首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of energy-dependent transfer of pro-OmpA across Escherichia coli inner membrane vesicles in vitro was found to be a function of the ATP concentration. At concentrations above 0.1 mM ATP, the addition of a transmembrane electrochemical potential (proton motive force or pmf) increased the rate of pro-OmpA translocation. Additional experiments demonstrated that the overall reaction proceeded by at least two distinct energy-requiring steps. The first step required only ATP, was nearly unaffected by the pmf, and resulted in the insertion of the amino-terminal domain of pro-OmpA across the membrane. The insertion exposed the signal sequence cleavage site to the periplasmic side of the membrane, as measured by the appearance of a mature length translocation intermediate. However, this intermediate was partially exposed to the cytoplasmic side of the membrane. In a second energy-dependent step, either ATP or the pmf was sufficient to complete the translocation of mature length OmpA across the membrane.  相似文献   

2.
Secretion of amber fragments of an E. coli periplasmic protein, the maltose-binding protein, was studied to determine if the mature portion of the protein is required for its export across the cytoplasmic membrane. A fragment lacking 25–35 amino acid residues at the C terminus is secreted at normal levels, suggesting that this sequence is not required for secretion. This is in contrast to the results obtained with the periplasmic protein β-lactamase. In studying another fragment of one-third the molecular weight of the intact protein, we found that the majority of the fragment is not recovered from the periplasmic fraction. However, a small amount of secretion of this polypeptide was observed. This fragment is synthesized as a larger molecular weight form when cells are induced for the synthesis of a maltose-binding protein-β-galactosidase hybrid protein, which was previously shown to block the proper localization and processing of envelope proteins. This result is consistent with the idea that the larger form is a precursor with an unprocessed signal sequence, whereas in the absence of the hybrid protein the fragment is a processed mature form. Thus secretion of the smaller fragment may be occurring up to the point where the signal sequence is removed. That this fragment has passed through the cytoplasmic membrane is further supported by its accessibility to externally added trypsin. We suggest that the fragment may be secreted to the periplasm, but cannot assume a water-soluble conformation; the majority of the polypeptide may be associated with the external surface of the cytoplasmic membrane. Thus the mature sequence of maltose-binding protein, at least its C-terminal two thirds, may not be required for its export across the cytoplasmic membrane.  相似文献   

3.
Distinct steps in the import of ADP/ATP carrier into mitochondria   总被引:42,自引:0,他引:42  
Transport of the precursor to the ADP/ATP carrier from the cytosol into the mitochondrial inner membrane was resolved into several consecutive steps. The precursor protein was trapped at distinct stages of the import pathway and subsequently chased to the mature form. In a first reaction, the precursor interacts with a protease-sensitive component on the mitochondrial surface. It then reaches intermediate sites in the outer membrane which are saturable and where it is protected against proteases. This translocation intermediate can be extracted at alkaline pH. We suggest that it is anchored to the membrane by a so far unknown proteinaceous component. The membrane potential delta psi-dependent entrance of the ADP/ATP carrier into the inner membrane takes place at contact sites between outer and inner membranes. Completion of translocation into the inner membrane can occur in the absence of delta psi. A cytosolic component which is present in reticulocyte lysate and which interacts with isolated mitochondria is required for the specific binding of the precursor to mitochondria.  相似文献   

4.
The SecD protein is one of the components that has been suggested from genetic studies to be involved in the protein secretion across the cytoplasmic membrane of Escherichia coli. We examined the effect of anti-SecD IgG on protein secretion using spheroplasts. Inhibition of the secretion of OmpA and maltose-binding protein (MBP) by this IgG was observed with concomitant accumulation of their precursor and mature forms in spheroplasts. This effect was specific to anti-SecD IgG. Anti-SecE and anti-SecY IgGs, of which the epitopes are located at the periplasmic domains of SecE and SecY, respectively, did not interfere with the secretion. Time-course experiments investigating the processing of proMBP and the release of MBP from spheroplasts revealed that anti-SecD IgG interfered with the release of the translocated mature MBP. The mature form of MBP thus accumulated was sensitive to trypsin, which was externally added to spheroplasts, whereas MBP released into the medium was resistant to trypsin as the native MBP is. The precursor form of MBP accumulated in spheroplasts was also trypsin resistant. We conclude that SecD is directly involved in protein secretion and important for the release of proteins that have been translocated across the cytoplasmic membrane.  相似文献   

5.
Translational control of exported proteins in Escherichia coli   总被引:5,自引:4,他引:1       下载免费PDF全文
We recently described the suppression of export of a class of periplasmic proteins of Escherichia coli caused by overproduction of a C-terminal truncated periplasmic enzyme (GlpQ'). This truncated protein was not released into the periplasm but remained attached to the inner membrane and was accessible from the periplasm. The presence of GlpQ' in the membrane strongly reduced the appearance in the periplasm of some periplasmic proteins, including the maltose-binding protein (MBP), but did not affect outer membrane proteins, including the lambda receptor (LamB) (R. Hengge and W. Boos, J. Bacteriol., 162:972-978, 1985). To investigate this phenomenon further we examined the fate of MBP in comparison with the outer membrane protein LamB. We found that not only localization but also synthesis of MBP was impaired, indicating a coupling of translation and export. Synthesis and secretion of LamB were not affected. The possibility that this influence was exerted via the level of cyclic AMP could be excluded. Synthesis of MBP with altered signal sequences was also reduced, demonstrating that export-defective MBP which ultimately remains in the cytoplasm abortively enters the export pathway. When GlpQ' was expressed in a secA51(Ts) strain, the inhibition of MBP synthesis caused by GlpQ' was dominant over the precursor accumulation usually caused by secA51(Ts) at 41 degrees C. Therefore, GlpQ' acts before or at the level of recognition by SecA. For LamB the usual secA51(Ts) phenotype was observed. We propose a mechanism by which GlpQ' blocks an yet unknown membrane protein, the function of which is to couple translation and export of a subclass of periplasmic proteins.  相似文献   

6.
The secretion of protein directly into the extracellular medium by Bacillus amyloliquefaciens, a gram-positive bacterium, was shown to be dependent on proton motive force. When the electrochemical membrane potential gradient of protons was dissipated either by uncouplers or by valinomycin in combination with K+, a precursor form of alpha-amylase accumulated on the cellular membrane. The proton motive force could be dissipated without altering the intracellular level of ATP, indicating that the observed inhibition of export was not the result of decreased ATP concentration.  相似文献   

7.
When Triton X-100/EDTA extracts of the outer membrane of Escherichia coli K12 were passed through a column containing maltose-binding protein covalently linked to Sepharose 6MB beads, the phage lambda receptor protein or LamB protein was quantitatively and specifically adsorbed to the column and was eluted with a solution containing 1 M NaCl, but not with that containing 0.5 M maltose. The binding did not take place when columns containing inactivated Sepharose beads alone, or Sepharose bound to histidine-binding protein of Salmonella typhimurium, were used. This interaction is consistent with the hypothesis that the periplasmic maltose-binding protein interacts with the part of the LamB protein exposed on the inner surface of the outer membrane, thereby increasing the specificity of the solute penetration process through the LamB channel.  相似文献   

8.
9.
SecB is a cytosolic chaperone which facilitates the transport of a subset of proteins, including membrane proteins such as PhoE and LamB and some periplasmic proteins such as maltose-binding protein, in Escherichia coli. However, not all proteins require SecB for transport, and proteins such as ribose-binding protein are exported efficiently even in SecB-null strains. The characteristics which confer SecB dependence on some proteins but not others have not been defined. To determine the sequence characteristics that are responsible for the SecB requirement, we have inserted a systematic series of short, polymeric sequences into the SecB-independent protein alkaline phosphatase (PhoA). The extent to which these simple sequences convert alkaline phosphatase into a SecB-requiring protein was evaluated in vivo. Using this approach we have examined the roles of the polarity and charge of the sequence, as well as its location within the mature region, in conferring SecB dependence. We find that an insert with as few as 10 residues, of which 3 are basic, confers SecB dependence and that the mutant protein is efficiently exported in the presence of SecB. Remarkably, the basic motifs caused the protein to be translocated in a strict membrane potential-dependent fashion, indicating that the membrane potential is not a barrier to, but rather a requirement for, translocation of the motif. The alkaline phosphatase mutants most sensitive to the loss of SecB are those most sensitive to inhibition of SecA via azide treatment, consistent with the necessity for formation of a preprotein-SecB-SecA complex. Furthermore, the impact of the basic motif depends on location within the mature protein and parallels the accessibility of the location to the secretion apparatus.  相似文献   

10.
SecA is found in Escherichia coli both tightly associated with the cytoplasmic membrane where it functions as a translocation ATPase during protein export and free in the cytosol (R. J. Cabelli, K. M. Dolan, L. Qian, and D. B. Oliver, J. Biol. Chem. 266:24420-24427, 1991; D. B. Oliver and J. Beckwith, Cell 30:311-319, 1982; W. Wickner, A. J. M. Driessen, and F.-U. Hartl, Annu. Rev. Biochem. 60:101-124, 1991). Here we show that SecA can be immunoprecipitated from the cytosol in complex with both fully elongated and nascent species of the precursor of maltose-binding protein, an exported, periplasmic protein. In addition, under conditions in which the distribution of SecA between the cytosolic and membrane-bound states changes from that normally observed, the distribution of precursor maltose-binding protein changes in parallel. These results support the idea that cytosolic SecA plays a role in export. With the aim of determining the roles of the multiple binding sites for ATP on SecA, we compared the export defect in a culture of E. coli expressing a temperature-sensitive allele of secA with the defect in a culture treated with sodium azide. The results indicate that the mutational change and treatment with sodium azide inhibit export by affecting different steps in the cycle of ATP binding and hydrolysis by SecA.  相似文献   

11.
Subcellular fractionation of tissue in nonaqueous media was employed to study metabolite compartmentation in isolated perfused rat hearts. The mitochondrial and cytosolic concentrations of citrate and 2-oxoglutarate, total concentrations of the glycolytic intermediates and rate of glycolysis were measured in connection with changes in the rate of cellular respiration upon modulation of the ATP consumption by changes of the mechanical work load of the heart. The concentrations of citrate and 2-oxoglutarate in the mitochondria were 16- and 14-fold, respectively, greater than those in the cytosol of beating hearts. The cytosolic citrate concentration was low compared with concentrations which have been employed in demonstrations of the citrate inhibition of glycolysis. In spite of the low activities reported for the tricarboxylate carrier in heart mitochondria, the cytosolic citrate concentration reacted to perturbations of the mitochondrial citrate concentration, and inhibition of glycolysis at the phosphofructokinase step could be observed concomitantly with an increase in the cytosolic citrate concentration. The ΔpH across the inner mitochondrial membrane calculated from the 2-oxoglutarate concentration gradient and the mitochondrial membrane potential calculated from the adenylate distribution gave an electrochemical potential difference of protons compatible with chemiosmotic coupling in the intact myocardium.  相似文献   

12.
An E. coli strain carrying a fusion of the malE and lacZ genes is induced for the synthesis of a hybrid protein, consisting of the N-terminal part of the maltose-binding protein and the enzymatically active C-terminal part of β-galactosidase, by addition of maltose to cells. The secretion of the protein is initiated by the signal peptide attached to the N terminus of the maltose-binding protein sequence, but is not completed, presumably because the β-galactosidase moiety of the hybrid protein interferes with the passage of the polypeptide through the cytoplasmic membrane. Thus the protein becomes stuck to the cytoplasmic membrane. Under such conditions, periplasmic proteins, including maltose-binding protein (encoded by the malE gene) and alkaline phosphatase, and the major outer-membrane proteins, including OmpF, OmpA and probably lipoprotein, are synthesized as precursor forms with unprocessed signal sequences. This effect is observed within 15 min after high levels of induction are achieved. The simplest explanation for these results and those of pulse-chase experiments is that specific sites in the cytoplasmic membrane become progressively occupied by the hybrid protein, resulting in an inhibition of normal localization and processing of periplasmic and outer-membrane proteins. These results suggest that most of the periplasmic and outer-membrane proteins share a common step in localization before the polypeptide becomes accessible to the processing enzyme. If this interpretation is correct, we can estimate that an E. coli cell has roughly 2 × 104 such sites in the cytoplasmic membrane. A system is described for detecting the precursor of any exported protein.  相似文献   

13.
The nerve ending cytosol is bounded by the plasma membrane, the mitochondrial inner membrane and the endoplasmic reticulum membrane, transport across each of which is capable, in theory, of regulating the cytosolic free Ca2+ concentration. By parallel monitoring of mitochondrial and plasma membrane potentials, ATP levels, Na+ gradients and intrasynaptosomal Ca2+ distribution in preparations of isolated synaptosomes, we conclude the following: (a) mitochondria in situ represent a major Ca2+ pool, regulating the upper steady-state limit of the cytosolic free Ca2+ concentration by sequestering Ca2+ reversibly; (b) this limit is responsive to the cytosolic Na+ concentration, but is below the concentration required for significant exocytosis; (c) plasma membrane Ca2+ transport can be resolved into a constant slow influx, a voltage-dependent and verapamil-sensitive influx and an ATP-dependent efflux, while Ca2+ efflux driven by the sodium electrochemical potential cannot be detected; (d) Ca2+ regulation by intrasynaptosomal endoplasmic reticulum appears to be of minor significance in the present preparation.  相似文献   

14.
The membrane insertion of the Sec-independent M13 Procoat protein in bacteria requires the membrane electrochemical potential and the integral membrane protein YidC. We show here that YidC is involved in the translocation but not in the targeting of the Procoat protein, because we found the protein was partitioned into the membrane in the absence of YidC. YidC can function also to promote membrane insertion of Procoat mutants that insert independently of the membrane potential, proving that the effect of YidC depletion is not due to a dissipation of the membrane potential. We also found that YidC is absolutely required for Sec-dependent translocation of a long periplasmic loop of a mutant Procoat in which the periplasmic region has been extended from 20 to 194 residues. Furthermore, when Sec-dependent membrane proteins with large periplasmic domains were overproduced under YidC-limited conditions, we found that the exported proteins pro-OmpA and pre-peptidoglycan-associated lipoprotein accumulated in the cytoplasm. This suggests for Sec-dependent proteins that YidC functions at a late stage in membrane insertion, after the Sec translocase interacts with the translocating membrane protein. These studies are consistent with the understanding that YidC cooperates with the Sec translocase for membrane translocation and that YidC is required for clearing the protein-conducting channel.  相似文献   

15.
The membrane electrochemical potential is critical for the export of most periplasmic proteins in Escherichia coli. Its exact role during insertion of integral inner membrane proteins, however, remains obscure. Using derivatives of the inner membrane protein leader peptidase (Lep), we now show that the membrane potential appears to stimulate the membrane translocation of chain segments containing negatively charged residues, that positively charged regions appear to be more easily translocated in the absence of a potential, and that certain Lep constructs insert with different topologies in the presence and absence of a membrane potential, suggesting that the electrochemical potential introduces an asymmetry between the topological effects of positively and negatively charged amino acids during the process of membrane protein insertion in E. coli.  相似文献   

16.
Members of the ATP-binding cassette superfamily couple the energy from ATP hydrolysis to the active transport of substrates across the membrane. The maltose transporter, a well characterized model system, consists of a periplasmic maltose-binding protein (MBP) and a multisubunit membrane transporter, MalFGK(2). On the basis of the structure of the MBP-MalFGK(2) complex in an outward-facing conformation (Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L., and Chen, J. (2007) Nature 450, 515-521), we identified two mutants in transmembrane domains MalF and MalG that generated futile cycling; although interaction with MBP stimulated the ATPase activity of the transporter, maltose was not transported. Both mutants appeared to disrupt the normal transfer of maltose from MBP to MalFGK(2). In the first case, substitution of aspartate for glycine in the maltose-binding site of MalF likely generated a futile cycle by preventing maltose from binding to MalFGK(2) during the catalytic cycle. In the second case, a four-residue deletion of a periplasmic loop of MalG limited its reach into the maltose-binding pocket of MBP, allowing maltose to remain associated with MBP during the catalytic cycle. Retention of maltose in the MBP binding site in the deletion mutant, as well as insertion of this loop into the binding site in the wild type, was detected by EPR as a change in mobility of a nitroxide spin label positioned near the maltose-binding pocket of MBP.  相似文献   

17.
The proper functioning of extracytoplasmic proteins requires their export to, and productive folding in, the correct cellular compartment. All proteins in Escherichia coli are initially synthesized in the cytoplasm, then follow a pathway that depends upon their ultimate cellular destination. Many proteins destined for the periplasm are synthesized as precursors carrying an N-terminal signal sequence that directs them to the general secretion machinery at the inner membrane. After translocation and signal sequence cleavage, the newly exported mature proteins are folded and assembled in the periplasm. Maintaining quality control over these processes depends on chaperones, folding catalysts, and proteases. This article summarizes the general principles which control protein folding in the bacterial periplasm by focusing on the periplasmic maltose-binding protein.  相似文献   

18.
Attempts to reconstitute periplasmic binding protein-dependent transport activity in membrane vesicles have often resulted in systems with poor and rather inconsistent activity, possibly because of the need to add a large excess of purified binding protein to the vesicles. We circumvented this difficulty by using a mutant which produces a precursor maltose-binding protein that is translocated across the cytoplasmic membrane but is not cleaved by the signal peptidase (J. D. Fikes and P. J. Bassford, Jr., J. Bacteriol. 169:2352-2359, 1987). The protein remains tethered to the cytoplasmic membrane, presumably through the hydrophobic signal sequence, and we show here that the spheroplasts and membrane vesicles prepared from this mutant catalyze active maltose transport without the addition of purified maltose-binding protein. In vesicles, the transport requires electron donors, such as ascorbate and phenazine methosulfate or D-lactate. However, inhibition by dicyclohexylcarbodiimide and stimulation of transport by the inculsion of ADP or ATP in the intravesicular space suggest that ATP (or compounds derived from it) is involved in the energization of the transport. The transport activity of intact cells can be recovered without much inactivation in the vesicles, and their high activity and ease of preparation will be useful in studies of the mechanism of the binding protein-dependent transport process.  相似文献   

19.
Six mutations in malE, the structural gene for the periplasmic maltose-binding protein (MBP) from Escherichia coli, prevent growth on maltose as a carbon source, as well as release of the mutant proteins by the cold osmotic-shock procedure. These mutations correspond to insertion of an oligonucleotide linker, concomitant with a deletion. One of the mutations (malE127) affects the N-terminal extension (the signal peptide), whereas the five others lie within the mature protein. As expected, the export of protein MalE127 is blocked at an early stage. This protein is neither processed to maturity nor sensitive to proteinase K in spheroplasts. In contrast, in the five other mutants, the signal peptide is cleaved and the protein is accessible to proteinase K added to spheroplasts. This indicates that the five mutant proteins are, at least in part, exported through the inner membrane. We propose that the corresponding mutations define two regions of the mature protein (between residues 18 and 42 and between residues 280 and 306), which are important for release of the protein from the inner membrane into the periplasm. We discuss the results in terms of possible conformational changes at this late step of export to the periplasm.  相似文献   

20.
The Rieske iron-sulfur protein of the cytochrome bc1 complex is synthesized in the cytosol as a precursor with an additional 30 amino acids at the amino terminus. After import into the mitochondrial matrix, the precursor is processed to the mature form by two distinct proteolytic cleavages. Addition of 2.5 mM EDTA and 0.5 mM o-phenanthroline to the incubation mixture during import of the iron-sulfur protein precursor in vitro resulted in the selective inhibition of the second processing step with the concomitant accumulation of the intermediate form. The intermediate form was chased to the mature form in the presence of antimycin and oligomycin (to block the formation of a membrane potential) provided that 0.5 nM ATP and a metal ion such as Ca2+, Mn2+, or Mg2+ were added. Ca2+ ion was the most effective and at a concentration of 2.5 mM resulted in the complete cleavage of the intermediate to the mature form. Addition of Zn2+, Co2+, Mo2+, and Fe2+ was not effective in restoring the second cleavage. The pH optimum for the processing of the intermediate form of the iron-sulfur protein to the mature form was between 6.8-8.0. Processing of the intermediate form of the iron-sulfur protein to the mature form was observed at temperatures ranging from 12 to 27 degrees C in a temperature-dependent manner. The time course during the chase indicated that the second processing step was completed within 2 min after addition of Ca2+ ions. Attempts to isolate the second processing enzyme by sonication of mitochondria or by solubilization with detergents such as digitonin, Triton X-100, dodecyl-maltoside, or octyl-glucoside were unsuccessful as only the first cleavage was observed. Hence, the second processing enzyme may be present in the inner membrane or matrix in a conformation disrupted by detergents or alternatively the enzyme may be very labile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号