首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ferritins concentrate and store iron as a mineral in all bacterial, plant, and animal cells. The two ferritin subunit types, H or M (fast) and L (slow), differ in rates of iron uptake and mineralization and assemble in vivo to form heteropolymeric protein shells made up of 24 subunits; H/L subunit ratios reflect cell specificity of H and L subunit gene expression. A diferric peroxo species that is the initial reaction product of Fe(II) in H-type ferritins, as well as in ribonucleotide reductase (R2) and methane monooxygenase hydroxylase (MMOH), has recently been characterized, exploiting the relatively high accumulation of the peroxo intermediate in frog H-subunit type recombinant ferritin with the M sequence. The stability of the diferric reaction centers in R2 and MMOH contrasts with the instability of diferric centers in ferritin, which are precursors of the ferric mineral. We have determined the crystal structure of the homopolymer of recombinant frog M ferritin in two crystal forms: P4(1)2(1)2, a = b = 170.0 A and c = 481.5 A; and P3(1)21, a = b = 210.8 A and c = 328.1 A. The structural model for the trigonal form was refined to a crystallographic R value of 19.0% (Rfree = 19.4%); the two structures have an r.m.s.d. of approximately 0.22 A for all C alpha atoms. Comparison with the previously determined crystal structure of frog L ferritin indicates that the subunit interface at the molecular twofold axes is most variable, which may relate to the presence of the ferroxidase site in H-type ferritin subunits. Two metal ions (Mg) from the crystallization buffer were found in the ferroxidase site of the M ferritin crystals and interact with Glu23, Glu58, His61, Glu103, Gln137 and, unique to the M subunit, Asp140. The data suggest that Gln137 and Asp140 are a vestige of the second GluxxHis site, resulting from single nucleotide mutations of Glu and His codons and giving rise to Ala140 or Ser140 present in other eukaryotic H-type ferritins, by additional single nucleotide mutations. The observation of the Gln137xxAsp140 site in the frog M ferritin accounts for both the instability of the diferric oxy complexes in ferritin compared to MMOH and R2 and the observed kinetic variability of the diferric peroxo species in different H-type ferritin sequences.  相似文献   

2.
Protein N-glycosylation occurs in the three domains of life. Oligosaccharyltransferase (OST) transfers glycan to asparagine in the N-glycosylation sequon. The catalytic subunit of OST is called STT3 in eukaryotes, AglB in archaea, and PglB in eubacteria. The genome of a hyperthermophilic archaeon, Archaeoglobus fulgidus, encodes three AglB paralogs. Two of them are the shortest AglBs across all domains of life. We determined the crystal structure of the C-terminal globular domain of the smallest AglB to identify the minimal structural unit. The Archaeoglobus AglB lacked a β-barrel-like structure, which had been found in other AglB and PglB structures. In agreement, the deletion in a larger Pyrococcus AglB confirmed its dispensability for the activity. By contrast, the Archaeoglobus AglB contains a kinked helix bearing a conserved motif, called DK/MI motif. The lysine and isoleucine residues in the motif participate in the Ser/Thr recognition in the sequon. The Archaeoglobus AglB structure revealed that the kinked helix contained an unexpected insertion. A revised sequence alignment based on this finding identified a variant type of the DK motif with the insertion. A mutagenesis study of the Archaeoglobus AglB confirmed the contribution of this particular type of the DK motif to the activity. When taken together with our previous results, this study defined the classification of OST: one group consisting of eukaryotes and most archaea possesses the DK-type Ser/Thr pocket, and the other group consisting of eubacteria and the remaining archaea possesses the MI-type Ser/Thr pocket. This classification provides a useful framework for OST studies.  相似文献   

3.
Background: [2Fe–2S] ferredoxins, also called plant-type ferredoxins, are low-potential redox proteins that are widely distributed in biological systems. In photosynthesis, the plant-type ferredoxins function as the central molecule for distributing electrons from the photolysis of water to a number of ferredox-independent enzymes, as well as to cyclic photophosphorylation electron transfer. This paper reports only the second structure of a [2Fe–2S] ferredoxin from a eukaryotic organism in its native form.Results: Ferredoxin from the green algae Chlorella fusca has been purified, characterised, crystallised and its structure determined to 1.4 Å resolution – the highest resolution structure published to date for a plant-type ferredoxin. The structure has the general features of the plant-type ferredoxins already described, with conformational differences corresponding to regions of higher mobility. Immunological data indicate that a serine residue within the protein is partially phosphorylated. A slightly electropositive shift in the measured redox potential value, -325 mV, is observed in comparison with other ferredoxins.Conclusions: This high-resolution structure provides a detailed picture of the hydrogen-bonding pattern around the [2Fe–2S] cluster of a plant-type ferredoxin; for the first time, it was possible to obtain reliable error estimates for the geometrical parameters. The presence of phosphoserine in the protein indicates a possible mechanism for the regulation of the distribution of reducing power from the photosynthetic electron-transfer chain.  相似文献   

4.
The three-dimensional structure of the saccharopine reductase enzyme from the budding yeast Saccharomyces cerevisiae was determined to 1.7-A resolution in the apo form by using molecular replacement. The enzyme monomer consists of three domains: domain I is a variant of the Rossmann fold, domain II folds into a alpha/beta structure containing a mixed seven-stranded beta-sheet as the central core, and domain III has an all-helical fold. Comparative fold alignment with the enzyme from Magnaporthe grisea suggests that domain I binds to NADPH, and domain II binds to saccharopine and is involved in dimer formation. Domain III is involved in closing the active site of the enzyme once substrates are bound. Structural comparison of the saccharopine reductase enzymes from S. cerevisiae and M. grisea indicates that domain II has the highest number of conserved residues, suggesting that it plays an important role in substrate binding and in spatially orienting domains I and III.  相似文献   

5.
The crystal structure of low-potential cytochrome c549, an extrinsic component of the photosystem II (PS II) from Synechocystis sp. PCC 6803, was obtained directly from single-wavelength 1.21 A resolution diffraction data. This is the first monodomain bis-histidinyl monoheme cytochrome c to be structurally characterized. The extended N-terminal region of c549 builds up a two-strand antiparallel beta-sheet in a hairpin motif, which extends through two molecules owing to crystal packing. Both peptide termini are involved in crystal contacts, which may explain their protrusion out of the globular fold. The C-terminus is preceded by a 9 A-long hydrophobic finger extending from a positively charged base and could be involved in PSII interactions, as well as a protruding negative patch built by a set of conserved acidic residues among c549 sequences.  相似文献   

6.
Nostoc sp. PCC 7120 are filamentous cyanobacteria capable of both oxygenic photosynthesis and nitrogen fixation, with the latter taking place in specialized cells known as heterocysts that terminally differentiate from vegetative cells under conditions of nitrogen starvation. Cyanobacteria have existed on earth for more than 2 billion years and are thought to be responsible for oxygenation of the earth's atmosphere. Filamentous cyanobacteria such as Nostoc sp. PCC 7120 may also represent the oldest multicellular organisms on earth that undergo cell differentiation. Pentapeptide repeat proteins (PRPs), which occur most abundantly in cyanobacteria, adopt a right-handed quadrilateral β-helical structure, also referred to as a repeat five residue (Rfr) fold, with four-consecutive pentapeptide repeats constituting a single coil in the β-helical structure. PRPs are predicted to exist in all compartments within cyanobacteria including the thylakoid and cell-wall membranes as well as the cytoplasm and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical function of PRPs in cyanobacteria remains largely unknown. Here we report the crystal structure of Alr1298, a PRP from Nostoc sp. PCC 7120 predicted to reside in the cytoplasm. The structure displays the typical right-handed quadrilateral β-helical structure and includes a four-α-helix cluster capping the N-terminus and a single α-helix capping the C-terminus. A gene cluster analysis indicated that Alr1298 may belong to an operon linked to cell proliferation and/or thylakoid biogenesis. Elevated alr1298 gene expression following nitrogen starvation indicates that Alr1298 may play a role in response to nitrogen starvation and/or heterocyst differentiation.  相似文献   

7.
The three-dimensional structure of the sulfhydryl protease calotropin DI from the madar plant, Calotropis gigantea, has been determined at 3·2 Å resolution using the multiple isomorphous replacement method with five heavy atom derivatives. A Fourier synthesis based on protein phases with a mean figure of merit of 0·857 was used for model building. The polypeptide backbone of calotropin DI is folded to form two distinct lobes, one of which is comprised mainly of α-helices, while the other is characterized by a system of all antiparallel pleated sheets. The overall molecular architecture closely resembles those found in the sulfhydryl proteases papain and actinidin.Despite the unknown amino acid sequence of calotropin DI a number of residues around its active center could be identified. These amino acid side-chains were found in a similar arrangement as the corresponding ones in papain and actinidin. The polypeptide chain between residues 1 and 18 of calotropin DI folds in a unique manner, providing a possible explanation for the unusual inability of calotropin DI to hydrolyze those synthetic substrates that papain and actinidin act upon.  相似文献   

8.
The specific activity of a recombinant β-glucosidase from Pyrococcus furiosus for protopanaxatriol (PPT)-type ginsenosides followed the order Rf > R1 > Re > R2 > Rg2, which were converted to Rh1, Rg1, Rg1, Rh1, and Rh1, respectively. No activity was observed with Rg1 and Rh1. Thus, P. furiosus β-glucosidase hydrolyzed the outer glycoside at the C-6 position in PPT-type ginsenosides whereas the enzyme did not hydrolyze the inner glucoside at the C-6 position and the glucoside at the C-20 position. The activity for Rf was optimal at 95 °C, pH 5.5, 5 mM ginsenoside, and 32 U enzyme l?1. Under these conditions, P. furiosus β-glucosidase completely converted from R1 to Rg1 after 10 h, with a productivity of 0.4 g l?1 h?1 and completely converted Rf to Rh1 after 1.2 h, with a productivity of 2.74 g l?1 h?1.  相似文献   

9.
Auracyanins A and B are two closely similar “blue” copper proteins produced by the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. Both proteins have a water-soluble 140-residue globular domain, which is preceded in the sequence by an N-terminal tail. The globular domains of auracyanins A and B have sequences that are 38% identical. The sequences of the N-terminal tails, on the other hand, are distinctly different, suggesting that auracyanins A and B occupy different membrane sites and have different functions. The crystal structure of auracyanin A has been solved and refined at 1.85 Å resolution. The polypeptide fold is similar to that of auracyanin B (Bond et al. in J Mol Biol 306:47–67, 2001), but the distribution of charged and polar residues on the molecular surface is different. The Cu-site dimensions of the two auracyanins are identical. This is unexpected, since auracyanin A has a shorter polypeptide loop between two of the Cu-binding residues, and the two proteins have significantly different EPR, UV–visible and resonance Raman spectra. The genes for the globular domains of auracyanins A and B have been cloned in a bacterial expression system, enabling purification of large quantities of protein. It is shown that auracyanin A is expressed only when C. aurantiacus cells are grown in light, whereas auracyanin B is expressed under dark as well as light conditions. The inference is that auracyanin A has a function in photosynthesis, and that auracyanin B has a function in aerobic respiration.  相似文献   

10.
In the ciliate Euplotes raikovi, water-borne protein pheromones promote the vegetative cell growth and mating by competitively binding as autocrine and heterologous signals to putative cell receptors represented by membrane-bound pheromone isoforms. A previously determined crystal structure of pheromone Er-1 supported a pheromone/receptor binding model in which strong protein–protein interactions result from the cooperative utilization of two distinct types of contact interfaces that arrange molecules into linear chains, and these into two-dimensional layers. We have now determined the crystal structure of a new pheromone, Er-13, isolated from cultures that are strongly mating reactive with cultures source of pheromone Er-1. The comparison between the Er-1 and Er-13 crystal structures reinforces the fundamental of the cooperative model of pheromone/receptor binding, in that the molecules arrange into linear chains taking a rigorously alternate opposite orientation reflecting the presumed mutual orientation of pheromone and receptor molecules on the cell surface. In addition, the comparison provides two new lines of evidence for a univocal rationalization of observations on the different behaviour between the autocrine and heterologous pheromone/receptor complexes. (i) In the Er-13 crystal, chains do not form layers which thus appear to be an over-structure unique to the Er-1 crystal, not essential for the pheromone signalling mechanisms. (ii) In both crystal structures, the intra-chain interfaces are equally derived from burying amino-acid side-chains mostly residing on helix-3 of the three-helical pheromone fold. This helix is thus identified as the key structural motif underlying the pheromone activity, in line with its tight intra- and interspecific structural conservation.  相似文献   

11.
The focal accumulation of DNA repair factors, including the MRE11/Rad50/NBS1 (MRN) complex and the phospho-histone variant γ-H2A.X, is a key cytological feature of the DNA damage response (DDR). Although these foci have been extensively studied by light microscopy, there is comparatively little known regarding their ultrastructure. Using correlative light microscopy and electron spectroscopic imaging (LM/ESI) we have characterized the ultrastructure of chromatin and DNA repair foci within the nuclei of normal human fibroblasts in response to DNA double-strand breaks (DSBs). The induction of DNA DSBs by etoposide leads to a global decrease in chromatin density, which is accompanied by the formation of invaginations of the nuclear envelope as revealed by live-cell microscopy. Using LM/ESI and the immunogold localization of γ-H2A.X and MRE11 within repair foci, we also observed decondensed 10nm chromatin fibers within repair foci and the accumulation of large non-chromosomal protein complexes over three hours recovery from etoposide. At 18 h after etoposide treatment, we observed a close juxtapositioning of PML nuclear bodies and late repair foci of γ-H2A.X, which exhibited a highly organized chromatin arrangement distinct from earlier repair foci. Finally, the dual immunogold labeling of MRE11 with either γ-H2A.X or NBS1 revealed that γ-H2A.X and the MRN complex are sub-compartmentalized within repair foci at the sub-micron scale. Together these data provide the first ultrastructural comparison of γ-H2A.X and MRN DNA repair foci, which are structurally dynamic over time and strikingly similar in organization.  相似文献   

12.
13.
Interheme electrostatic interaction can explain the acceleration of the electron transfer (ET) rate from the highest potential heme (C38o) to the photooxidized bacteriochlorophyll dimer (P+) which takes place after the reduction of neighbouring heme(s) of the cytochrome subunit in the reaction center of Rps. viridis. The electrostatic interaction energies calculated for neighbouring hemes, 7.0 Å apart (edge-to-edge), and for two high potential hemes, 21.5 Å apart are found to be 0.110 eV and 0.040 eV respectively. The reorganisation energy of the C380-P+ transition of about 0.290±0.030 eV is calculated using the Marcus theory of electron tunneling. An empirical relation for the rate of ET is given. The low temperature restriction of the C380-+ transition is caused by an energetic inhibition which originates from an opposite shifting of the energy levels of C380 and P+ due to the freezing of protein dynamics and protein-bound water mobility. The freezing of the protein dynamics is revealed by the Mössbauer effect and correlates with the efficiency of the ET.Abbreviations RC reaction center - P+ cation-radical of bacteriochlorophyll dimer - C380, C20, C310, C–60, hemes indexed by the values of their individual redox potentials (in mV) - ET electron transfer  相似文献   

14.
To apply the Langmuir–Blodgett (LB) technique as a platform for investigating the fundamental properties of amphiphilic peptides (APs), we have investigated the structure of LB films using the APs. To vertically orient the helical APs like transmembrane proteins in the membrane, the primary structure of the APs was designed to have two domains: a hydrophilic domain (three amino acids) and a hydrophobic domain (ca. 20 amino acids). However, we are still far from having full control of their orientation. This study reports the contribution of the subphase temperature to the change in the orientation of helical APs. When the surface pressure–area isotherm of AP was observed at the subphase temperature at 41.5 °C, the isotherm exhibited a plateau, implying that a phase transition of the monolayer at the air–water interface occurred. Circular dichroism (CD) spectra of the monolayers transferred on the solid substrates revealed that the orientation of the helices changed at the pressure, where the plateau of the isotherm was observed. This change was not observed at 21.5 °C, i.e., the horizontal alignment of helixes was maintained. Atomic force microscopy (AFM) was used to systematically investigate the surface structure of the monolayers transferred at different surface pressures. A structural model of the monolayer that did not contradict with the results obtained by the three different techniques (the isotherm, CD spectroscopy, and AFM) was derived, and it was concluded that the horizontally oriented helices partially changed their orientation to vertical upon compression in the plateau region of the isotherm.  相似文献   

15.
The three-dimensional structure of yellow fluorescent proteins zYFP538 (zFP538) from the button polyp Zoanthus sp. was determined at a resolution of 1.8 Å by X-ray analysis. The monomer of zYFP538 adopts a structure characteristic of the green fluorescent protein (GFP) family, a β-barrel formed from 11 antiparallel β segments and one internal α helix with a chromophore embedded into it. Like the TurboGFP, the β-barrel of zYFP538 contains a water-filled pore leading to the chromophore Tyr67 residue, which presumably provides access of molecular oxygen necessary for the maturation process. The post-translational modification of the chromophore-forming triad Lys66-Tyr67-Gly68 results in a tricyclic structure consisting of a five-membered imidazolinone ring, a phenol ring of the Tyr67 residue, and an additional six-membered tetrahydropyridine ring. The chromophore formation is completed by cleavage of the protein backbone at the C α -N bond of Lys66. It was suggested that the energy conflict between the buried positive charge of the intact Lys66 side chain in the hydrophobic pocket formed by the Ile44, Leu46, Phe65, Leu204 and Leu219 side chains is the most probable trigger that induces the transformation of the bicyclic green form to the tricyclic yellow form. A stereochemical analysis of the contacting surfaces at the intratetramer interfaces helped reveal a group of conserved key residues responsible for the oligomerization. Along with others, these residues should be taken into account in designing monomeric forms suitable for practical application as markers of proteins and cell organelles.  相似文献   

16.
There is a growing requirement for ecosystem science to help inform a deeper understanding of the effects of global climate change and land use change on terrestrial ecosystem structure and function, from small area (plot) to landscape, regional and global scales. To meet these requirements, ecologists have investigated plant growth and carbon cycling processes at plot scale, using biometric methods to measure plant carbon accumulation, and gas exchange (chamber) methods to measure soil respiration. Also at the plot scale, micrometeorologists have attempted to measure canopy- or ecosystem-scale CO2 flux by the eddy covariance technique, which reveals diurnal, seasonal and annual cycles. Mathematical models play an important role in integrating ecological and micrometeorological processes into ecosystem scales, which are further useful in interpreting time-accumulated information derived from biometric methods by comparing with CO2 flux measurements. For a spatial scaling of such plot-level understanding, remote sensing via satellite is used to measure land use/vegetation type distribution and temporal changes in ecosystem structures such as leaf area index. However, to better utilise such data, there is still a need for investigations that consider the structure and function of ecosystems and their processes, especially in mountainous areas characterized by complex terrain and a mosaic distribution of vegetation. For this purpose, we have established a new interdisciplinary approach named ‘Satellite Ecology’, which aims to link ecology, remote sensing and micrometeorology to facilitate the study of ecosystem function, at the plot, landscape, and regional scale. This article was contributed at the invitation of the Editorial Committee.  相似文献   

17.
18.
Mammalian dihydroorotate dehydrogenase, the fourth enzyme of pyrimidine de novo synthesis is an integral protein of the inner mitochondrial membrane that faces the intermembrane space and is functionally connected to the respiratory chain via ubiquinone. Here, we describe the first cloning and analyzing of the complete cDNA of mouse dihydroorotate dehydrogenase. Based on our recent functional expression of the full-length rat and human dihydroorotate dehydrogenase, here we expressed N-terminal-truncated C-terminal-histidine-tagged constructs of the mouse, rat and human enzymes in Escherichia coli. These proteins were devoid of the N-terminal bipartite sequence consisting of the mitochondrial targeting sequence and adjacent hydrophobic domain necessary for import and proper location and fixation of the enzyme in the inner mitochondrial membrane. By employing metal-chelate affinity chromatography under native conditions, the enzymes were purified without detergents to a specific activity of more than 100 micromol x min(-1) x mg(-1) at pH optimum of 8.0--8.1. Flavin analyses by UV-visible spectrometry of the native enzymes gave fairly stoichiometric ratios of 0.6--1.2 mol flavin per mol protein. The kinetic constants of the truncated rat enzyme (K(m) = 11 microM dihydroorotate; K(m) = 7 microM ubiquinone) and human enzyme (K(m) = 10 microM dihydroorotate; K(m) = 14 microM ubiquinone) were very close to those recently reported for the full-size enzymes. The constants for the mouse enzyme, K(m) = 26 microM dihydroorotate and K(m) = 62 microM ubiquinone, were slightly elevated in comparison to those of the other species. The three truncated enzymes were tested for their efficacy with five inhibitors of topical clinical relevance against autoimmune disorders and tumors. Whereas the presence of the N-terminus of dihydroorotate dehydrogenase was essentially irrelevant for the efficacy of the malononitrilamides A77-1726, MNA715 and MNA279 with the rat and human enzyme, the N-termini were found to be important for the efficacy of the dianisidine derivative redoxal. Moreover, the complete N-terminal part of the human enzyme seemed to be of crucial importance for the 'slow-binding' features of the cinchoninic acid derivative brequinar, which was suggested to be one of the reasons for the narrow therapeutic window reported from clinical trials on its anti-proliferative and immunosuppressive action.  相似文献   

19.
The three-dimensional structure of the proteic complex formed by bovine trypsinogen and the porcine pancreatic secretory trypsin inhibitor (Kazal type) has been solved by means of Patterson search techniques, using a predicted model of the trypsin-ovomucoid complex (Papamokos et al., 1982). The structure of the complex, including 162 solvent molecules, has been refined at 1.8 Å resolution (26,341 unique reflections) to a conventional crystallographic R factor of 0.195. The inhibitor molecule binds to trypsinogen via hydrogen bonds and/or apolar interactions at sites P9, P7, P6, P5, P3, P1, P1′, P2′ and P3′ of the contact area. The structure of the inhibitor itself resembles closely that of the third domain of Japanese quail ovomucoid inhibitor, recently reported by Weber et al. (1981). The trypsinogen part of the complex resembles trypsin, as is the case in the trypsinogen-basic pancreatic trypsin inhibitor complex, but two segments of the activation domain adopt a different conformation. Most notably in the N-terminal region the Ile16-Gly19 loop, which is disordered in free trypsinogen and in the trypsinogen-basic pancreatic trypsin inhibitor complex (Huber & Bode, 1978), assumes a regular structure and the polypeptide chain can be traced as far as residue Asp14. This new and fixed structure allows the formation of a buried salt link between the side-chains of Lys156 and Asp194. Conformations differing from those of trypsin are also found for residues 20 to 28 and residues 141 to 155. Some structural perturbation is observed in other parts of the molecule, including the calcium loop.  相似文献   

20.
Although thrips are known as inhabitants of flowers, they are also abundant and diverse in other microhabitats. There is an information gap concerning them, especially related to the native fauna in southern Brazil. The structure and composition of the thysanopteran community in different microhabitats was studied at the "Parque Estadual de Itapu?" (30 degrees 22' S 51 degrees 02' W), RS, southern Brazil. Between June 1999 and May 2001, branches (n = 1,274), flowers (n = 774), grass tussocks (n = 596) and leaf litter (n = 603) were sampled systematically in 20 points of four trails (T1 - Pedreira beach, T2 - Ara?á beach, T3 - Lagoinha, and T4 - Grota hill). We found 2,197 adult thrips determined in 73 species in 41 genera, of which 37 could be nominated. Four families are represented, Thripidae, Phlaeothripidae, Heterothripidae and Merothripidae, with the first the most abundant (N = 1,599) and with the highest species richness (S = 32). The highest thrips abundance occurred in flowers N = 1,224 and the highest number of exclusive species occurred in the leaf litter (27). Frankliniella rodeos Moulton, 1933, Frankliniella gemina Bagnall, 1919 and Smicrothrips particula Hood, 1952 comprise 49.4% of the total sampled. Regarding T2, we obtained the highest abundance (N = 935) and highest species richness (S = 43). The composition of the faunas in each kind of environment proved very particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号