首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine the role of δ-tocopherol in breast cancer cell growth ex vivo. Human gland mammary adenocarcinoma (MCF-7) and human T-lymphoblastoid (CEM) cells were cultured in the presence of δ-tocopherol at various concentrations (0-750 μM) for 5 days. We have grown 3D ex vivo breast cancer cell cultures in the hollow fiber bioreactor (HFBR). 19F magnetic resonance imaging (MRI) was used to evaluate oxygen concentration in the cell suspension and thus its viability.  相似文献   

2.
Recirculation of fully nitrified effluent from a laboratory horizontal-flow biofilm reactor (HFBR) to a mixed pre-denitrification reactor (DR) was used to remove organic carbon and nitrogen from synthetic dairy wastewater. Three recirculation ratios of 2, 4, and 6 were examined in this study and the average filtered chemical oxygen demand (CODf) and total nitrogen (TN) removals were up to 97.4% and 85.5%, respectively, at 11 degrees C. In the DR, the nitrate nitrogen removal efficiencies and rates were 86-96% and 22-34 g N/m3 d. In the HFBR, the ammonium nitrogen removal rates were 293-337 mg N/m2 d.  相似文献   

3.
We have developed a hematopoietic co-culture system using the hollow fiber bioreactor (HFBR) as a potential in vitro bone marrow model for evaluating leukemia. Supporting stroma using HS-5 cells was established in HFBR system and the current bioprocess configuration yielded an average glucose consumption of 640 mg/day and an average protein concentration of 6.40 mg/mL in the extracapillary space over 28 days. Co-culture with erythroleukemia K562 cells was used as a model for myelo-leukemic cell proliferation and differentiation. Two distinct localizations of K562 cells (loosely adhered and adherent cells) were identified and characterized after 2 weeks. The HFBR co-culture resulted in greater leukemic cell expansion (3,130 fold vs. 43 fold) compared to a standard tissue culture polystyrene (TCP) culture. Majority of expanded cells (68%) in HFBR culture were the adherent population, highlighting the importance of cell-cell contact for myelo-leukemic proliferation. Differentiation tendencies in TCP favored maturation toward monocyte and erythrocyte lineages but maintained a pool of myeloid progenitors. In contrast, HFBR co-culture exhibited greater lineage diversity, stimulating monocytic and megakaryocytic differentiation while inhibiting erythroid maturation. With the extensive stromal expansion capacity on hollow fiber surfaces, the HFBR system is able to achieve high cell densities and 3D cell-cell contacts mimicking the bone marrow microenvironment. The proposed in vitro system represents a dynamic and highly scalable 3D co-culture platform for the study of cell-stroma dependent hematopoietic/leukemic cell functions and ex vivo expansion.  相似文献   

4.
Fluorine NMR is a useful tool to probe protein folding, conformation and local topology owing to the sensitivity of the chemical shift to the local electrostatic environment. As an example we make use of 19F NMR and 3-fluorotyrosine to evaluate the conformation and topology of the tyrosine residues (Tyr-99 and Tyr-138) within the EF-hand motif of the C-terminal domain of calmodulin (CaM) in both the calcium-loaded and calcium-free states. We critically compare approaches to assess topology and solvent exposure via solvent isotope shifts, 19F spin–lattice relaxation rates, 1H–19F nuclear Overhauser effects, and paramagnetic shifts and relaxation rates from dissolved oxygen. Both the solvent isotope shifts and paramagnetic shifts from dissolved oxygen sensitively reflect solvent exposed surface areas.  相似文献   

5.
To explore the feasibility of in vivo 17O NMR for the estimation of cerebral blood flow and oxygen consumption, in vivo 17O NMR spectroscopy and imaging were employed in animal models. In the spectroscopy, the changes in the 17O NMR signal intensity after the injection of H2(17)O and the inhalation of 17O2 gas were obtained every 4 seconds with sufficient signal-to-noise ratios for the quantification of cerebral blood flow and oxygen consumption. In the imaging, although the time and spatial resolutions were insufficient for the quantification of H2(17)O, 17O NMR images of rabbit brain could be obtained, indicating that it is possible to map cerebral blood flow and oxygen consumption by 17O NMR imaging.  相似文献   

6.
We have produced large quantities of murine monoclonal antibodies for in vivo human clinical trials using hollow fiber bioreactors (HFBRs). Thirty-three different hybridoma cell lines have been evaluated in various HFBR systems. Monoclonal antibody (Ab) productivity is highly dependent on the intrinsic secretory rate of each cell line. Other factors that affect Ab production include capillary membrane molecular weight cutoff, and HFBR design. Studies comparing HFBRs to static and suspension culture systems revealed similar Ab productivity. An advantage of the HFBR is that the Ab is concentrated in the extracapillary space, simplifying downstream processing.  相似文献   

7.
The recovery of serum-free medium proteins from poly-sulfone hollow fiber bioreactors (HFBRs) was investigated. More than 99% of the initial transferrin was adsorbed to the hydrophobic hollow fibers within 2 h of HFBR operation. A methodology to minimize transferrin adsorption by pre-adsorption of bovine serum albumin (BSA) was developed. BSA adsorption on suspended cut fibers was virtually complete within 1 h. BSA-coated fibers adsorbed only 5% of the transferrin within 10 days, whereas uncoated cut fibers adsorbed more than 99% of the transferrin within 1 h. An improved HFBR startup procedure, using a BSA-coating step before inoculation, resulted in substantially higher transferrin recovery. Additional factors influenced extracapillary space (ECS) transferrin concentrations. Pronounced downstream polarization of transferrin was observed in the ECS. In addition, the 30-kDa nominal molecular weight cutoff ultrafiltration membranes rapidly leaked transferrin from the ECS to the lumen. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
To optimize an appropriate microbial culture in a fermentor, precise control of the medium's dissolved oxygen tension (DOT) is crucial. In particular, to study the effect of DOT on cellular metabolic status by using in vivo nuclear magnetic resonance (NMR) measurements, the set-up of the experiment must be optimized to maintain DOT in the culture. In the conventional method, DOT is monitored by a sensor inside a fermentor and is controlled by changing the agitation rate. Here, we report a novel and accurate system that minimizes time lag by an automated aeration flow control device, allowing an NMR spectrometer to monitor representative metabolites in real-time. To fulfill these two objects, the fermentor was composed of a fermentation vessel and two outer tubes, through which the medium was circulated by rotary pumps. One tube monitored DOT in via a sensor, and at the same time the other tube monitored metabolites via an NMR spectrometer.In this study, we used this system to analyze the responses of Escherichia coli cells under various oxygen conditions. The results validated the use of this system in the study of microbial metabolism.  相似文献   

9.
In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 ?. The transmembrane helix was found to have an average immersion depth of 5.4 ?, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.  相似文献   

10.
Many secondary metabolites, including various polyketides, require complex enzymatic pathways for modification into their final biologically active forms. Limitation of the dissolved oxygen supplied during cultivation of various microbial strains can decrease the activity of cytochrome P-450 monooxygenases required for the processing of pathway intermediates into their final forms, resulting in the accumulation of these intermediates as the primary products. Here, a generalized oxygen-limited cultivation strategy is specifically demonstrated with a myxobacterial strain engineered to heterologously express the epothilone polyketide synthase (PKS) gene cluster under either an excess (the dissolved oxygen tension is maintained at 50% of saturation) or a depleted (no residual dissolved oxygen detected) level of oxygenation during cultivation. Cultivation of this myxobacterial strain with excess oxygenation resulted in the production of epothilones A and B as the primary products, while cultivation of this same strain under depleted oxygenation resulted in the production of epothilones C and D as the primary products. Additionally, the peak cell density in the oxygen-depleted cultivations was 60% higher than that observed in oxygen-excess cultivations. Finally, an active EpoK epoxidase was found to catalyze the production of a novel epothilone (Epo506) with an unexpected structure during the cultivation of another myxobacterial strain expressing a genetically modified epothilone PKS under excess oxygenation. The structure of Epo506 was determined by high-resolution mass spectrometry and one- and two-dimensional NMR.  相似文献   

11.
We use photoemission electron microscopy in an X-ray transmission mode for full-field imaging of the X-ray absorption structure of copper in the respiratory metalloprotein hemocyanin KLH1. It contains 160 oxygen binding sites. Each site reversibly binds one molecule oxygen between two copper atoms. In our setup, hemocyanin is dissolved in aqueous solution and enclosed in an ultra-high vacuum compatible liquid sample cell with silicon nitride membranes. The local X-ray absorption structure of the liquid sample is converted into photoelectrons at the microscope side of the cell acting as a photocathode. In this way, different copper valencies are laterally distinguished under in vivo-like conditions, attributed to Cu(I) in the deoxy-state and Cu(II) in the oxy-state.  相似文献   

12.
Microtiter plates with integrated optical sensing of dissolved oxygen were developed by immobilization of two fluorophores at the bottom of 96-well polystyrene microtiter plates. The oxygen-sensitive fluorophore responded to dissolved oxygen concentration, whereas the oxygen-insensitive one served as an internal reference. The sensor measured dissolved oxygen accurately in optically well-defined media. Oxygen transfer coefficients, k(L)a, were determined by a dynamic method in a commercial microtiter plate reader with an integrated shaker. For this purpose, the dissolved oxygen was initially depleted by the addition of sodium dithionite and, by oxygen transfer from air, it increased again after complete oxidation of dithionite. k(L)a values in one commercial reader were about 10 to 40 h(-1). k(L)a values were inversely proportional to the filling volume and increased with increasing shaking intensity. Dissolved oxygen was monitored during cultivation of Corynebacterium glutamicum in another reader that allowed much higher shaking intensity. Growth rates determined from optical density measurement were identical to those observed in shaking flasks and in a stirred fermentor. Oxygen uptake rates measured in the stirred fermentor and dissolved oxygen concentrations measured during cultivation in the microtiter plate were used to estimate k(L)a values in a 96-well microtiter plate. The resulting values were about 130 h(-1), which is in the lower range of typical stirred fermentors. The resulting maximum oxygen transfer rate was 26 mM h(-1). Simulations showed that the errors caused by the intermittent measurement method were insignificant under the prevailing conditions.  相似文献   

13.
A promising chemical absorption–biological reduction integrated process has been proposed. A major problem of the process is oxidation of the active absorbent, ferrous ethylenediaminetetraacetate (Fe(II)EDTA), to the ferric species, leading to a significant decrease in NO removal efficiency. Thus the biological reduction of Fe(III)EDTA is vitally important for the continuous NO removal. Oxygen, an oxidizing agent and biological inhibitor, is typically present in the flue gas. It can significantly retard the application of the integrated process. This study investigated the influence mechanism of oxygen on the regeneration of Fe(II)EDTA in order to provide insight on how to eliminate or decrease the oxygen influence. The experimental results revealed that the dissolved oxygen and Fe(III)EDTA simultaneously served as electron acceptor for the microorganism. The Fe(III)EDTA reduction activity were directly inhibited by the dissolved oxygen. When the bioreactor was supplied with 3% and 8% oxygen in the gas phase, the concentration of initial dissolved oxygen in the liquid phase was 0.28 and 0.68 mg l−1. Correspondingly, the instinct Fe(III)EDTA reduction activity of the microorganism determined under anoxic condition in a rotation shaker decreased from 1.09 to 0.84 and 0.49 mM h−1. The oxidation of Fe(II)EDTA with dissolved oxygen prevented more dissolved oxygen access to the microorganism and eased the inhibition of dissolved oxygen on the microorganisms.  相似文献   

14.
Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2.Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method.The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode.  相似文献   

15.
delta-Aminolevulinic acid (ALA), a heme precursor accumulated in acute intermittent porphyria and saturnism, undergoes autoxidation leading to ammonium ion and probably the corresponding alpha-ketoaldehyde. This reaction is accelerated by addition of oxyhemoglobin (oxyHb) and other iron complexes. OxyHb is concomitantly oxidized to metHb; the apparent second-order rate constant of oxyHb/ALA coupled oxidation is ca. 10 M-1 min-1.1H NMR and uv spectral studies suggest that ALA undergoes enolization before consuming the dissolved oxygen. Spin-trapping experiments demonstrate formation of both the hydroxyl radical and a substrate-derived carbon-centered radical during ALA oxidation. Generation of active oxygen species by ALA might be related to the neuropathy associated to some acquired and inherited porphyrinpathies.  相似文献   

16.
The development of an injectable probe formulation, consisting of perchlorotriphenylmethyl triester radical dissolved in hexafluorobenzene, for in vivo oximetry and imaging of oxygen concentration in tissues using electron paramagnetic resonance (EPR) imaging is reported. The probe was evaluated for its oxygen sensitivity, biostability, and distribution in a radiation-induced fibrosarcoma tumor transplanted into C3H mice. Some of the favorable features of the probe are: a single narrow EPR peak (anoxic linewidth, 41 microT), high solubility in hexafluorobenzene (>12 mM), large linewidth sensitivity to molecular oxygen ( approximately 1.8 microT/mmHg), good stability in tumor tissue (half-life: 3.3 h), absence of spin-spin broadening (up to 12 mM), and lack of power saturation effects (up to 200 mW). Three-dimensional spatial and spectral-spatial (spectroscopic) EPR imaging measurements were used to visualize the distribution of the probe, as well as to obtain spatially resolved pO(2) information in the mice tumor subjected to normoxic and hyperoxic treatments. The new probe should enable unique opportunities for measurement of the oxygen concentration in tumors using EPR methods.  相似文献   

17.
This work investigated the use of nuclear magnetic resonance (NMR) spectroscopy in combination with a mathematical model of an encapsulated cell system as a method for rapidly assessing the status of a pancreatic substitute. To validate this method, an in vitro experiment was performed in which the encapsulated cells were perfused in an NMR-compatible system and the dissolved oxygen (DO) concentration of the perfusing medium was lowered from 0.20 to 0.05 mM, then returned to 0.20 mM in a stepwise fashion. The cellular metabolic activity and bioenergetics were evaluated by measuring the oxygen consumption rate (via DO sensors) and nucleotide triphosphate levels (via (31)P NMR). By incorporating a perfluorocarbon emulsion into the alginate beads, the cellular oxygenation state was monitored by measuring the average intrabead DO (AIDO) concentration by (19)F NMR. The in vitro measurements were then compared with model predictions based on the measured external DO concentration and time. Model-predicted cell growth and AIDO closely matched the experimentally acquired data. As the DO concentrations both external to and within the pancreatic substitute are needed to apply this methodology in vivo, the feasibility of measuring the DO concentration from two distinct bead populations implanted in the peritoneal cavity of mice was established. It is concluded that PFC incorporation and (19)F NMR measurements, in combination with a mechanistic model of the encapsulated system, allow the tracking of the state of a pancreatic substitute in vitro and potentially in vivo.  相似文献   

18.
综合养鱼高产池塘的溶氧变化周期   总被引:13,自引:1,他引:12  
根据1979—1984年对主养鲢、鳙、非鲫,主养青、草鱼,主养青鱼3种养殖结构类型高产鱼池溶氧变化周期的系统研究,揭示了高产养鱼池塘溶氧的昼夜、垂直、水平变化及季节变化周期,分析了光合作用、呼吸作用、扩散作用在高产养鱼池塘溶氧动力学上的地位和作用。对高产养鱼池塘的溶氧收入、支出及平衡情况进行了定量研究,在主要饲养季节,测得晴到多云天、晴天的溶氧来源分别为:浮游植物光合产氧占86.0和95.3%,大气扩散溶入占14.0和4.7%;氧的消耗分别为:“水呼吸”消耗氧占72.0和72.0%,鱼类呼吸消耗氧占22.0和13.1%,淤泥中生物呼吸消耗氧占2.9、5.5%,扩散逸出占3.1、8.8%。文中还对溶氧变化周期与养鱼池塘管理的环境控制、结构控制之间的关系进行了分析。    相似文献   

19.
Batch experiments were conducted to examine the effects of dissolved oxygen concentration on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by an enrichment culture of 2,4-D-utilizing bacteria. A modified Monod equation was found to describe the relationship between the specific growth rate and the concentrations of both the organic substrate and dissolved oxygen. Values for the maximum specific growth rate, yield, and Monod coefficient for growth on 2,4-D were 0.09 h-1, 0.14 g/g, and 0.6 mg/liter, respectively. The half-saturation constant for dissolved oxygen was estimated to be 1.2 mg/liter. These results suggest that dissolved oxygen concentrations below 1 mg/liter may be rate limiting for the biodegradation of chlorinated aromatic compounds such as 2,4-D, which have a requirement for molecular oxygen as a cosubstrate for metabolism.  相似文献   

20.
Batch experiments were conducted to examine the effects of dissolved oxygen concentration on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by an enrichment culture of 2,4-D-utilizing bacteria. A modified Monod equation was found to describe the relationship between the specific growth rate and the concentrations of both the organic substrate and dissolved oxygen. Values for the maximum specific growth rate, yield, and Monod coefficient for growth on 2,4-D were 0.09 h-1, 0.14 g/g, and 0.6 mg/liter, respectively. The half-saturation constant for dissolved oxygen was estimated to be 1.2 mg/liter. These results suggest that dissolved oxygen concentrations below 1 mg/liter may be rate limiting for the biodegradation of chlorinated aromatic compounds such as 2,4-D, which have a requirement for molecular oxygen as a cosubstrate for metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号