首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotin-binding antibodies were raised in rabbits by injecting biotin-bovine serum albumin conjugate. Neither the protomer nor the polymer of rat mammary-gland acetyl-CoA carboxylase formed precipitin bands with the anti-biotin. By virtue of its ability to bind biotin (apparent binding constant for free biotin about 1mum), the anti-biotin inhibited the carboxylase activity under certain conditions. This property of the antibody was employed to detect the ligand-induced changes affecting the biotinyl group in different conformational states of mammalian carboxylase. Depending on the ligand present, the biotinyl group in the protomeric form was either accessible or inaccessible to the antibody. The biotinyl group of the protomer generated by a relatively high concentration of NaCl (0.5m) reacted with the antibody, and the antibody-carboxylase complex could not be converted into active enzyme by citrate. Further experiments showed that citrate failed to induce polymerization in this protomer-antibody complex and that anti-biotin could be displaced rapidly from this complex with excess of biotin. The resulting protomer was converted into the polymeric state on citrate addition, with parallel regain of enzyme activity. In the presence of ADP+Mg(2+), ATP+Mg(2+) or ATP+Mg(2+)+HCO(3) (-), however, the enzyme remained as a protomer, but its configuration was such that the biotinyl group was essentially inaccessible to the antibody. Likewise, the biotinyl group of the different polymeric forms of the carboxylase (s approximately 30-45S) engendered by phosphate, malonyl-CoA, acetyl-CoA or citrate remained essentially inaccessible, since their activity was minimally affected by the anti-biotin. In the presence of 0.15m-NaCl, the phosphate-induced polymer reverted to a approximately 19S form with concomitant appearance of anti-biotin-sensitivity, whereas the other polymeric forms remained unaffected under similar experimental conditions.  相似文献   

2.
The effects of citrate and cyclic AMP on the rate and degree of phosphorylation and inactivation of rat liver acetyl-CoA carboxylase were examined. High citrate concentrations (10 to 20 mM), which are generally used to stabilize and activate the enzyme, inhibit phosphorylation and inactivation of carboxylase. At lower concentrations of citrate, the rate and degree of phosphorylation are increased. Furthermore, phosphorylation and enzyme inactivation are affected by cyclic AMP under these conditions. At high citrate concentrations, cyclic AMP has little or no effect on inactivation and phosphorylation of acetyl-CoA carboxylase. Phosphorlation and inactivation of carboxylase is accompanied by depolymerization of the polymeric form of the enzyme into intermediate and protomeric forms. Depolymerization of carboxylase requires the transfer of the gamma-phosphate group from ATP to carboxylase. Inactivation occurs in the absence of CO2, which indicates that phosphorylation of the enzyme is the cause of inactivation and depolymerization, i.e. carboxylation of the enzyme is not responsible for inactivation of the enzyme.  相似文献   

3.
If acetyl-CoA carboxylase in epididymal fat tissue is subject to control by convalent modification as in the case of the liver enzyme, catalytically different forms of carboxylase should exist, independent of polymerization. By treating epididymal fat tissue in culture with epinephrine, we have demonstrated catalytically less active forms of acetyl-CoA carboxylase. The catalytically less active forms of the enzyme reacted to antibody with the same efficiency as the active form of carboxylase. However, the less active enzyme formed by epinephrine treatment of tissues has a sedimentation constant of 30 to 35 S, whereas that of the enzyme from control tissue is 45 S. Incubation of the less active forms of the carboxylase with 10 mM citrate and up to 10 mg/ml of bovine serum albumin activated the enzyme without any change in the sedimentation constant. Therefore, the less active forms of the carboxylase formed as a result of epinephrine treatment are not due to the depolymerization of polymeric forms (45 S) to the protomeric forms (17 to 20 S), but to the formation of intermediate species of carboxylase which cannot form polymeric enzyme (45 S) in the presence of high concentrations of citrate.  相似文献   

4.
Digitonin treatment of chick liver cells in monolayer culture perforates the plasma membrane, causing release of acetyl-CoA carboxylase and other cytosolic enzymes. The rate of carboxylase release is affected by conditions known to alter the position of the protomer-polymer (filament) equilibrium of the enzyme. Citrate, an allosteric activator of the carboxylase, induces polymerization of the protomeric avidin-sensitive form giving rise to the avidin-insensitive polymeric filamentous form. When cells are exposed to N6,O2-dibutyryl cyclic adenosine 3':5'-monophosphate which lowers intracellular citrate levels, the rate of carboxylase release from digitonin-treated cells is greatly accelerated. The presence of avidin, which rapidly enters the cell during digitonin treatment, inactivates carboxylase under conditions that promote depolymerization and rapid release, but not under conditions which promote polymerization and slow release. These findings indicate that carboxylase filaments exist in the intact chick liver cell when the cytoplasmic citrate level is high and undergo depolymerization when citrate levels fall.  相似文献   

5.
Fatty acid-biosynthetic activity in rat liver cytosol fractions is much greater when the bivalent cation in the assay system is Mn(2+) than when it is Mg(2+). This difference between bivalent cations can be abolished if the cytosol fractions are preincubated with isocitrate and the bivalent cation for 30min before assay of fatty acid-biosynthetic activity. In a search for the biochemical basis of this phenomenon, the following differences between Mg(2+) and Mn(2+) were established: (1) Mn(2+) promotes acetyl-CoA carboxylase activity of the protomeric form of the enzyme under conditions in which Mg(2+) does not; (2) Mn(2+)+ATP have little inhibitory effect on the polymerization of acetyl-CoA carboxylase whereas Mg(2+)+ATP are markedly inhibitory; (3) under conditions in which utilization of malonyl-CoA in condensation reactions is prevented, the steady-state concentration of malonyl-CoA formed by a cytosol fraction is much greater with Mn(2+) than with Mg(2+). The role that each of these specific differences between Mn(2+) and Mg(2+) might play in causing liver cytosol preparations to have greater fatty acid-biosynthetic activity in the presence of Mn(2+) is discussed.  相似文献   

6.
In recent years the rapid regulation of acetyl-CoA (AcCoA) carboxylase (EC 6.4.1.2) has become of major interest because of the important role of malonyl-CoA in fatty acid synthesis, ketogenesis, and triglyceride production. AcCoA carboxylase is acutely regulated by two mechanisms: 1) phosphorylation-dephosphorylation and 2) polymer-protomer transition. Until recently polymer-protomer transition of AcCoA carboxylase in vivo has escaped detection. We developed a technique that estimates the intracellular proportion of polymer and protomer forms of AcCoA carboxylase based on the differential sensitivity of polymeric and protomeric AcCoA carboxylase to avidin inactivation. When the enzyme is in its highly aggregated conformation, the biotin prosthetic group of AcCoA carboxylase is protected from avidin binding. Thus the polymeric AcCoA carboxylase is more resistant than the protomeric conformation to avidin inactivation. Utilizing this technique with isolated liver cells we have been able to develop a model for the involvement of free fatty acids and glucagon in regulating polymer-protomer transition of AcCoA carboxylase, and the role of polymer as an intracellular determinant of AcCoA carboxylase activity. Our data suggest that the physiological regulation of AcCoA carboxylase involves the interaction of the phosphorylation mechanism with fatty acid-induced depolymerization. We propose that during periods of food deprivation the elevation in fatty acid-CoA esters promotes depolymerization of AcCoA carboxylase. In addition, glucagon induces phosphorylation of AcCoA carboxylase, which inhibits the enzyme's activity and facilitates acyl-CoA binding and depolymerization. The two separate mechanisms for regulating hepatic AcCoA carboxylase may work in concert to modulate the level of the regulatory metabolite malonyl-CoA.  相似文献   

7.
Data are presented which indicate that the transition of acetyl-CoA carboxylase between the active polymeric and inactive protomeric conformations defined for the purified enzyme also occurs with the enzyme in vivo, depends upon the nutritional state of the animal, and is an important physiological phenomenon in the acute regulation of liver fatty acid synthesis. This conclusion utilized the observation that the protomeric form of purified acetyl-CoA carboxylase is inactivated by the binding of avidin to the biotinyl prosthetic group; the catalytically active filamentous form of the enzyme is resistant to avidin. Acetyl-CoA carboxylase activity was 75% avidin-resistant (polymeric) in the liver of meal-fed rats that had completed the consumption of a high glucose meal. This avidin resistance gradually decreased to 20% during the 21-h interval between meals. Peak resistance to avidin of liver carboxylase was attained within 30 min of initiating meal ingestion. The rise in carboxylase resistance to avidin could not be mimicked by insulin injection alone, but could be greatly attenuated by the addition of fat to the glucose meal. The amount of avidin-resistant acetyl-CoA carboxylase was closely associated with the concentration of hepatic malonyl-CoA and the subsequent rate of fatty acid synthesis.  相似文献   

8.
The protomeric form of purified acetyl coenzyme A carboxylase is inactivated by the binding of avidin to the biotinyl prosthetic group; the catalytically active filamentous form of the enzyme is resistant to avidin. This differential sensitivity to avidin was used to examine the influence of nutritional state on the proportion of polymeric and protomeric carboxylase occurring in avian liver. Hepatic carboxylase was 80% avidin-resistant (polymeric) in the fed chick. Food deprivation for 2 and 6 h reduced the avidin resistance to 54% and 30%, respectively. Similarly, within 1 h after fat intubation, the fraction of polymeric carboxylase had significantly decreased. Accompanying the change in carboxylase transformation was a comparable reduction in 3H2O incorporation into liver fatty acid. These data indicate that the protomer-polymer transition defined for purified acetyl-CoA carboxylase also occurs with the enzyme in vivo and that a lower polymer/protomer ratio is associated with reduced rates of fatty acid synthesis.  相似文献   

9.
Acetyl-CoA carboxylase was purified 300-fold from rat liver, in the absence of added citrate, by precipitation from an 18,000g supernatant in the presence of Triton X-100 at 105,000g and 20 °C, followed by chromatography on phosphocellulose. Acetyl-CoA carboxylase activity in this preparation was activated by preincubation with GTP (0.1–2.0 mm) and with citrate (20 mm). Colchicine (10?6–10?3m) inhibited enzyme activity and counteracted the effects of GTP and citrate. Sucrose density gradient centrifugation demonstrated that GTP and citrate preincubation promoted the formation of the polymeric, active enzyme, while colchicine engendered disassembly. Preincubation of the purified acetyl-CoA carboxylase at 4 °C caused inactivation and disassembly, which was countered by preincubation at 37 °C in the presence of GTP or citrate. These results suggest that GTP, like citrate, activates acetyl-CoA carboxylase by enhancing the conversion of the protomeric form of the enzyme to its more active, polymeric state.  相似文献   

10.
The formation of malonyl-CoA in rat heart is catalyzed by cytosolic acetyl-CoA carboxylase. The existence of this enzyme in heart is difficult to prove by the abundant occurrence of mitochondrial propionyl-CoA carboxylase, which is also able to catalyze the carboxylation of acetyl-CoA. We used the calcium paradox as a tool to separate cytosolic components from the remaining heart, and found that acetyl-CoA carboxylase activity was preferentially released, like lactate dehydrogenase and carnitine, while propionyl-CoA carboxylase was almost fully retained. Acetyl-CoA carboxylase activity was determined after activation by citrate ion and Mg2+. The activity decreased to 64% by 48 h of fasting.  相似文献   

11.
Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA, a key metabolite in the fatty acid synthetic and oxidation pathways. The present study describes the steady-state kinetic analysis of a purified recombinant human form of the enzyme, namely ACC2, using a novel LC/MS/MS assay to directly measure malonyl-CoA formation. Four dimensional matrices, in which bicarbonate (HCO3?), ATP, acetyl-CoA, and citrate were varied, and global data fitting to appropriate steady-state equations were used to generate kinetic constants. Product inhibition studies support the notion that the enzyme proceeds through a hybrid (two-site) random Ter Ter mechanism, one that likely involves a two-step reaction at the biotin carboxylase domain. Citrate, a known activator of animal forms of ACC, activates both by increasing kcat and kcat/KM for ATP and acetyl-CoA.  相似文献   

12.
A factor has been found in rat liver supernatant solution which inhibits acetyl-CoA carboxylase activity regardless of the presence or absence of Mg2+ and ATP. Inactivation of the enzyme has been demonstrated via radiochemical and spectrophotometric assay procedures. The inactivation of acetyl-CoA carboxylase is not attributable to either malonyl-CoA decarboxylase activity, to phosphorylation of the enzyme, or to action on substrates or cofactors of the reaction. The activity of the inhibitor is destroyed by heating to 70-80 degrees C for 5 min or by treatment with trypsin. Dialyzing the inhibitor for 24 h at 4 degrees C does not alter its activity in inhibiting acetyl-CoA carboxylase. Hence, it appears that the inhibitor is a regulatory protein that acts directly on acetyl-CoA carboxylase.  相似文献   

13.
Acetyl-CoA carboxylase is thought to be absent in the heart since the latter is highly catabolic and nonlipogenic. It has been suggested that the high level of malonyl-CoA that is found in the heart is derived from mitochondrial propionyl-CoA carboxylase, which also uses acetyl-CoA. In the present study, acetyl-CoA carboxylase was identified and purified from homogenates of rat heart. The isolated enzyme had little activity in the absence of citrate (specific activity, less than 0.1 units/mg); however, citrate stimulated its activity (specific activity, 1.8 units/mg in the presence of 10 mM citrate). Avidin inhibited greater than 95% of activity, and addition of biotin reversed this inhibition. Further, malonyl-CoA (1 mM) and palmitoyl-CoA (100 microM) inhibited greater than 90% of carboxylase activity. Similar to acetyl-CoA carboxylase of lipogenic tissues, the heart enzyme could be activated greater than 6-fold by preincubation with liver (acetyl-CoA carboxylase)-phosphatase 2. The activation was accompanied by a decrease in the K0.5 for citrate to 0.68 mM. These observations suggest that the activity in preparations from heart is due to authentic acetyl-CoA carboxylase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the preparation from heart showed the presence of one major protein band (Mr 280,000) and a minor band (Mr 265,000) while that from liver gave a major protein band (Mr 265,000). A Western blot probed with avidin-peroxidase suggested that both the 280- and 265-kDa species contained biotin. Antibodies to liver acetyl-CoA carboxylase, which inhibited greater than 95% of liver carboxylase activity, inhibited only 35% of heart enzyme activity. In an immunoblot (using antibodies to liver enzyme) the 265-kDa species, and not the major 280-kDa species, in the heart preparation was specifically stained. These observations suggest the presence of two isoenzymes of acetyl-CoA carboxylase that are immunologically distinct, the 265-kDa species being predominant in the liver and the 280-kDa species being predominant in the heart.  相似文献   

14.
Rat hindlimb muscle tissue was extracted from male Sprague-Dawley rats exsanguinated under light ether anesthesia. Muscle homogenates (50,000 x g supernatant) were incubated with ATP, bicarbonate, acetyl-CoA, and citrate. The quantity of malonyl-CoA synthesized was determined by malonyl-CoA incorporation into long acyl chains using tritiated acetyl-CoA and fatty acid synthetase. Malonyl-CoA synthesis was found to be dependent on the presence of ATP, bicarbonate, citrate, and acetyl-CoA in the incubation medium. Incubation with avidin showed near complete inhibition of carboxylation that was restored with the addition of biotin. These results represent strong evidence of a biotin containing acetyl-CoA carboxylase in skeletal muscle.  相似文献   

15.
Glyoxylate is a slowly reversible inhibitor of the CO2/Mg2+-activated form of ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach leaves. Inactivation occurred with an apparent dissociation constant of 3.3 mM and a maximum pseudo-first-order rate constant of 7 X 10(-3) s-1. The rate constant for reactivation was 1.2 X 10(-2) s-1. Glyoxylate did not cause differential inhibition of ribulosebisphosphate carboxylase or oxygenase activities. 6-Phosphogluconate protected the enzyme from inactivation by glyoxylate. Glyoxylate was incorporated irreversibly into the large subunit of ribulosebisphosphate carboxylase after reduction with sodium borohydride. Activated enzyme incorporated 1.3 mol of glyoxylate per mole protomer, while enzyme treated with carboxyarabinitol 1,5-bisphosphate (CABP) to protect the active sites incorporated only 0.3 mol glyoxylate per mole protomer. The data suggest that glyoxylate forms a Schiff base with a lysyl residue in the region of the catalytic site. Glyoxylate stimulated the activity of the unactivated enzyme by about twofold. Pseudo-first-order inactivation also occurred with the unactivated enzyme after the initial stimulation by glyoxylate, although at a much slower rate than with the activated enzyme. Glyoxylate treatment of partially activated enzyme did not stimulate formation of the quaternary complex of enzyme X CO2 X Mg2+ X CABP.  相似文献   

16.
One consequence of the dramatic rise of antibiotic-resistant pathogenic bacteria is the need for new targets for antibiotics. Because membrane lipid biogenesis is essential for bacterial growth, enzymes of the fatty acid biosynthetic pathway offer attractive possibilities for the development of new antibiotics. Acetyl-coenzyme A carboxylase (ACC) catalyzes the first committed and regulated step in fatty acid biosynthesis in bacteria and thus is a prime target for development of antibiotics. ACC is a multifunctional enzyme composed of three separate proteins. The biotin carboxylase component catalyzes the ATP-dependent carboxylation of biotin. The biotin carboxyl carrier protein features a biotin molecule covalently attached at Lys122 of the Escherichia coli enzyme. The carboxyltransferase subunit catalyzes the transfer of a carboxyl group from biotin to acetyl-coenzyme A (acetyl-CoA) to form malonyl-CoA. The objective of this study was to develop an assay for high-throughput screening for inhibitors of the carboxyltransferase subunit. The carboxyltransferase reaction was assayed in the reverse direction in which malonyl-CoA reacts with biocytin (an analog of the biotin carboxyl carrier protein) to form acetyl-CoA and carboxybiotin. The production of acetyl-CoA was coupled to citrate synthase, which produced citrate and coenzyme A. The amount of coenzyme A formed was detected using 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent). The assay has been developed for use in both 96- and 384-well microplate formats and was validated using a known bisubstrate analog inhibitor of carboxyltransferase. The spectrophotometric readout in the visible absorbance range used in this assay does not generate the number of false negatives associated with frequently used NAD/NADH assay systems that rely on detection of NADH using UV absorbance.  相似文献   

17.
Chick liver cell monolayers synthesize fatty acids at in vivo rates and are responsive to insulin and glucagon. High rates of fatty acid synthesis are maintained with insulin present and lost slowly without insulin. Glucagon or 3',5'-cyclic AMP cause immediate cessation of fatty acid synthesis. The site of inhibition appears to be cytoplasmic acetyl-CoA carboxylase which catalyzes the first committed step of fatty acid synthesis. Liver carboxylase exists either as catalytically inactive protomers or active filamentous polymers. Citrate, an allosteric activator of the enzyme, is required for both catalysis and polymerization. Glucagon and cAMP cause an immediate decrease in the cytoplasmic citrate concentration of chick liver cells apparently by inhibiting the conversion of glucose to citrate at the phosphofructokinase reaction. Since fatty acid synthesis and citrate level are closely correlated, citrate appears to be a feed-forward activator of the carboxylase in vivo. Compelling evidence indicates that carboxylase filaments are present in the intact cell when citrate levels are high and depolymerize when citrate levels fall. Hence, carboxylase activity and fatty acid synthetic rate appear to be determined by cytoplasmic citrate level.  相似文献   

18.
Superose 6 chromatography was used to separate rapidly the polymeric and dimeric forms of acetyl-CoA carboxylase. With preparations of acetyl-CoA carboxylase purified by Sepharose-avidin chromatography, it is shown that citrate promotes polymerization and that the extent of polymerization is diminished, but not eliminated, after phosphorylation by cyclic-AMP-dependent protein kinase. After exposure of rat epididymal adipose tissue to insulin, evidence was obtained for a marked increase in polymerization. The polymeric form, which was active in the absence of citrate, exhibited increased phosphorylation, particularly on a tryptic peptide designated the I-peptide in an earlier study [Brownsey & Denton (1982) Biochem. J. 202, 77-86]. In contrast, in tissue exposed to the beta-agonist isoprenaline, most of the phosphorylated acetyl-CoA carboxylase appeared to be in the dimeric form if chromatography was carried out in the absence of citrate, whereas in the presence of citrate the degree of polymerization was diminished.  相似文献   

19.
The activities of glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthetase and acetyl-CoA carboxylase (extracted with or without phosphatase inhibitor) in rat liver did not vary significantly during 24 h. The hepatic levels of glucose 6-phosphate and malate increased coordinately 3-6 h after the beginning (1900 h) of food intake and were high until morning, whereas the levels of acetyl-CoA and citrate peaked at 1900 h and then decreased. However, it is remarkable that the in vivo incorporation of 3H from tritiated water into fatty acids in liver increased with the level of malonyl-CoA after food intake. Comparing the substrate and effector levels with the Km and Ka values for the enzymes, the levels of acetyl-CoA, malonyl-CoA and citrate appear to limit the enzyme activities. It is suggested that, after food intake, the physiological activity of acetyl-CoA carboxylase was increased with the substrate increase and/or with the catalytic activation with citrate, and consequently, the fatty acid synthetase activity was also increased, whereas the enzyme activities measured under optimum conditions were not.  相似文献   

20.
1. Acetyl-CoA carboxylase activity was measured in extracts of rat epididymal fat-pads either on preparation of the extracts (initial activity) or after incubation of the extracts with citrate (total activity). In the presence of glucose or fructose, brief exposure of pads to insulin increased the initial activity of acetyl-CoA carboxylase; no increase occurred in the absence of substrate. Adrenaline in the presence of glucose and insulin decreased the initial activity. None of these treatments led to a substantial change in the total activity of acetyl-CoA carboxylase. A large decrease in the initial activity of acetyl-CoA carboxylase also occurred with fat-pads obtained from rats that had been starved for 36h although the total activity was little changed by this treatment. 2. Conditions of high-speed centrifugation were found which appear to permit the separation of the polymeric and protomeric forms of the enzyme in fat-pad extracts. After the exposure of the fat-pads to insulin (in the presence of glucose), the proportion of the enzyme in the polymeric form was increased, whereas exposure to adrenaline (in the presence of glucose and insulin) led to a decrease in enzyme activity. 3. These changes are consistent with a role of citrate (as activator) or fatty acyl-CoA thioesters (as inhibitors) in the regulation of the enzyme by insulin and adrenaline; no evidence that the effects of these hormones involve phosphorylation or dephosphorylation of the enzyme could be found. 4. Changes in the whole tissue concentration of citrate and fatty acyl-CoA thioesters were compared with changes in the initial activity of acetyl-CoA carboxylase under a variety of conditions of incubation. No correlation between the citrate concentration and the initial enzyme activity was evident under any condition studied. Except in fat-pads which were exposed to insulin there was little inverse correlation between the concentration in the tissue of fatty acyl-CoA thioesters and the initial activity of acetyl-CoA carboxylase. 5. It is suggested that changes in the concentration of free fatty acyl-CoA thioesters (which may not be reflected in whole tissue concentrations of these metabolites) may be important in the regulation of the activity of acetyl-CoA carboxylase. The possibility is discussed that the concentration of free fatty acyl-CoA thioesters may be controlled by binding to a specific protein with properties similar to albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号