首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arbuscular mycorrhizal (AM) fungi are vital soil microbes that connect many individual plants into a large functional organism via a vast mycelial network under the ground. In this study, the changes of soil AM fungal community in response to road-building disturbance caused by tourism development in Huangshan (Yellow Mountain) Scenic Area are assessed. Road building have brought negative effects on AM fungal community, inducing lower diversity parameters, including species number, spore density and diversity indices. However, the dominant genus and species of AM fungi which play key roles in the AM fungal community composition are quite similar before and after road building. Moreover, there are no significant differences in species richness of AM fungi associated with plants, suggesting the tolerance of AM fungal community to the disturbance of road building.  相似文献   

2.
Shrub abundance is expected to increase with enhanced temperature and nutrient availability in the Arctic, and associated changes in abundance of ectomycorrhizal (EM) fungi could be a key link between plant responses and longer-term changes in soil organic matter storage. This study quantifies the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production. We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site. This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has potential consequences for below-ground litter quality and quantity, and for accumulation of organic matter in arctic soils.  相似文献   

3.
Development of a sample preparation method for fungal proteomics   总被引:2,自引:0,他引:2  
Since filamentous fungi including basidiomycetous fungi possess an exceptionally robust cell wall as in microorganisms, effective extraction of intracellular proteins is a key step for fungal proteomic studies. To overcome the experimental obstacle caused by cell walls, we utilized fungal protoplasts, prepared from the brown-rot basidiomycete, Tyromyces palustris. The amount and quality of proteins extracted from the protoplast cells were much higher than that from the mycelial cells. Quantitative comparisons of proteome maps prepared from mycelial and protoplast cells indicated protein spots with a wider range of molecular weights and pIs in the protoplast sample. Furthermore, no streaking or tailing was observed in the protoplasts, suggesting that effective extraction of intracellular proteins from protoplasts might help suppress degradation of proteins during this process. In addition to the efficiency of protein extraction, simple and efficient subcellular fractionation was also achieved using protoplast cells.  相似文献   

4.
Abstract Interspecific mycelial interactions among brown-rot fungi resulted in either deadlock or replacement of one fungus by the other. Similarly, most of the brown-rot fungi deadlocked with some or all of the whitre-rot fungi tested, while a few were able to replace some of the white-rot fungi. The results indicate similarities in interspecific mycelial interactions among brown-rot fungi and between brown-rot and white-rot fungi. The results further suggest that some brown-rot fungi are capable of invading and occupying domains within white-rot fungal communities in decaying wood.  相似文献   

5.
Rhizoctonia solani is one of the most important limiting factors for potato production and storage in Belgium and worldwide. Its management is still strongly dependent on chemical treatments. The aim of this work was to evaluate the possibility of exploiting bacteria and fungi in order to control this pathogen. Among a collection of 220 bacterial strains isolated from different organs of healthy potato plants and rhizospheric soils, 25 isolates were selected using screening methods based on in vitro dual culture assays. The mycelial growth inhibition rate of the pathogen was ranged from 59.4 to 95.0%. Also seven fungal strains isolated from the rhizospheric soil and potato roots showed a highly mycelial growth inhibition of R. solani. The mycelial growth inhibition rate obtained with these fungi was included between 60.0 and 99.4%. From this preliminary study, the further investigations will be planned to determine the bacterial isolates systematic, species of fungal strains by using molecular tools and to assess their efficacy against R. solani in greenhouse trials.  相似文献   

6.
One of the practical problems in scaling-up the production of fungal inocula for environmental applications is how to provide essential humidity for fungal growth. Pelleted solid substrate was used as a fungal biomass carrier. It was coated with alginate or agar hydrogels that contained mycelial fragments of the white-rot fungi Trametes versicolor or Irpex lacteus. To follow fungal growth and formation of mycelial coat over pelleted substrate, the fluorescein-diacetate hydrolysing activity (FDA) assay and visual inspection were used. Both fungi were able to overgrow the pelleted substrate in 5–6 days, at a relative humidity (RH) of 86.3% or higher. The enrichment of alginate hydrogel with nutrients or coating of pelleted substrate with more hydrophilic agar hydrogel enabled I. lacteus to overgrow the pellets at a lower RH of 83.6%. Fungal inocula produced at lower RH possessed lower final moisture contents and had greater mechanical strength. Conditioning of T. versicolor mycelial fragments, by a 3-h incubation in fresh growth medium, enhanced fungal growth over the pelleted substrate. A mathematical model was used to simulate and to explain moisture distribution in a hydrogel-coated pellet and the formation of mycelial coat, for various conditions of fungal inocula production.  相似文献   

7.
The inhibitory activity of five plant extracts viz. Artemisia absinthium L., Rumex obtusifolius L., Taraxacum officinale Weber ex Wiggers, Plantago lanceolata L. and Malva sylvestris L. were evaluated against the mycelial growth of three fungi Alternaria alternata (Fr.) Keissler, Penicillium expansum Link ex Thom. and Mucor piriformis Fisher that cause rot diseases in fruits and vegetables resulting in low yield and quality of fruits and vegetables. Results revealed that all the concentrations of plant extracts brought about significant inhibition in the mycelial growth of these pathogenic fungi. However, the highest concentration caused maximum inhibition in the mycelial growth followed by lower concentrations of plant extracts. The extract of A. absinthium leaves at highest concentration (S) proved highly effective in inhibiting the mycelial growth of all these pathogenic fungi followed by other plant extracts. These plants thus may have potential as the new natural fungicide for management of fungal rot diseases.  相似文献   

8.
曾召英  许忠顺  牟丹  许绍欢  杜飞  周家喜  邹晓 《菌物学报》2019,38(10):1710-1723
通过分析蝉棒束孢Isaria cicadae内菌核、菌膜及其生境土壤的真菌群落结构与核心真菌组的生态功能,初步探索蝉棒束孢自然生长过程中内环境真菌与其周围环境中真菌的关系。本研究利用高通量测序技术检测6株采自贵阳大将山和贵阳森林公园的蝉棒束孢及土壤样本,结果表明,蝉棒束孢内菌核共检测到43个真菌属,菌膜检测到58个真菌属,菌际土检测到260个真菌属,且内菌核和菌膜真菌群落结构相似。而两地生境土的真菌群落结构有差异,大将山以棒束孢属Isaria、被孢霉属Mortierella和一分类地位未知属占优势,而贵阳森林公园以被孢霉属、隐球酵母属Cryptococcus、红菇属Russula、棒束孢属占优势,且两地菌际土中棒束孢属的丰度均显著高于其他土样。核心真菌组检测分析显示,内菌核的核心真菌组有10个OTUs,菌膜的核心真菌组有5个OTUs,菌际土的核心真菌组有20个OTUs,3种样本的核心真菌组的生态功能群均检测到有与植物相关的功能群,内菌核中检测到外生菌根真菌群,菌膜中检测到植物病原真菌群,菌际土中检测到丛枝菌根真菌群和植物病原菌群。  相似文献   

9.
CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) causes intracellular superoxide production and oxidative stress and enhances the susceptibility of Saccharomyces cerevisiae, Candida albicans, and C.?glabrata cells to cycloheximide, 5-fluorocytosine, and azole antimycotic drugs. Here, we demonstrate the antifungal activity of CTBT against 14 tested filamentous fungi. CTBT prevented spore germination and mycelial proliferation of Aspergillus niger and the pathogenic Aspergillus fumigatus. The action of CTBT is fungicidal. CTBT increased the formation of reactive oxygen species in fungal mycelium as detected by 2',7'-dichlorodihydrofluorescein diacetate and reduced the radial growth of colonies in a dose-dependent manner. Co-application of CTBT and itraconazole led to complete inhibition of fungal growth at dosages lower than the chemicals alone. Antifungal and chemosensitizing activities of CTBT in filamentous fungi may be useful in combination treatments of infections caused by drug-resistant fungal pathogens.  相似文献   

10.
Crowther TW  Boddy L  Jones TH 《Oecologia》2011,167(2):535-545
Decomposer fungi are primary decomposing agents in terrestrial soils. Their mycelial networks play an important role in nutrient mineralisation and distribution, but are also nutritious resources for various soil invertebrates. Global climate change is predicted to alter the diversity and community composition of these soil fauna. To understand whether changes in invertebrate species diversity are likely to affect fungal-mediated decomposition, this study compared the grazing potentials of different invertebrate taxa and functional groups. Specifically, the grazing impacts of seven invertebrate taxa on the growth and spatial distribution of six basidiomycete fungi growing from beech wood blocks in soil microcosms were explored. Wood decay rates by fungi were also compared. The consequences of grazing were both taxon- and species-specific. Generally, macro-invertebrates caused the greatest damage, while meso- and micro-invertebrates often stimulated mycelial growth. Invertebrate size, preferences and population dynamics are likely to influence grazing potentials. Effects of grazing varied between fungi, with mycelial morphology and biochemistry possibly influencing susceptibility. Heavy grazing indirectly increased fungal-mediated wood decomposition. Changes in invertebrate community composition are predicted to have consequences for fungal growth, activity and community structure in woodland soils. Abiotic climate change factors including CO2 and temperature affect mycelial productivity directly, but the indirect effects, mediated through changes in the soil invertebrate community, may be equally important in controlling ecosystem functioning.  相似文献   

11.
Fungi exist in every indoor and outdoor environment. Many fungi are toxigenic or pathogens that may cause various public health concerns. Rapid and accurate detection and identification of fungi require specific markers. In this study, partial mitochondrial large subunit rDNA was amplified and sequenced from 32 fungal strains representing 31 species from 14 genera. Based on the sequence variation pattern, 26 oligonucleotide probes were designed for their discrimination. The specificity of the probes was evaluated through homology search against GenBank database and hybridization examination on 38 fungal strains. The 26 probes were verified as highly specific to 20 fungal species. A two-step detection procedure through PCR followed by probe hybridization gave ten-fold increase in detection sensitivity than single-step PCR assay and would be a practical approach for environmental sample screening. The probes developed in this study can be applied in clinical diagnosis and environmental monitoring of fungal agents.  相似文献   

12.
Elevated temperature has potential to influence the biological mechanisms regulating ecosystem–atmosphere carbon exchange. The relationship between warming and heterotrophic microbial respiration remains poorly understood, not least in terms of the differential sensitivity of microbial groups to temperature and the complexity of interactions with other biota. Cord‐forming basidiomycete fungi are dominant primary decomposers in temperate woodland. Decomposition rates are determined by the composition of the decomposer community, ecophysiological relationships between these fungi and abiotic variables and interactions with other organisms. Amongst the latter, a major determinant is the balance between mycelial growth and removal by soil invertebrate grazers, which can themselves be affected by elevated temperature. We investigated the impact of elevated temperature on fungal foraging and decomposition of beech (Fagus sylvatica) wood in soil microcosms to which the invertebrate grazers, Folsomia candida and Protophorura armata (Collembola), were added in factorial combinations with five basidiomycete fungi. Species‐specific impacts on mycelial development and function resulted from differential sensitivity of fungi to warming and grazing. Temperature impacts on collembola abundance were resource‐specific, causing increased grazing pressure by both species, but on different fungi. Grazing often counteracted warming‐induced stimulation of mycelial growth, but occasionally amplified the temperature effect, with implications for colonization rates of new resources. High grazing pressure did not prevent increased fungal‐mediated decomposition of colonized wood, as fungi utilized more resource‐derived energy to maintain explorative growth. Impacts of elevated temperature on decomposition are likely to depend on local composition of the fungal and invertebrate decomposer community.  相似文献   

13.
Summary Data are presented on the antagonistic effects of the fungi isolated from sclerotia ofSclerotium cepivorum and from nonrhizosphere soil taken from around the roots of infected onions upon mycelial growth and sclerotial germination ofS. cepivorum. Most of the isolated fungi especiallyPenicillium species were antagonistic to mycelial growth. Sclerotial germination was slightly inhibited by diffusates of these fungal isolates. Testing the antifungal effect of someAllium extracts against the fungal isolates by the inhibition zone method showed that garlic extract has the greatest antifungal effects and onion extract is the least potent. However, spore germination tests indicated that onion extract completely inhibits the spore germination of all test fungi. The role of host-plant extracts in stimulating sclerotial germination is discussed.  相似文献   

14.
Summary Fungistasis property of soil samples from forest area, cultivated field, and grassland field has been studied. Soil samples from different depths were collected in summer, rainy, and winter seasons. The effect of amendment of certain fungal isolates, culture filtrate, mycelial extract and certain plant materials in sterilized soil has also been studied. Generally the fungistasis property was found to be higher in soil samples of upper profiles and it gradually decreased with an increase in soil depth in all the three localities. Highest fungistasis was observed during rainy season when fungal population was also found to be higher. Amongst three localities, higher values were always noticed in forest soil samples. Physico-chemical characters seem to play an indirect role in inducing the soil fungistasis. Fungal spores, culture filtrates and mycelial extracts of certain fungi caused different levels of fungistasis in sterilized soil. Sterilized soil samples amended with various plant parts also caused fungistasis after certain period. Thus fungistasis seems to be a combined effect of various factors existing in the soil.  相似文献   

15.
Extensive knowledge of various ectomycorrhizal fungal communities has been obtained over the past 10 years based on molecular identification of the fungi colonizing fine roots. In contrast, only limited information exists about the species composition of ectomycorrhizal hyphae in soil. This study compared the ectomycorrhizal external mycelial community with the adjacent root-tip community in a Danish beech forest. Sand-filled in-growth mesh bags were used to trap external mycelia by incubating the mesh bags in the soil for 70 days. The adjacent ectomycorrhizal root-tip communities were recorded at the times of insertion and retrieval of the mesh bags. Ectomycorrhizal fungi were identified by sequencing the internal transcribed spacer region. In total, 20, 31 and 24 ectomycorrhizal species were recorded from the two root-tip harvests and from the mesh bags, respectively. Boletoid species were significantly more frequent as mycelia than as root tips, while russuloid and Cortinarius species appeared to be less dominant as mycelia than as root tips. Tomentella species were equally frequent as root tips and as mycelia. These discrepancies between the root-tip and the mycelial view of the ectomycorrhizal fungal community are discussed within the framework of ectomycorrrhizal exploration types.  相似文献   

16.
以虫荧光素酶法检验了四株丝状真菌在葡萄糖—无机盐液体培养过程中的胞内ATP含量。结果表明,只有当胞内ATP浓度低于10~(-S)mg/ml时,真菌才开始合成胞外纤维素酶(FPA)。以不同浓度的各种碳源培养时,菌体胞内ATP含量只要超过10~(-1)mg/ml,FPA的合成即发生阻遏。菌体胞内ATP含量与FPA合成呈显著负相关。以高效液相色谱(HPLC)法检测了菌体培养液中的cAMP含量。在非阻遏条件下,外源cAMP可以提高FPA的合成水平。但外源cAMP不能解除已经发生的酶合成阻遏。菌体ATP和cAMP水平是调节真菌纤维素酶合成的重要因子。  相似文献   

17.
The mycorrhiza helper bacterium Streptomyces strain AcH 505 improves mycelial growth of ectomycorrhizal fungi and formation of ectomycorrhizas between Amanita muscaria and spruce but suppresses the growth of plant-pathogenic fungi, suggesting that it produces both fungal growth-stimulating and -suppressing compounds. The dominant fungal-growth-promoting substance produced by strain AcH 505, auxofuran, was isolated, and its effect on the levels of gene expression of A. muscaria was investigated. Auxofuran and its synthetic analogue 7-dehydroxy-auxofuran were most effective at a concentration of 15 microM, and application of these compounds led to increased lipid metabolism-related gene expression. Cocultivation of strain AcH 505 and A. muscaria stimulated auxofuran production by the streptomycete. The antifungal substances produced by strain AcH 505 were identified as the antibiotics WS-5995 B and C. WS-5995 B completely blocked mycelial growth at a concentration of 60 microM and caused a cell stress-related gene expression response in A. muscaria. Characterization of these compounds provides the foundation for molecular analysis of the fungus-bacterium interaction in the ectomycorrhizal symbiosis between fly agaric and spruce.  相似文献   

18.
In this study, two techniques were used to compare the specific activity and total concentration of mycelial glutathione S-transferase (GST) in fungal strains isolated from natural sources. The fungi identified as Aspergillus parasiticus and Aspergillus flavus have been divided into two groups based on their ability to produce aflatoxins. Altogether 26 fungi were isolated, among which 12 were capable of producing varying levels of aflatoxin and 14 were proved to be non-toxigenic. GST specific activity in mycelial preparation was measured spectrophotometrically using 2,1-chloro-2,4-dinitrobenzene as the substrate. The results showed that the mean GST activity in toxigenic isolates was 25.06 +/- 9.8 mumol/mg protein/min which was 2.8-fold greater than that measured in non-toxigenic isolates (8.84 +/- 5.5 mumol/mg protein/min). Moreover, the GST concentration was compared in toxigenic and non-toxigenic isolates using an Enzyme Linked Immunosorbent Assay based on antigen (fungal preparation) and antibody (antibody produced against fungal GST in rabbit). The results of ELISA showed that the mean GST level in toxigenic and non-toxigenic fungi was 1.17 +/- 0.55 and 0.40 +/- 0.24, respectively. These results further confirm that the aflatoxin production in the fungal strains is correlated with GST expression and using ELISA, it is possible to discriminate aflatoxin-producing fungi from their non-toxigenic counterparts.  相似文献   

19.
Fungal biodeterioration of ivory was investigated with in vitro inoculation of samples obtained from boar and walrus tusks with the fungi Aspergillus niger and Serpula himantioides, species of known geoactive abilities. A combination of light and scanning electron microscopy together with associated analytical techniques was used to characterize fungal interactions with the ivory, including changes in ivory composition, dissolution and tunnelling, and the formation of new biominerals. The research was aimed at providing further understanding of the potential roles of fungi in the colonization and deterioration of ivory in terrestrial environments, but also contributes to our knowledge regarding the possible origins of the surface damage observed on early medieval sculptures made largely from walrus tusks, referred to as ‘the Lewis hoard of gaming pieces’, that were presumably produced for playing chess. The experiments have shown that the possibility of damage to ivory being caused by fungi is realistic. Scanning electron microscopy revealed penetration of fungal hyphae within cracks in the walrus tusk that showed also widespread tunnelling by fungal hyphae as well as ‘fungal footprints’ where the surface was etched as a consequence of mycelial colonization. Similar phenomena were observed with boar tusk ivory, while production of metabolites could lead to complete dissolution of the sample. Colonization of ivory and/or exposure to fungal activity lead to extensive secondary biomineral formation, and this was identified as calcium oxalate, mainly as the monohydrate, whewellite.  相似文献   

20.
Exposure to fungal pathogens from the environment is inevitable and with the number of at-risk populations increasing, the prevalence of invasive fungal infection is on the rise. An interesting group of fungal organisms known as thermally dimorphic fungi predominantly infects immunocompromised individuals. These potential pathogens are intriguing in that they survive in the environment in one form, mycelial phase, but when entering the host, they are triggered by the change in temperature to switch to a new pathogenic form. Considering the growing prevalence of infection and the need for improved diagnostic and treatment approaches, studies identifying key components of fungal recognition and the innate immune response to these pathogens will significantly contribute to our understanding of disease progression. This review focuses on key endemic dimorphic fungal pathogens that significantly contribute to disease, including Histoplasma, Coccidioides and Talaromyces species. We briefly describe their prevalence, route of infection and clinical presentation. Importantly, we have reviewed the major fungal cell wall components of these dimorphic fungi, the host pattern recognition receptors responsible for recognition and important innate immune responses supporting adaptive immunity and fungal clearance or the failure thereof.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号