首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various growth factors and cytokines have been implicated in different forms of kidney enlargement. Vascular endothelial growth factor (VEGF) is essential for normal renal development and plays a role in diabetic glomerular enlargement. To explore a possible role for VEGF in compensatory renal changes after uninephrectomy, we examined the effect of a neutralizing VEGF-antibody (VEGF-Ab) on glomerular volume and kidney weight in mice treated for 7 days. Serum and kidney insulin-like growth factor I (IGF-I) levels were measured, since IGF-I has been implicated in the pathogenesis of compensatory renal growth, and VEGF has been suggested to be a downstream mediator of IGF-I. Placebo-treated uninephrectomized mice displayed an early transient increase in kidney IGF-I concentration and an increase in glomerular volume and kidney weight. In VEGF-Ab-treated uninephrectomized animals, increased glomerular volume was abolished, whereas renal hypertrophy was partially blocked. Furthermore, the renal effects of VEGF-Ab administration were seen without affecting the renal IGF-I levels. In conclusion, these results demonstrate that compensatory glomerular growth after uninephrectomy is VEGF dependent.  相似文献   

2.
Members of the monkey speciesMacaca nigra spontaneously develop impairments in insulin secretion and glucose clearance, and eventually become overtly diabetic. Changes in certain metabolic signals such as clearance of glucose and insulin increment secreted in an intravenous glucose tolerance test have allowed the identification of four stages in the progression from non-diabetes to diabetes in monkeys — non-diabetic, hormonally impaired, borderline diabetic, and diabetic. Recently, another metabolic stage, hyperinsulinemic, was also identified in these animals. In recent years, other factors besides those listed above have been implicated to be correlated with the metabolic progression from a nondiabetic to a diabetic state. One of these factors, is insulin like growth factor I (IGF-I). In diabetic humans who are in poor metabolic control, and in rats with streptozotocin induced ketotic diabetes, serum levels of IGF-I are lowered by as much as 40–50% of control non-diabetics. If indeed decreased IGF-I levels are correlated with the onset of diabetes then changes in IGF-I concentrations prior to the clinically diagnosed disease state would be expected. Using serum samples collected from different animals in a colony ofMacaca nigra in a variety of metabolic states, we have found that IGF-I and insulin levels decrease in each defined metabolic state as the animals progress from nondiabetic to diabetic. Since IGF-I and insulin levels decrease in a similar fashion in the progression of this disease then this maybe indicative of the coordinate expression of these two factors.  相似文献   

3.
The growth hormone (GH)-insulin-like growth factor (IGF) axis and insulin are major anabolic effectors in promoting weight gain and linear growth. These two anabolic systems are interlinked at many levels, thus abnormalities in one of these systems effect the other causing disordered metabolic homeostasis. Insufficient portal insulinization in insulin dependent diabetes mellitus (IDDM) results in hepatic GH resistance and increased production of IGF-binding proteins-1 (IGFBP-1) and IGFBP-2. GH resistance is reflected by decreased hepatic IGF-I production. In addition, changes in other GH-dependent proteins are also observed in IDDM. Increased proteolysis of IGFBP-3 results in reduction of intact IGFBP-3. Serum ALS levels are also slightly diminished in untreated diabetic patients. Hepatic resistance to GH is, at least in part, caused by diminished GH receptors as reflected by diminished circulating GHBP levels. In addition, there is also evidence from experimental and human studies suggesting post-receptor defect(s) in GH action. As a result of these changes, circulating total and free IGF-I levels are decreased during insulinopenia. Lack of negative feed-back effect of IGF-I on GH secretion causes GH hypersecretion which increases hyperglycemia by decreasing sensitivity to insulin. GH hypersecretion in poorly controlled diabetic patients may play a role in the pathogenesis of diabetic vascular complications. Most of these abnormalities in the GH-IGF axis in diabetes are reversed by effective insulinization of the patient. Addition of IGF-I treatment to insulin in adolescents with IDDM allows correction of GH hypersecretion, improves insulin sensitivity and glycemic control, and decreases insulin requirements. The effect of IGF-I treatment on diabetic complications has yet to be seen.  相似文献   

4.
Insulin-like growth factor I (IGF-I) accumulates in the kidney following the onset of diabetes, initiating diabetic renal hypertrophy. Increased renal IGF-I protein content, which is not reflected in messenger RNA (mRNA) levels, suggests that renal IGF-I accumulation is due to sequestration of circulating IGF-I rather than to local synthesis. It has been suggested that IGF-I is trapped in the kidney by IGF binding protein 1 (IGFBP-1). We administered purified human IGFBP-1 (hIGFBP-1) to nondiabetic and diabetic mice as three daily sc injections for 14 days, starting 6 days after induction of streptozotocin diabetes when the animals were overtly diabetic. Markers of early diabetic renal changes (i.e., increased kidney weight, glomerular volume, and albuminuria) coincided with accumulation of renal cortical IGF-I despite decreased mRNA levels in 20-day diabetic mice. Human IGFBP-1 administration had no effect on increased kidney weight or albuminuria in early diabetes, although it abolished renal cortical IGF-I accumulation and glomerular hypertrophy in diabetic mice. Increased IGF-I levels in kidneys of normal mice receiving hIGFBP-1 were not reflected on kidney parameters. IGFBP-1 administration in diabetic mice had only minor effects on diabetic renal changes. Accordingly, these results did not support the hypothesis that IGFBP-1 plays a major role in early renal changes in diabetes.  相似文献   

5.
A new skeletal muscle cell line, rat myoblast omega or RMo, has been characterized with regard to the effects of three growth factors: basic fibroblast growth factor (bFGF), insulin-like growth factor I (IGF-I), and transforming growth factor beta (TGF-beta). Results indicate a differential response of these factors on both cell proliferation and differentiation. Exposure to bFGF and IGF-I stimulate proliferation, while TGF-beta has no effect on cell number. RMo cell differentiation, as indicated by skeletal myosin synthesis, is enhanced by IGF-I, whereas both bFGF and TGF-beta suppress differentiation. These responses are in agreement with the effects of bFGF, IGF-I, and TGF-beta on myogenic cells cultured from fetal and postnatal muscle, thereby suggesting that RMo cells can serve as a model system for the study of growth factor effects on skeletal muscle cells.  相似文献   

6.
M Boes  B L Dake  R S Bar 《Life sciences》1991,48(8):811-821
Endothelial cells in culture synthesize the growth factors transforming growth factor beta (TGF-beta), basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF) and, perhaps, insulin like growth factor I (IGF-I). We have previously demonstrated that IGF-I and PDGF have both high affinity receptors and stimulate glucose and AIB uptake in the microvessel cells under study and that IGF-I, but not PDGF, has similar high affinity receptors in cultured large vessel endothelial cells. In the present study, cultured bovine endothelial cells were exposed to these four growth factors to determine a) their effects on the acute metabolic processes of neutral amino acid (AIB) and glucose uptake and b) their interactions at the endothelial cell surface. In microvessel endothelial cells, each growth factor stimulated AIB and glucose uptake 2-4 fold whereas in large vessel endothelial cells only bFGF stimulated glucose uptake. Each growth factor had specific high affinity binding to the microvessel cells that was not influenced by the presence of the other growth factors. In large vessel endothelial cells, similar high affinity binding was present only for IGF-I and to a lesser degree TGF-beta. When cells were exposed to a given growth factor for 18 hours, homologous receptor downregulation was observed, with a maximal 60-95% decrease in surface binding. These findings suggest several potential levels of interaction of the growth factors TGF-beta, bFGF, PDGF and IGF-I in cultured vascular endothelial cells.  相似文献   

7.
8.
In this paper the effects of growth factors on the differentiated function of pig Leydig cells and other steroidogenic cells are reviewed. Two types of action have been observed, i.e. positive or negative acute effects on testosterone secretion, and long-term trophic effects of hCG receptor and responsiveness to hCG. Among the growth factors, insulin-like growth factor I (IGF-I) and transforming growth factor beta (TGF beta-1) are of particular interest. IGF-I is required for the maintenance and probably the expression of differentiated functions of several steroidogenic cells, including the Leydig cells. TGF beta-1 has effects opposite to IGF-I on Leydig cell functions. When considering effects of growth factors on Leydig cells, caution should be taken in extrapolating results obtained in one species to another.  相似文献   

9.
During the past decade, the immune and endocrine systems have been discovered to interact in controlling physiologic processes as diverse as cell growth and differentiation, metabolism, and even human and animal behavior. The interaction between these two major physiological systems is a bi-directional process. While it has been well documented that hormones, including prolactin (PRL), growth hormone (GH), insulin-like growth factor-I (IGF-I), and thyroid-stimulating hormone (TSH), regulate a variety of immune events, a great deal of data have accumulated supporting the notion that cytokines from the innate immune system also affect the neuroendocrine system. Communication between these two systems coordinates processes that are necessary to maintain homeostasis. Proinflammatory cytokines often act as negative regulatory signals that temper the action of hormones and growth factors. This system of 'checks and balances' is an active, ongoing process, even in healthy individuals. Dysregulation of this process has been implicated as a potential pathogenic factor in the development of co-morbid conditions associated with several chronic inflammatory diseases, including type 2 diabetes, cardiovascular disease, cerebrovascular disease, inflammatory bowel disease, rheumatoid arthritis, major depression, and even normal aging. Over the past decade, research in our laboratory has focused on the ability of the major proinflammatory cytokines, tumor necrosis factor (TNF)alpha and interleukin (IL)-1beta, to induce a state of IGF resistance. This review will highlight these and other new findings by explaining how proinflammatory cytokines induce resistance to the major growth factor, insulin-like growth factor-I (IGF-I). We also highlight that IGF-I can induce resistance or reduce sensitivity to brain TNFalpha and discuss how TNFalpha, IL-1beta, and IGF-I interact to regulate several aspects of behavior and cognition.  相似文献   

10.
MCF-7 human breast cancer cells have been studied for hormonal regulation of secretion of an insulin growth factor-I (IGF-I)-related growth factor. 17 beta-Estradiol, which is required for tumorigenesis of the cell line in the nude mouse and which stimulates proliferation in vitro, was able to significantly induce IGF-I secretion at 10(-13) M, with maximal induction at 10(-11) M. Under optimal conditions IGF-I could be induced 4-fold after 4 days. Demonstration of estrogenic stimulations required removal of phenol red, a weak estrogen, from the cell culture medium. In addition to estrogen, insulin, epidermal growth factor, and transforming growth factor alpha induce both cellular proliferation and IGF-I secretion, while growth inhibitory antiestrogens, transforming growth factor beta, and glucocorticoids have the opposite effect. In each case, modulations in IGF-I secretion preceeded effects on cellular proliferation. IGF-I was not regulated by human GH, basic fibroblast growth factor, platelet-derived growth factor, or PRL, none of which affected proliferation rate. Thus, regulation of IGF-I secretion in human breast cancer is controlled by different hormones from those previously reported in human fibroblasts. Regulation of IGF-I by neither estrogen nor antiestrogen was associated with changes in steady-state mRNA levels; thus regulation may occur at a step beyond mRNA. We conclude that IGF-I production is tightly coupled to growth regulation by estrogens, antiestrogens, and other hormones and may contribute to autocrine and/or paracrine growth regulation by these agents in breast cancer.  相似文献   

11.
12.
Microvascular abnormalities are one of the most important causes of persistent diabetic complications. The aim of this study was to compare microvascular changes examined by nailfold capillaroscopy with serum concentrations of soluble E-selectin (sE-selectin) and IL-18 in type 1 diabetic patients with and without microangiopathy. Serum levels of sE-selectin and IL-18 were determined by an enzyme-linked immunosorbent assay in 106 patients with type 1 diabetes and in 40 healthy controls. All diabetic patients were evaluated by extensive clinical, laboratory and capillaroscopic studies. Morphological changes were observed by nailfold capillaroscopy in 86 out of 106 (81%) diabetic patients. Severe capillaroscopic changes were seen in 32 out of 54 (59%) patients with microangiopathy, but in only seven out of 52 (13%) patients without microangiopathy. Higher serum levels of sE-selectin (p < 0.001) and IL-18 (p < 0.05) were demonstrated in diabetic patients compared to controls. Significant differences of sE-selectin (p , 0.001) and IL-18 (p < 0.01) serum concentrations were observed between diabetic patients with microangiopathy and controls. Moreover, comparison between patients with and without microangiopathic complications showed a significantly higher capillaroscopic score and sE-selectin serum concentration in the group with microangiopathy (p < 0.001). Furthermore, diabetic patients with severe microvascular changes in capillaroscopy showed significantly higher IL-18 (p < 0.001) and sE-selectin (p < 0.05) serum levels than subgroups without changes or with mild abnormalities. Our findings suggest that abnormalities in nailfold capillaroscopy may reflect the extent of microvascular involvement and are associated with higher sE-selectin and IL-18 serum levels, as well as with microangiopathic complications in diabetic patients.  相似文献   

13.
Abstract. Recent developments in the molecular biology of the insulin-like growth factor I (IGF-I) receptor have clarified its role in cellular growth and transformation. Although cells homozygous for a targeted disruption of the IGF-I receptor genes can grow in serum-supplemented medium, the IGF-I receptor is required for optimal growth, and is required equally in all phases of the cell cycle. The receptor plays an even more stringent role in cellular transformation and tumorigenicity, which seem to be dependent on its normal expression in several cell types. The expression of both the IGF-I receptor and its ligands is regulated by other growth factors (especially PDGF and EGF), by oncogenes (like SV40 T antigen and c-myb) and by tumour suppressor genes (like WT1 and RB). The picture emerging from these studies is that several transforming agents may exert their growth promoting effects through the direct or indirect activation of the IGF autocrine loop.  相似文献   

14.
Vascular endothelial growth factor (VEGF) and insulin-like growth factor-I (IGF-I) both play a pivotal role in diabetic microangiopathy. This study assessed the relationship between capillary permeability as a marker of endothelial dysfunction and serum VEGF and IGF-I levels in normotensive diabetics. Subjects were 10 Type 1 (6/4, male/female, age: 30 [mean] +/- 5 [SD] years, HbA1c: 7.5 +/- 1.1 %), 13 Type 2 diabetics (9/4, m/f; 63 +/- 7 years, 8.3 +/- 1.8 %), and 24 age- and sex-matched control subjects. We determined nailfold capillary permeability by intravital fluorescence videomicroscopy after intravenous injection of sodium-fluorescein. Serum VEGF, free and total IGF-I, IGF binding protein (IGFBP)-1, IGFBP-3, and insulin levels were measured by specific immunoassays. Capillary permeability was increased in both types of diabetes patients compared to age- and sex-matched controls. In Type 1 diabetics, fluorescence light intensities increased over time, reaching significance 30 minutes after dye injection. Type 2 diabetics already revealed an early onset of elevated fluorescence light intensities after one minute. Capillary permeability showed a significant positive correlation with VEGF levels in Type 1 diabetics, (r = 0.76, p < 0.05; 20 min after dye injection) but with free IGF-I levels in type 2 diabetics (r = 0.65, p < 0.05; 5 min after dye injection). IGFBP-3 correlated negatively with capillary permeability in both diabetes types, whereas IGFBP-1 levels correlated positively in Type 2 patients. In conclusion, capillary permeability is increased in both types of diabetes mellitus. However, VEGF and IGF-I may differentially affect microvascular permeability depending on the diabetes type.  相似文献   

15.
16.
Patients with diabetes mellitus experience impaired wound healing, often resulting in chronic foot ulcers. Healing can be accelerated by application of growth factors like platelet-derived growth factor (PDGF). We investigated the mitogenic responses, measured by 3[H]thymidine incorporation, of fibroblasts cultured from diabetic ulcers, non-diabetic ulcers, and non-lesional diabetic and age-matched controls, to recombinant human PDGF-AB, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and insulin-like growth factor (IGF-I). We determined the optimal concentration of these factors and investigated which single factor, or combination of factors, added simultaneously or sequentially, induced the highest mitogenic response. For single growth factor additions, in all fibroblast populations significant differences in mitogenic response to different growth factors were observed, with PDGF-AB consistently inducing the highest response and IGF-I the lowest (p < 0.043). IGF-I produced only a 1.7-fold stimulation over control in diabetic ulcer fibroblasts, versus 2.95-fold for chronic ulcer, 3.2-fold for non-lesional (p = 0.007) and 5-fold for age-matched fibroblasts (p = 0.007). The highest mitogenic response induced by EGF was significantly less for chronic ulcer fibroblasts compared with age-matched and nonlesional controls (p < 0.03), chronic ulcer fibroblasts also needed significantly more EGF to reach this optimal stimulus (p < 0.02 versus age-matched and non-lesional controls). The simultaneous addition of FGF-IGF-I, PDGF-IGF-I and FGF-PDGF to diabetic ulcer fibroblasts always produced a higher stimulatory response than sequential additions (p < or = 0.05). Also the addition of bFGF, PDGF-AB and EGF prior to IGF-I induced a higher 3[H]thymidine uptake in all fibroblasts compared to the combination of each in reverse order. Significant differences were observed when comparing the combinations of growth factors with the highest stimulatory responses (PDGF-IGF-I, FGF-PDGF and EGF-PDGF added simultaneously) to a double dose of PDGF, with the highest mean rank for the combination PDGF-IGF-I (p = 0.018). In conclusion, combinations such as PDGF-AB and IGF-I may be more useful than PDGF-AB alone for application in chronic diabetic wounds.  相似文献   

17.
18.
The system of IGF-I and its binding proteins may be involved in the pathogenesis of vascular damage in Type 1 diabetes. The aim of this study was to analyze the relationship between this system and the microvascular reactivity in Type 1 diabetes as measured by laser-Doppler flowmetry. Twenty-two Type 1 diabetic patients (13 women and 9 men) with microangiopathy and fifteen healthy subjects (8 women and 7 men) were examined clinically, underwent laser-Doppler flowmetry and intima-media thickness measurements. Fasting serum levels of IGF-I, free IGF-I, IGFBPs and lipids were examined. The microvascular reactivity was impaired in Type 1 diabetic patients. Maximal perfusion during post-occlusive reactive hyperemia (PORHmax) and during thermal hyperemia (THmax) was significantly decreased in Type 1 diabetes (p<0.01). Percentage perfusion increase in both tests (PORH and TH) was lower in Type 1 diabetes mellitus (p<0.01) and the reaction after heating was slower in diabetic patients (THmax) (p<0.01). We did not find any significant dependence of microvascular reactivity on the parameters of IGF-I or its binding proteins. We conclude that the microvascular reactivity is impaired in Type 1 diabetes mellitus, but this impairment is not clearly dependent on the activity of the IGF-I system. It is probably only a complementary pathogenic factor.  相似文献   

19.
Cell cycle aberrations occurring at the G(1)/S checkpoint often lead to uncontrolled cell proliferation and tumor growth. We recently demonstrated that IL-1beta inhibits insulin-like growth factor (IGF)-I-induced cell proliferation by preventing cells from entering the S phase of the cell cycle, leading to G(0)/G(1) arrest. Notably, IL-1beta suppresses the ability of the IGF-I receptor tyrosine kinase to phosphorylate its major docking protein, insulin receptor substrate-1, in MCF-7 breast carcinoma cells. In this study, we extend this juxtamembrane cross-talk between cytokine and growth factor receptors to downstream cell cycle machinery. IL-1beta reduces the ability of IGF-I to activate Cdk2 and to induce E2F-1, cyclin A, and cyclin A-dependent phosphorylation of a retinoblastoma tumor suppressor substrate. Long-term activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, but not the mammalian target of rapamycin or mitogen-activated protein kinase pathways, is required for IGF-I to hyperphosphorylate retinoblastoma and to cause accumulation of E2F-1 and cyclin A. In the absence of IGF-I to induce Akt activation and cell cycle progression, IL-1beta has no effect. IL-1beta induces p21(Cip1/Waf1), which may contribute to its inhibition of IGF-I-activated Cdk2. Collectively, these data establish a novel mechanism by which prolonged Akt phosphorylation serves as a convergent target for both IGF-I and IL-1beta; stimulation by growth factors such as IGF-I promotes G(1)-S phase progression, whereas IL-1beta antagonizes IGF-I-induced Akt phosphorylation to induce cytostasis. In this manner, Akt serves as a critical bridge that links proximal receptor signaling events to more distal cell cycle machinery.  相似文献   

20.
Insulin-like growth factor I (IGF-I) stimulates an increase in alpha(V)beta(3) ligand binding. Stimulation of smooth muscle cells by IGF-I requires alpha(V)beta(3) ligand occupancy, and enhanced alpha(V)beta(3) ligand occupancy augments IGF-I actions. Therefore, IGF-I-induced changes in alpha(V)beta(3) ligand binding may act to further enhance IGF-I actions. Integrin-associated protein (IAP) has been shown to be associated with alpha(V)beta(3) and is required for the binding of alpha(V)beta(3) to vitronectin-coated beads. We therefore investigated whether IGF-I could stimulate IAP-alpha(V)beta(3) association resulting in enhanced ligand binding. IGF-I stimulated an increase in IAP-alpha(V)beta(3) association. This was due, at least in part, to an IGF-I-stimulated redistribution of IAP from the Triton-insoluble fraction of the cell to the Triton-soluble fraction of the cell, where most of the alpha(V)beta(3) was located. Inhibition of the phosphatidylinositol 3-kinase pathway blocked both the redistribution of IAP and the increase in IAP-alpha(V)beta(3) association, providing further evidence that the redistribution of IAP is essential for the increase in association. An anti-IAP monoclonal antibody, blocked both the IGF-I-stimulated increase in IAP-alpha(V)beta(3) complex formation and cell migration. IGF-I-stimulated translocation of IAP and increase in IAP-alpha(V)beta(3) association represent an important process by which IGF-I modulates alpha(V)beta(3) ligand binding and cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号