of potentiated neurite outgrowth was a function of the time of simultaneous exposure to both agents. The initiation of neurite outgrowth in the presence of Bt2cAMP was independent of RNA synthesis, in contrast to that induced by beta NGF alone. We conclude that beta NGF-induced initiation of morphological differentiation of these cells is not mediated by a cAMP-dependent mechanism. Consideration of Bt2cAMP effects upon other cell lines suggest that Bt2cAMP causes a rapid, but unstable, reorganization of the PC12 cytoskeleton, resulting in the initiation of neurite outgrowth from these cells. In contrast, beta NGF alone achieves a more stable cytoskeleton reorganization by an RNA synthesis-dependent mechanism.  相似文献   

13.
14.
We compared tyrosine hydroxylase immunoreactivity in the substantia nigra and hypothalamus of hereditary microphthalmic rats with that of normal rats. A considerable number of neuronal cell bodies expressing tyrosine hydroxylase were present in the substantia nigra of the microphthalmic mutant as well as normal rats. Neuronal cells positive for tyrosine hydroxylase in the hypothalamus were fewer than in the substantia nigra in both rats. The concentrations of monoamines (dopamine, noradrenaline, adrenaline, and serotonin) in the substantia nigra and hypothalamus in the microphthalmic mutant were approximately the same as those of normal rats, although the diurnal fluctuation of a few monoamines was observed in normal rats. These results suggest that the metabolic aspects of catecholamine in the substantia nigra and hypothalamus of the microphthalmic mutant rat do not markedly differ from those of normal rats.  相似文献   

15.
The effects of cyclic AMP analogues and of phosphodiesterase inhibitors were investigated in neuroblastoma cells (NBD-2) cloned from the C-1300 tumor. 8Br-cAMP and phosphodiesterase inhibitors that elevated cAMP induced large (greater than 15 fold) and specific increases in tyrosine hydroxylase and dopamine beta-hydroxylase activity. In contrast, catechol O-methyltransferase, monoamine oxidase and aromatic-l -amino-acid decarboxylase were unaffected by the cAMP altering drugs. Similarly, AChE was unaffected and only a small increase in choline acetyltransferase (3 fold) was observed. The increases in tyrosine hydroxylase and dopamine beta-hydroxylase were similar with respect to dose response relationships and with respect to time course of onset. Only those phosphodiesterase inhibitors that elevated cAMP (papaverine and Ro20-1724 as opposed to theophylline) were effective in elevating tyrosine hydroxylase and dopamine beta-hydroxylase. Further, the doses optimal for elevating cAMP coincided with the optimal doses for elevating the two enzymes. Theophylline had no influence either upon NBD-2 cell cAMP levels or upon tyrosine hydroxylase and dopamine beta-hydroxylase activity. The changes in protein synthesis rates produced by the cAMP altering drugs were temporally distinct from the changes in either tyrosine hydroxylase or dopamine beta-hydroxylase. These results suggest that the intracellular messenger compound cAMP is involved in the specific regulation of both tyrosine hydroxylase and dopamine beta-hydroxylase in adrenergic cells.  相似文献   

16.
Reduction of the serotonin content of the brain of rats (specifically in the medial raphe nucleus) by various means results in spontaneous increase of adrenal tyrosine hydroxylase activity. This neurally mediated induction is attenuated by appropriate administration of the serotonin precursor 5-hydroxytryptophan to the animals, along with carbidopa (Quik and Sourkes, J. Neurochem.28, 137, 1977). In the present work adrenal tyrosine hydroxylase was induced by giving rats either the neurotoxin 5,7-dihydroxytryptamine (injected into the cerebral ventricles) or the monoamine depletor reserpine (given intraperitoneally). Other rats received alpha-methyltryptophan. This amino acid causes a marked decline of the serotonin content of the brain, but gives rise to relatively large amounts of alpha-methylserotonin in that organ (Roberge et al., Neuropharmacology11, 197, 1972). Alpha-methyltryptophan had no effect on adrenal tyrosine hydroxylase activity but, when it was given with dihydroxytryptamine or reserpine, it prevented the induction of adrenal tyrosine hydroxylase that otherwise occurred. The results are discussed in relation to the effect of alpha-methyltryptophan on the content of indoles (tryptophan, serotonin, 5-hydroxyindoleacetic acid, alpha-methyltryptophan, alpha-methylserotonin) in the plasma and brain, as detected by HPLC. It is concluded that alpha-methylserotonin can functionally replace cerebral serotonin, at least in relation to the transneuronal regulation of adrenal tyrosine hydroxylase activity.  相似文献   

17.
Abstract: A single dose of x-irradiation was applied on the cephalic end of newborn rats, and the alterations in the noradrenergic afferents to the cerebellum were studied 180 days later. A net increase in the noradrenaline content of cerebellum was found (122% of nonirradiated controls). The response of noradrenaline content to reserpine injection (0.9 mg/kg, i.p.) was similar in exposed and control rats. Likewise, the 3H release induced by Ro 4-1284 from cerebellar cortex slices labeled with [3H]noradrenaline was unmodified by x-rays, although a mild increase in the spontaneous efflux of 3H was found. The retention of 3H by the slices was reduced in exposed animals (58% of controls). Both the in vitro activity of tyrosine hydroxylase and the accumulation of L-3,4-dihydroxyphenylalanine (L-DOPA) were not significantly different between x-treated rats and controls. In contrast, monoamine oxidase activity was markedly reduced in x-irradiated cerebellum (38% of controls). The x-ray-induced decrease in cerebellar weight (—60%) resulted in marked increases in noradrenaline concentration (223%), tyrosine hydroxylase activity per milligram of protein (206%), and 3H retention (50%). The accumulation of L-DOPA per gram of tissue was also increased at every time considered. These data indicate that x-irradiation at birth produces a cerebellar loss not completely shared by the noradrenergic afferents, and a permanent imbalance between the noradrenergic afferent input and its target cells might eventually result. In spite of the enhanced noradrenaline content, the lack of increase in maximal tyrosine hydroxylase activity and 3H retention seems to indicate that a long-term sprouting of the noradrenergic terminals in the cerebellum induced by the ionizing treatment is unlikely.  相似文献   

18.
Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca2+]i) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of Galphaq/11-coupled M1, M3 and M5 receptors and intracellular calcium stores, whereas Galphai/o-protein coupled M2 receptor activity mediated neuronal differentiation.  相似文献   

19.
Xenopus oocytes possess 'native' muscarinic receptors, which give rise to oscillatory chloride currents; similar responses are elicited by activation of foreign receptors to serotonin, glutamate and noradrenaline, expressed in oocytes after injection of messenger RNA from rat brain. When low concentrations of two agonists are applied together, the combined response is greater than would be expected from the sum of the responses to each agonist applied alone. Potentiation of acetylcholine by serotonin is blocked by the serotonin antagonist methysergide; conversely, the potentiation of serotonin by acetylcholine is blocked by the muscarinic antagonist atropine. This indicates that each agonist acts on a distinct receptor. The interactions between serotonin, acetylcholine and other agonists provide further evidence that the different receptors may all 'link in' to a common receptor-channel coupling system, in which phosphoinositide metabolism and calcium liberation lead to the opening of chloride channels in the oocyte membrane.  相似文献   

20.
We have studied cyclic AMP-mediated regulation of the beta 2-adrenergic receptor (beta 2AR). The effects of cAMP were assessed in Chinese hamster fibroblast (CHW) cells expressing either the wild type human beta 2AR receptor (CH-beta 2) or mutated forms of the receptor lacking the consensus sequences for phosphorylation by the cAMP-dependent protein kinase. Treatment of the CH-beta 2 cells with the cAMP analogue dibutyryl cAMP (Bt2cAMP) induces a time-dependent "down-regulation" of the number of beta 2AR. This down-regulation of the receptors is accompanied by a decline in the steady state level of beta 2AR mRNA. Moreover, the treatment with Bt2cAMP induces an increase in the phosphorylation level of the membrane-associated beta 2AR. Both the reduction in beta 2AR mRNA and the enhanced phosphorylation of the receptor are rapid and precede the loss of receptor. The down-regulation of beta 2AR induced by Bt2cAMP is concentration-dependent and mimicked by the other biologically active cyclic nucleotide analogue, 8-Br-cAMP, by forskolin, and by the phosphodiesterase inhibitor, isobutylmethylxanthine. In the CHW cell lines expressing receptors lacking the putative protein kinase A phosphorylation sites, the Bt2cAMP-induced phosphorylation of beta 2AR is completely abolished. In these cells the down-regulation of beta 2AR receptor number produced by cAMP is significantly slowed, whereas the reduction in beta 2AR mRNA level is equivalent to that observed in CH-beta 2 cells. These data indicate that there are at least two pathways by which cAMP may decrease the number of beta 2ARs in cells: one involves phosphorylation of the receptor by the cAMP-dependent protein kinase and the other leads to a reduction in steady state beta 2AR mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号