首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proper antibody labeling is a fundamental step in the positive selection/isolation of rare cancer cells using immunomagnetic cell separation technology. Using either a two-step or single-step labeling protocol, we examined a combination of six different antibodies specific for three different antigens (epithelial specific antigen, epithelial membrane antigen, and HER-2/Neu) on two different breast cancer cell lines (HCC1954 and MCF-7). When a two-step labeling protocol was used (i.e., anti-surface marker-fluoroscein-isothiocyanate [FITC] [primary Ab], anti-FITC magnetic colloid [secondary Ab]) saturation of the primary antibody was determined using fluorescence intensity measurements from flow cytometry (FCM). The saturation of the secondary antibody (or saturation of a single-step labeling) was determined using magnetophoretic mobility measurements from cell tracking velocimetry (CTV). When the maximum magnetophoretic mobility was the primary objective, our results demonstrate that the quantities necessary for antibody saturation with respect to fluorescence intensity were generally higher than those recommended by the manufacturer. The results demonstrate that magnetophoretic mobility varies depending on the types of cell lines, primary antibodies, and concentration of secondary magnetic colloid-conjugated antibody. It is concluded that saturation studies are a vital preparatory step in any separation method involving antibody labeling, especially those that require the specificity of rare cell detection.  相似文献   

2.
BACKGROUND: Continuous flow immunomagnetic separation is an attractive alternative to current batch mode immunomagnetic separation methods because it is capable of high sorting speeds at mild cell conditions, and grants the operator better control of separation process. The control of the separation is dependent on knowledge of the amount of magnetic label attached to the cell (magnetic labeling intensity), however. Determination of the magnetic labeling is accomplished by measuring cell magnetophoretic mobility using a newly developed technique of Cell Tracking Velocimetry (CTV). METHODS: Flow cytometry was used to define the antibody binding characteristics of a fluorescently tagged primary antibody. Subsequently, CTV was used to measure antibody-binding characteristics of a magnetically tagged secondary antibody. RESULTS: The results of this study show that CTV is capable of providing valuable information concerning the cell labeling by magnetically tagged antibodies. It was demonstrated that the magnetically conjugated antibody binding curve exhibits the same exponential increase to saturation characteristics as that seen with the fluorescently tagged antibody. Further, it was shown that the intensity of the secondary magnetic labeling is directly proportional to the intensity of the primary fluorescent label. CONCLUSIONS: CTV is an accurate tool for evaluation of magnetically conjugated antibodies. The ability to determine the intensity of magnetic labeling is necessary for the development of continuous flow immunomagnetic separations based on cell magnetophoresis.  相似文献   

3.
Magnetic cell separation methods commonly utilize paramagnetic materials conjugated to antibodies that target specific cell surface molecules. The amount of magnetic material bound to a cell is directly proportional to the magnetophoretic mobility of that cell. A mathematical model has been developed which characterizes the fundamental parameters controlling the amount of magnetic material bound, and thus, the magnetophoretic mobility of an immunomagnetically labeled cell. In characterization of the paramagnetic labeling, one of the parameters of interest is the increase in magnetophoretic mobility due to the secondary antibody binding to multiple epitopes on the primary antibody, referred to as the "secondary antibody binding amplification," Psi. Secondary antibody-binding amplification has been investigated and quantitated by comparing the mobilities of lymphocytes directly labeled with anti-CD4 MACS (Miltenyi Biotec, Auburn, CA) magnetic nanoparticle antibody with the mobilities of lymphocytes from the same sample labeled with two different indirect antibody-labeling schemes. Each indirect labeling scheme incorporated a primary mouse anti-CD4 FITC antibody that provides both FITC and mouse-specific binding sites for two different secondary antibody-magnetic nanoparticle conjugates: either anti-FITC MACS magnetic nanoparticle antibody or anti-mouse MACS magnetic nanoparticle antibody. The magnetophoretic mobilities of the immunomagnetically labeled cells were obtained using Cell Tracking Velocimetry (CTV). The results indicate that an average of 3.4 anti-FITC MACS magnetic nanoparticle antibodies bind to each primary CD4 FITC antibody, Psi(1,2f) = 3.4 +/- 0.33, and that approximately one, Psi(1,2m) = 0.98 +/- 0.081, anti-mouse MACS magnetic nanoparticle antibody binds to each primary mouse CD4 FITC antibody on a CD4 positive lymphocyte. These results have provided a better understanding of the antibody-binding mechanisms used in paramagnetic cell labeling for magnetic cell separation.  相似文献   

4.
Positive selection of CD34+ blood progenitor cells from circulation has been reported to improve patient recovery in applications of autologous transplantation. Current magnetic separation methods rely on cell capture and release on solid supports rather than sorting from flowing suspensions, which limits the range of therapeutic applications and the process scale up. We tested CD34+ cell immunomagnetic labeling and isolation from fresh leukocyte fraction of peripheral blood (leukapheresis) using the continuous quadrupole magnetic flow sorter (QMS), consisting of a flow channel (SHOT, Greenville, IN) and a quadrupole magnet with a maximum field intensity (B(o)) of 1.42 T and a mean force field strength (S(m)) of 1.45 x 10(8) TA/m(2). Both the sample magnetophoretic mobility (m) and the inlet and outlet flow patterns highly affect the QMS performance. Seven commercial progenitor cell labeling reagent combinations were quantitatively evaluated by measuring magnetophoretic mobility of a high CD34 expression cell line, KG-1a, using the cell tracking velocimeter (CTV). The CD34 Progenitor Cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) showed the strongest labeling of KG-1a cells and was selected for progenitor cell enrichment from 11 fresh and 11 cryopreserved clinical leukapheresis samples derived from different donors. The CD34+ cells were isolated with a purity of 60-96%, a recovery of 18-60%, an enrichment rate of 12-169, and a throughput of (1.7-9.3) x 10(4) cells/s. The results also showed a highly regular dependence of the QMS performance on the flow conditions that agreed with the theoretical predictions based on the CD34+ cell magnetophoretic mobility.  相似文献   

5.
METHODS: A methodology and a mathematical theory have been developed, which allow quantitation of the expression levels of cellular surface antigens using immunomagnetic labels and cell tracking velocimetry (CTV) technology. RESULTS: Quantum Simply Cellular (QSC) microbeads were immunomagnetically labeled with anti-CD2 fluorescein isothiocyanate (FITC) antibodies and anti-FITC MACS paramagnetic nanoparticles. Magnetophoretic mobility has been defined as the magnetically induced velocity of the labeled cell or microbead divided by the magnetophoretic driving force, proportional to the magnetic energy density gradient. DISCUSSION: Using computer imaging and processing technology, the mobility measurements were accomplished by microscopically recording and calculating the velocity of immunomagnetically labeled QSC microbeads in a nearly constant magnetic energy gradient. A calibration curve correlating the measured magnetophoretic mobility of the immunomagnetically labeled microbeads to their antibody binding capacities (ABC) has been obtained. CONCLUSION: The results, in agreement with theory, indicate a linear relationship between magnetophoretic mobility and ABC for microbeads with less than 30,000 ABC. The mathematical relationships and QSC standardization curve obtained allow determination of the number of surface antigens on similarly immunomagnetically labeled cells.  相似文献   

6.
Human CD34+ cells from cord blood were separated in a two-step process using a commercial, immunomagnetic cell retention system. The performance of the system was evaluated by analyzing a number of eluents from the separations with a number of analytical techniques. In addition to cell counts and flow cytometry analysis, a new experimental technique that is undergoing development, cell tracking velocimetry (CTV), was used. CTV measures the degree to which a cell is immunomagnetically labeled, known as the magnetophoretic mobility, of a population of cells on a cell-by-cell basis and presents the results in the form of a histogram similar to flow cytometry data. The average recovery and purity of CD34+ cells from 10 separations was 52% and 60%, respectively. CTV analysis indicated that the mean magnetophoretic mobility of the positively enriched CD34 cells was 9.64 x 10(-5) mm3/T-A-s, while the mean mobility from negative eluents was -2.02 x 10(-6) mm3/T-A-s, very similar to the mobility of unlabeled cells. Within the positive eluents, the range of magnetophoretic mobility was approximately 50-fold, representing a plausible 50-fold range in surface CD34 antigen expression. CTV analysis also indicated that in some separations, positive cells were not retained by the immunomagnetic cell retention system. Finally, preliminary studies indicate that monocytes might be a primary cause in the lower purities and recoveries seen in this study. It is suggested that the monocytes phagocytose the magnetic nanobeads and become sufficiently magnetized to be retained within the Miltenyi column, reducing the purity of the positive eluent.  相似文献   

7.
Magnetophoretic cell sorting is a function of antibody binding capacity   总被引:1,自引:0,他引:1  
Antibody binding capacity (ABC) is a term representing a cell's ability to bind antibodies, correlating with the number of specific cellular antigens expressed on that cell. ABC allows magnetically conjugated antibodies to bind to the targeted cells, imparting a magnetophoretic mobility on each targeted cell. This enables sorting based on differences in the cell magnetophoretic mobility and, potentially, a magnetic separation based on the differences in the cell ABC values. A cell's ABC value is a particularly important factor in continuous magnetic cell separation. This work investigates the relationship between ABC and magnetic cell separation efficiency by injection of a suspension of immunomagnetically labeled quantum simply cellular calibration microbeads of known ABC values into fluid flowing through a quadrupole magnetic sorter. The elution profiles of the outlet streams were evaluated using UV detectors. Optimal separation flow rate was shown to correlate with the ABC of these microbeads. Comparing experimental and theoretical results, the theory correctly predicted maximum separation flow rates but overestimated the separation fractional recoveries.  相似文献   

8.
We have developed a quadrupole magnetic flow sorter (QMS) to facilitate high-throughput binary cell separation. Optimized QMS operation requires the adjustment of three flow parameters based on the immunomagnetic characteristics of the target cell sample. To overcome the inefficiency of semiempirical operation/optimization of QMS flow parameters, a theoretical model of the QMS sorting process was developed. Application of this model requires measurement of the magnetophoretic mobility distribution of the cell sample by the cell tracking velocimetry (CTV) technique developed in our laboratory. In this work, the theoretical model was experimentally tested using breast carcinoma cells (HCC1954) overexpressing the HER-2/neu gene, and peripheral blood leukocytes (PBLs). The magnetophoretic mobility distribution of immunomagnetically labeled HCC1954 cells was measured using the CTV technique, and then theoretical predictions of sorting recoveries were calculated. Mean magnetophoretic mobilities of (1-3) x 10(-4) mm(3)/(T A s) were obtained depending on the labeling conditions. Labeled HCC1954 cells were mixed with unlabeled PBLs to form a "spiked" sample to be separated by the QMS. Fractional recoveries of cells for different flow parameters were examined and compared with theoretical predictions. Experimental results showed that the theoretical model accurately predicted fractional recoveries of HCC1954 cells. High-throughput (3.29 x 10(5) cells/s) separations with high recovery (0.89) of HCC1954 cells were achieved.  相似文献   

9.
Bioaffinity interactions have been, and continue to be, successfully adapted from nature for use in separation and detection applications. It has been previously reported that the magnetophoretic mobility of labeled cells show a saturation type phenomenon as a function of the concentration of the free antibody-magnetic nanoparticle conjugate which is consistent with other reports of antibody-fluorophore binding. Starting with the standard antibody-antigen relationship, a model was developed which takes into consideration multi-valence interactions, and various attributes of flow cytometry (FCM) and cell tracking velocimetry (CTV) measurements to determine both the apparent dissociation constant and the antibody-binding capacity (ABC) of a cell. This model was then evaluated on peripheral blood lymphocytes (PBLs) labeled with anti CD3 antibodies conjugated to FITC, PE, or DM (magnetic nanoparticles). Reasonable agreements between the model and the experiments were obtained. In addition, estimates of the limitation of the number of magnetic nanoparticles that can bind to a cell as a result of steric hinderance was consistent with measured values of magnetophoretic mobility. Finally, a scale-up model was proposed and tested which predicts the amount of antibody conjugates needed to achieve a given level of saturation as the total number of cells reaches 10(10), the number of cells needed for certain clinical applications, such as T-cell depletions for mismatched bone marrow transplants.  相似文献   

10.
Cell separation is important in medical and biological research and plays an increasingly important role in clinical therapy and diagnostics, such as rare cancer cell detection in blood. The immunomagnetic labeling of cells with antibodies conjugated to magnetic nanospheres gives rise to a proportional relationship between the number of magnetic nanospheres attached to the cell and the cell surface marker number. This enables the potential fractionation of cell populations by magnetophoretic mobility (MM). We exploit this feature with our apparatus, the Dipole Magnet Flow Fractionator (DMFF), which consists of an isodynamic magnetic field, an orthogonally-oriented thin ribbon of cell suspension in continuous sheath flow, and ten outlet flows. From a sample containing a 1:1 mixture of immunomagnetically labeled (label+) and unlabeled (label-) cells, we achieved an increase in enrichment of the label+ cell fraction with increasing outlet numbers in the direction of the magnetic field gradient (up to 10-fold). The total recovery of the ten outlet fractions was 90.0+/-7.7%. The mean MM of label+ cells increased with increasing outlet number by up to a factor of 2.3. The postulated proportionality between the number of attached magnetic beads and the number of cell surface markers was validated by comparison of MM measured by cell tracking velocimetry (CTV) with cell florescence intensity measured by flow cytometry.  相似文献   

11.
Cell separation by counterflow centrifugal elutriation (CCE) or free flow electrophoresis (FFE) is performed at lower frequency than cell cloning and antibody-dependent, magnetic or fluorescence-activated cell sorting. Nevertheless, numerous recent publications confirmed that these physical cell separation methods that do not include cell labeling or cell transformation steps, may be most useful for some applications. CCE and FFE have proved to be valuable tools, if homogeneous populations of normal healthy untransformed cells are required for answering scientific questions or for clinical transplantation and cells cannot be labeled by antibodies, because suitable antibodies are not available or because antibody binding to a cell surface would induce the cell reaction which should be investigated on purified cells or because antibodies bound to the surface hamper the use of the isolated cells. In addition, the methods are helpful for studying the biological reasons for, or effects of, changes in cell size and cellular negative surface charge density. Although the value of the methods was confirmed in recent years by a considerable number of important scientific results, activities to further develop and improve the instruments have, unfortunately, declined.  相似文献   

12.
By employing the principles of "activated swelling", monosized, superparamagnetic polymer particles have been prepared ranging in size from 1-100 microns. Both during and after the swelling process, the particles can be modified to meet a series of specific demands making them potentially very interesting for many separation and assay purposes. Using monoclonal antibodies to direct the magnetic beads to their targets, immunomagnetic separation has turned out to be one of the most specific, reliable and, above all, the fastest technique available today to isolate particulate material for further studies. So far, most efforts have been concentrated on methodology for fractionation of cells in suspension, such as removal of tumour cells from bone marrow or isolation of lymphoid cells from peripheral blood. These studies have both established the parameters necessary for optimal performance and at the same time laid the groundwork for future developments making immunomagnetic separation an exciting new tool in many research areas. High speed and specificity are the most conspicuous features of immunomagnetic cell separation. These properties have been exploited in the successful development of a new technique for tissue typing of cells directly from peripheral blood specimens. Both higher sensitivity and specificity have been obtained. The same principles can be used for fast and safe quantification of cell populations and subpopulations in blood and cell suspensions. The functions of, and interactions between, peripheral blood cell populations or subpopulations in the immune response have also been studied with high precision. The significance of direct cell contact on the one hand, and soluble factors on the other, can now be established in detail. Immunomagnetic beads have also been used to study the interaction between various T lymphocyte membrane molecules in the early phases of the activation process. Finally, the usefulness of specially developed particles for the fractionation of subcellular components is described.  相似文献   

13.
METHODS: A methodology and a mathematical relationship have been developed that allow quantitation of the expression levels of cellular surface antigens, in terms of antibody binding capacities (ABC). This methodology uses immunomagnetically labeled cells and calibration microbeads combined with cell tracking velocimetry (CTV) technology to measure magnetophoretic mobilities corresponding to cellular ABC. The mobility measurements were accomplished by microscopically recording and calculating the velocity of immunomagnetically labeled QSC microbeads and cells in a nearly constant magnetic energy gradient. RESULTS: Transformed fibrosarcoma cells were given controlled treatments of interferon-alpha in order to manipulate CD2 antigen expression levels. These cells were then immunomagnetically labeled with anti-CD2 FITC antibodies and anti-FITC MACS paramagnetic nanoparticles. Measured magnetophoretic mobilities were used to calculate ABC for these cells, corresponding to CD2 expression levels. CONCLUSION: The results from CTV and flow cytometry (FCM) qualitatively verify that these fibrosarcoma cells express elevated levels of CD2 molecules with increasing interferon-alpha treatment from 0 to 24 h. The mean basal CD2 expression level, in terms of ABC, was calculated to be 27,000 from CTV analysis, whereas FCM indicates a comparable ABC value of 33,000.  相似文献   

14.
Nonmagnetic microparticles (e.g., cells, polymer beads) immersed in a magnetic fluid (ferrofluid) under a nonuniform magnetic field experience a magnetophoretic force in the direction of decreasing magnetic field strength. This phenomenon was exploited in the development of a continuous magnetophoretic countercurrent separation for the removal and concentration of micron-sized particles from aqueous suspensions, and in particular as a viable approach for cell clarification of raw fermentation broth. A magnetic fluid is added to the cell suspension, the mixture is introduced to the magnetic separator, which consists of an open flow tube passing between pairs of magnets that move in a direction counter to the flow of the suspension. The cells are pushed ahead of the magnet pairs owing to the magnetophoretic forces acting on them, collected in a tube upstream of the feed injection point, and removed as a concentrated suspension for further treatment.  相似文献   

15.
Isolation of floating fetal cells from maternal circulation has immense potential in diagnosing of various genetic alterations in the developing fetus. Currently, non-invasive fetal cell isolation methods include fluorescence/magnetic activated cell sorting that use antibodies specific to fetal cells. Apart from being complex and expensive the biggest challenge associated with these cell sorting methods is low concentration of fetal cells in maternal peripheral blood. In order to make the complete process much simpler and effective, we propose a novel method for isolation of floating fetal cells that uses a continuous flow of maternal blood for effectively harvesting a higher fetal cell volume compared to any other existing method. The isolation mechanism is based on the difference in the magnetic susceptibility of fetal hemoglobin (HbF-α2γ2) and maternal hemoglobin (HbA-α2β2). HbF has high oxygen saturation capacity (diamagnetic) compared to HbA (paramagnetic), and this difference in saturation is further enhanced by presence of 2,3-bisphosphoglycerate (2,3-BPG). When placed in magnetic field, these cells get separated based on the difference (p ≤ 0.001) in their magnetophoretic mobility. This separation method may also be used for detection of fetomaternal hemorrhages and also treatment of Rh incompatibility.  相似文献   

16.
The objective of this study was to compare the performance of two immunomagnetic separation technologies to deplete T cells from buffy coats of human blood. Specifically, two versions of the commercial MACS(R) Technology: MiniMACS and SuperMACS, and a prototype, flow-through system, the QMS, were evaluated. Peripheral blood mononuclear leukocytes (PBL) were isolated from buffy coats and an immunomagnetic separation of CD3(+) cells was conducted using company and optimized labeling protocols. To mimic peripheral blood containing bone marrow purged hematopoietic stem cells, HSC, CD34 expressing-cells (KG1a) were spiked into PBL prior to T-cell depletion once optimized depletion conditions were determined. Once the labeling protocol was optimized, the MiniMACS system performed well by producing a highly enriched CD3(+) fraction, and a respectable level of depletion of T cells and recovery of KG1a cells in the depleted fraction; an average log(10) depletion of T cells of 2.88 +/- 0.17 and an average recovery of the KG1a cells of 60.8 +/- 5.94% (n = 14). The performance of the SuperMACS system was very similar with an average log(10) depletion of T cells of 2.89 +/- 0.22 and an average recovery of KG1a of 63.1 +/- 8.55% (n = 10). In contrast, the QMS system produced an average log(10) depletion of T cells of 3.98 +/- 0.33 (n = 16) with a corresponding average recovery of 57.9 +/- 16.6% of the spiked CD34+ cells. The aforementioned QMS performance values were obtained using sorting speeds ranging from 2.5 x 10(4) to 1.7 x 10(5) cells per second. It is suggested that the lack of a 100% recovery of the unlabeled KG1a cells is the result of a previously reported "drafting" phenomena which pulls unlabeled cells in the direction of the magnetically labeled cells thereby resulting in loss of the unlabeled cells.  相似文献   

17.
Pathogen detection using biosensors is commonly limited due to the need for sensitivity and specificity in detecting targets within mixed populations. These issues were addressed through development of a dual labeling method that allows for both liquid-phase fluorescence in situ hybridization (FISH) and capture antibody targeted detection (CAT-FISH). CAT-FISH was developed using Escherichia coli O157:H7 and Staphylococcus aureus as representative bacteria, and processing techniques were evaluated with regard to FISH intensities and antibody recognition. The alternative fixative solution, methacarn, proved to be superior to standard solid-phase paraformaldehyde fixation procedures, allowing both FISH labeling and antibody recognition. CAT-FISH treated cells were successfully labeled with FISH probes, captured by immunomagnetic separation using fluorescent cytometric array beads, and detected using a cytometric array biosensor. CAT-FISH treated cells were detectable with LODs comparable to the standard antibody-based technique, (~ 103 cells/ml in PBS), and the technique was also successfully applied to two complex matrices. Although immunomagnetic capture and detection using cytometric arrays were demonstrated, CAT-FISH is readily applicable to any antibody-based fluorescence detection platform, and further optimization for sensitivity is possible via inclusion of fluorescently tagged antibodies. Since the confidence level needed for positive identification of a detected target is often paramount, CAT-FISH was developed to allow two separate levels of specificity, namely nucleic acid and protein signatures. With proper selection of FISH probes and capture antibodies, CAT-FISH may be used to provide rapid detection of target pathogens from within complex matrices with high levels of confidence.  相似文献   

18.
Mycolic acid-containing bacteria (mycolata) are thought to be involved in scum formation in aeration basins of activated sludge plants due to their ability to produce biosurfactants and their cell surface hydrophobicity. To isolate these bacteria, immunomagnetic separation (IMS) using an anti-mycolic acid polyclonal antibody was investigated. IMS that targeted Gordonia amarae SC1 exhibited a 100% recovery at 5x10(3) CFU ml(-1). At cell concentration of 7.8x10(6) CFU ml(-1), the recovery was lowered, but 80% of cells were still captured. Effect of bead concentrations on the recovery of SC1 at 10(6) CFU ml(-1) was examined. The results showed that addition of more than 6-7x10(6) beads for 1x10(6) CFU reached a maximum recovery (83%). Furthermore, the IMS procedure optimized with SC1 cells was tested with another mycolata. The results suggested that variation of the recovery for each mycolata is dependent on the specificity of the polyclonal antibody and that mycolata which are recognized by the antibody can be recovered by this procedure.  相似文献   

19.
Once during each cell cycle, mitotic spindle poles arise by separation of newly duplicated centrosomes. We report here the involvement of phosphorylation of the centrosomal protein centrin in this process. We show that centrin is phosphorylated at serine residue 170 during the G(2)/M phase of the cell cycle. Indirect immunofluorescence staining of HeLa cells using a phosphocentrin-specific antibody reveals intense labeling of mitotic spindle poles during prophase and metaphase of the cell division cycle, with diminished staining of anaphase and no staining of telophase and interphase centrosomes. Cultured cells undergo a dramatic increase in centrin phosphorylation following the experimental elevation of PKA activity, suggesting that this kinase can phosphorylate centrin in vivo. Surprisingly, elevated PKA activity also resulted intense phosphocentrin antibody labeling of interphase centrosomes and in the concurrent movement of individual centrioles apart from one another. Taken together, these results suggest that centrin phosphorylation signals the separation of centrosomes at prophase and implicates centrin phosphorylation in centriole separation that normally precedes centrosome duplication.  相似文献   

20.
A novel chromatography method for the separation of antibodies is described. The adsorption of antibodies on the solid phase involves interaction with a ligand that combines mild hydrophobic characteristics and some degree of molecular recognition with a derivative of pyridine. This combined effect results in the adsorption of antibodies in the absence of lyotropic salts. When environmental pH is changed, the ligand becomes ionically charged, allowing the desorption of antibodies. The mechanism of adsorption, involving hydrophobic associations and ionic related interaction, is here qualified as dual-mode. Studies on the determination of the apparent dissociation constant for immunoglobulins G are presented. Adsorption of antibodies from crude feedstocks typically occurs without adjustment of pH or ionic strength. The sorbent is then washed with a buffer to eliminate protein impurities and, when lowering the environmental pH, antibodies are desorbed. The solid-phase material is used for the separation of antibodies from an ascites fluid and from a cell culture supernatant, followed by a polishing step on an hydroxyapatite column. Preliminary studies, related to the ability of the solid phase to separate antibody fragments, are also reported. In these studies, it has been demonstrated that both Fab and Fc fragments from polyclonal IgG are adsorbed to the solid phase under typical binding conditions. Under other defined physico-chemical conditions (ionic strength and pH), separation of both fragments in a single step has been achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号