首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sánchez-Puig JM  Blasco R 《Gene》2000,257(1):57-65
The antibiotic puromycin, an inhibitor of protein synthesis, was shown to inhibit vaccinia virus (VV) replication. We evaluated the use of puromycin-resistance (pac) gene as a selectable marker in VV. A recombinant vaccinia virus expressing pac (VV-pac) under the control of a viral early/late promoter was constructed and characterized. VV-pac grew in the presence of puromycin at concentrations that were inhibitory for the parental VV and toxic for the cells. Isolation of recombinant VV usually relies on plaque purification under selective conditions. Because virus plaquing was not feasible under inhibitory puromycin concentration, a protocol based on serial passage of virus was devised. The usefulness of this procedure in selecting pac expressing viruses was tested by isolating a recombinant VV.  相似文献   

2.
In neuronal growth cones, the advancing tips of elongating axons and dendrites, specific protein substrates appear to undergo cycles of posttranslational modification by covalent attachment and removal of long-chain fatty acids. We show here that ongoing fatty acylation can be inhibited selectively by long-chain homologues of the antibiotic tunicamycin, a known inhibitor of N-linked glycosylation. Tunicamycin directly inhibits transfer of palmitate to protein in a cell-free system, indicating that tunicamycin inhibition of protein palmitoylation reflects an action of the drug separate from its previously established effects on glycosylation. Tunicamycin treatment of differentiated PC12 cells or dissociated rat sensory neurons, under conditions in which protein palmitoylation is inhibited, produces a prompt cessation of neurite elongation and induces a collapse of neuronal growth cones. These growth cone responses are rapidly reversed by washout of the antibiotic, even in the absence of protein synthesis, or by addition of serum. Two additional lines of evidence suggest that the effects of tunicamycin on growth cones arise from its ability to inhibit protein long-chain acylation, rather than its previously established effects on protein glycosylation and synthesis. (a) The abilities of different tunicamycin homologues to induce growth cone collapse very systematically with the length of the fatty acyl side- chain of tunicamycin, in a manner predicted and observed for the inhibition of protein palmitoylation. Homologues with fatty acyl moieties shorter than palmitic acid (16 hydrocarbons), including potent inhibitors of glycosylation, are poor inhibitors of growth cone function. (b) The tunicamycin-induced impairment of growth cone function can be reversed by the addition of excess exogenous fatty acid, which reverses the inhibition of protein palmitoylation but has no effect on the inhibition of protein glycosylation. These results suggest an important role for dynamic protein acylation in growth cone- mediated extension of neuronal processes.  相似文献   

3.
Using rat or chick hepatocyte monolayers, we have studied the effect of tunicamycin, a specific inhibitor of protein glycosylation, on the synthesis and secretion of serum proteins. Tunicamycin inhibited glucosamine incorporation into rat liver transferrin and the apoprotein B chain of chick liver very low density lipoprotein (VLDL) by 75 to 90%. In contrasts, amino acid incorporation into these two glycoproteins, as well as into the normally unglycosylated proteins, rat serum albumin and apoprotein A of chick liver VLDL, was decreased by only 10 to 25% in the presence of the antibiotic. Despite the inhibitory effect of tunicamycin on glycosylation, secretion of all four proteins was virtually unimpaired. Thus, the carbohydrate moieties of rat liver transferrin or apoprotein B of chick liver VLDL do not appear to play an essential role in the secretion process.  相似文献   

4.
A procedure for the qualitative assessment of inhibitory activity towards acetylcholinesterase for a given compound is described. Solutions of the compounds of interest are spotted on silica gel TLC plates in a matrix pattern. The silica gel plate is sprayed with a solution of acetylthiocholine iodide and 5,5-dithiobis(2-nitrobenzoic acid) followed by a solution of acetylcholinesterase. The enzyme reaction produces a yellow background color with inhibitor compounds exposed as white zones where color has failed to develop. The results for a test set of compounds were compared to those obtained using the standard Ellman assay procedure and found to agree for virtually all of these compounds. The conditions of silica gel plate thickness, reagent concentration, and enzyme source under which this procedure is suitable were investigated. This represents an extremely rapid method to screen large numbers of compounds to uncover new inhibitors of acetylcholinesterase and potentially other enzymes as well.  相似文献   

5.
1. The sucrase - isomaltase complex from rabbit small intestine dissociated into its subunits upon reaction with citraconic anhydride. They can recombine after deacylation under mild acidic conditions. 2. When citraconylated, the subunits could be separated and isolated in a catalytically active form. 3. The previously reported procedure for separation of the subunits by alkaline treatment at pH 9.6 is apparently not due to contaminating degradative enzymes (possibly still present at undetectable levels in the isolated sucrase - isomaltase complex) but to the action of alkali.  相似文献   

6.
In the light of recent reports, based on radioactive labelling studies, that substantial amounts of N-linked oligosaccharides are released from protein under the mild-alkaline borohydride degradation conditions that are usually used to release O-linked oligosaccharides, we have investigated by chemical methods the effects of alkali alone and alkaline borohydride on the carbohydrate and peptide moieties of fetuin. The chromatographic profiles on Sephadex G50 columns, of the hexose- and ninhydrin-positive components of the native and Pronase-treated glycoprotein have been compared with those obtained after treatment with mild alkali alone (0.05 M-NaOH, 50 degrees C, 16 h) or mild-alkaline borohydride (0.05 M-NaOH containing 1 M-NaBH4, 50 degrees C, 16 h). Composition and methylation analyses have been performed on carbohydrate-containing peaks and the following conclusions were drawn: mild alkali treatment alone liberated a minor hexose- and ninhydrin-positive component and mild-alkaline borohydride treatment gave a major hexose-containing peak: both of these co-chromatographed on a Sephadex G50 column with Pronase glycopeptides. The polypeptide backbone was totally broken down by the alkaline borohydride treatment. The presence of released N-linked chains after alkaline borohydride treatment was confirmed. However, from the carbohydrate composition it was calculated that no more than 10-20% of the N-linked chains were released from protein. The results of methylation analysis have raised the possibility that this release is in part due to cleavage of the chitobiosyl core.  相似文献   

7.
The nonspecific alkaline phosphatase of Saccharomyces sp. strain 1710 has been shown by phosphatase cytochemistry to be exclusively located in the vacuole, para-Nitrophenyl phosphate-specific alkaline phosphatase is not detected by this procedure because the activity of this enzyme is sensitive to the fixative agent, glutaraldehyde. To determine whether the oligosaccharide of nonspecific alkaline phosphatase is necessary to transport the enzyme into the vacuole, protoplasts were derepressed in the absence or in the presence of tunicamycin, an antibiotic which interferes with the glycosylation of asparagine residues in proteins. The location of the enzyme in the tunicamycin-treated protoplasts, as determined by electron microscopy and subcellular fractionation, was identical to its location in control protoplasts. In addition, carbohydrate-free alkaline phosphatase was found in vacuoles from tunicamycin-treated protoplasts. Our findings indicate that the asparagine-linked carbohydrate moiety does not determine the cellular location of the enzyme.  相似文献   

8.
Hori H  Elbein AD 《Plant physiology》1981,67(5):882-886
Soybean cells in suspension culture incorporate [3H]mannose into dolichyl-phosphoryl-mannose and into lipid-linked oligosaccharides as well as into extracellular and cell wall macromolecules. Tunicamycin completely inhibited the formation of lipid-linked oligosaccharides at a concentration of 5 to 10 micrograms per milliliter, but it had no effect on the formation of dolichyl-phosphoryl-mannose. Tunicamycin did inhibit the incorporation of [3H]mannose into cell wall components and extracellular macromolecules, but even at 20 micrograms per milliliter of antibiotic there was still about 30% incorporation of mannose. The radioactivity in these macromolecules was localized in mannose (70%), rhamnose (20%), galactose (8%), and fucose (2%) in the absence of antibiotic. But when tunicamycin was added, very little radioactive mannose was found in cell wall or extracellular components. The incorporation of [3H]leucine into membrane components and [14C]proline into cell wall components by these suspension cultures was unaffected by tunicamycin. However, tunicamycin did inhibit the appearance of leucine-labeled extracellular macromolecules, probably because it prevented their secretion.  相似文献   

9.
Technology for producing highly pure hydrogen (99.999%) by water electrolysis is a field of importance in terms of the planets' current energy scenario. A much needed transition from a carbon economy to a hydrogen economy further adds importance to the field of hydrogen generation from water for a sustainable future. To avoid energy losses in the production process, the use of highly acidic (Proton Exchange Membrane (PEM) water electrolyzer) and alkaline (alkaline water electrolyzer) electrolytes is conventional practice in this field. Unfortunately, there are several other issues associated with the use of acidic and alkaline electrolytes such as the requirement of specific ion exchanging membranes with good stability, acid or alkali stable catalysts and corrosive environment withstanding cell stacks, etc. To overcome these issues, researchers have shown interest in the field of electrochemical water splitting in neutral and near‐neutral conditions. In this review, the chronological development of 3d transition‐metal‐based electrocatalysts for neutral and near‐neutral water splitting is extensively discussed with emphases on screening methodologies, mechanisms, structure‐activity correlations, and detailed catalyst specific evolution. In addition, catalysts reported so far, are also benchmarked based on their performance separately for different electrolytes used.  相似文献   

10.
A novel molecular modeling study, involving inhibitors bound to the iron of cytochrome P450 heme, is described for nonsteroidal inhibitors of aromatase (AR). Study of compounds such as aminoglutethimide (AG) suggests that it utilizes hydrogen bonding group(s) at the active site which would usually H-bond to the steroid C(17) carbonyl group. Interaction between AG's carbonyl groups and the area of the active site corresponding to the substrate C(3)==O group is not possible due to steric interaction. Possible reasons for the difference in activity of enantiomers of alternative inhibitors is also suggested, as well as the mode of action of the new AR inhibitor, Arimidex-whose inhibitory activity previously has not been rationalized. The present study proposes that it is able to use hydrogen bonding groups at the active site corresponding to the steroid C(17)==O and C(3)==O area, contradicting a previous study where it is postulated that azole-type compounds only use polar groups at the active site corresponding to the steroid D ring. Using the hypotheses of the modeling study, we designed and synthesized a number of novel (enantiomerically pure) inhibitors, which upon biochemical evaluation were found to be good inhibitors; the N-nonyl derivative of the S-enantiomer was found to possess 39% inhibition at 100 microM inhibitor concentration (using androstenedione as the substrate), under similar conditions, and AG possessed 20% inhibition.  相似文献   

11.
Summary The involvement of protein glycosylation in regulation of the development of the multicellular green alga,Volvox carteri, was studied using the antibiotic, tunicamycin. Three specific developmental processes were found to be affected by the antibiotic: reproductive cell maturation; establishment of polar cellular organization during embryogenesis and release of progeny spheroids from the parental spheroids. Tunicamycin inhibited the transfer of GlcNAc-1-phosphate to dolichyl phosphate which is catalyzed byVolvox membrane preparations. Changes in the glycosylation of several secreted and cellular glycoproteins were observed when proteins were labelled with radioactive amino acids and sugars in the absence and presence of tunicamycin and then electrophoresed on sodium dodecylsulfate-polyacrylamide slab gels. The levels of a few secreted proteins were reduced in tunicamycin treated cultures and one protein band appeared exclusively in the treated cells. Tunicamycin treatment also altered the electrophoretic mobility of radio-iodinated surface macromolecules. Binding of concanavalin A by tunicamycin treatedVolvox spheroids was drastically reduced. It is there-fore likely that the aberrant development results from inhibition of protein glycosylation and the consequent changes in the structure of the cellular, secreted and surface glycoproteins.  相似文献   

12.
衣霉素(Tunicamycin)是一种糖蛋白N-连接型糖链合成的抑制剂。它可抑制人肝癌细胞抹SMMC-7721的生长,其抑制率和剂量及处理时间有相关性。衣霉素处理细胞18h尚可显著抑制~3H-甘露糖和~3H-氨基葡萄糖参入细胞,但仅轻度抑制~3H-亮氨酸的参入。这些标记化合物的参入抑制都有量效关系。0.1gg/mL衣霉素处理18h后,细胞表面胰岛素受体和胰岛素的结合容量下降,而对照细胞和处理细胞的胰岛素竞争结合曲线基本平行。这主要由于衣霉素抑制新合成的胰岛素受体的糖基化所致。我们对糖基化障碍引起细胞膜胰岛素受体结合容量降低的机理作了讨论。  相似文献   

13.
O-(2-Hydroxyethyl), O-(2-hydroxypropyl) and O-carboxymethyl derivatives of guar gum have been prepared under different experimental conditions. Several properties such as moisture regain, rate of hydration, solubility, viscosity and rheology of these derivatives have been studied. The properties depend upon polysaccharide chain length, and the nature and degree of chemical modification. The effect of alkali and alkaline hydrogen peroxide on the properties of guar gum have also been studied.  相似文献   

14.
Co‐administration of beta‐lactam antibiotics and beta‐lactamase inhibitors has been a favored treatment strategy against beta‐lactamase‐mediated bacterial antibiotic resistance, but the emergence of beta‐lactamases resistant to current inhibitors necessitates the discovery of novel non‐beta‐lactam inhibitors. Peptides derived from the Ala46–Tyr51 region of the beta‐lactamase inhibitor protein are considered as potent inhibitors of beta‐lactamase; unfortunately, peptide delivery into the cell limits their potential. The properties of cell‐penetrating peptides could guide the design of beta‐lactamase inhibitory peptides. Here, our goal is to modify the peptide with the sequence RRGHYY that possesses beta‐lactamase inhibitory activity under in vitro conditions. Inspired by the work on the cell‐penetrating peptide pVEC, our approach involved the addition of the N‐terminal hydrophobic residues, LLIIL, from pVEC to the inhibitor peptide to build a chimera. These residues have been reported to be critical in the uptake of pVEC. We tested the potential of RRGHYY and its chimeric derivative as a beta‐lactamase inhibitory peptide on Escherichia coli cells and compared the results with the action of the antimicrobial peptide melittin, the beta‐lactam antibiotic ampicillin, and the beta‐lactamase inhibitor potassium clavulanate to get mechanistic details on their action. Our results show that the addition of LLIIL to the N‐terminus of the beta‐lactamase inhibitory peptide RRGHYY increases its membrane permeabilizing potential. Interestingly, the addition of this short stretch of hydrophobic residues also modified the inhibitory peptide such that it acquired antimicrobial property. We propose that addition of the hydrophobic LLIIL residues to the peptide N‐terminus offers a promising strategy to design novel antimicrobial peptides in the battle against antibiotic resistance. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
16.
Microbial Life at 90 C: the Sulfur Bacteria of Boulder Spring   总被引:14,自引:5,他引:9       下载免费PDF全文
The physiology of the bacteria living in Boulder Spring (Yellowstone National Park) at 90 to 93 C was studied with radioactive isotope techniques under conditions approximating natural ones. Cover slips were immersed in the spring; after a fairly even, dense coating of bacteria had developed, these cover slips were incubated with radioactive isotopes under various conditions and then counted in a gas flow or liquid scintillation counter. Uptake of labeled compounds was virtually completely inhibited by formaldehyde, hydrochloric acid, and mercuric bichloride, and inhibition was also found with streptomycin and sodium azide. The water of Boulder Spring contains about 3 mug of sulfide per ml. Uptake of labeled compounds occurs only if sulfide or another reduced sulfur compound is present during incubation. The pH optimum for uptake of radioactive compounds by Boulder Spring bacteria is 9.2, a value near that of the natural spring water (8.9). Many experiments with a variety of compounds were performed to determine the temperature optimum for uptake of labeled compounds. The results with all the compounds were generally similar, with broad temperature optima between 80 and 90 C, and with significant uptake in boiling (93 C) but not in superheated water (97 C). The results show that the bacteria of Boulder Spring are able to function at the temperature of their environment, although they function better at temperatures somewhat lower. The fine structure of these bacteria has been studied by allowing bacteria in the spring to colonize glass slides or Mylar strips which were immediately fixed, and the bacteria were then embedded and sectioned. The cell envelope structure of these bacteria is quite different from that of other mesophilic or thermophilic bacteria. There is a very distinct plasma membrane, but no morphologically distinct peptidoglycan layer was seen outside of the plasma membrane. Instead, a rather thick diffuse layer was seen, within which a subunit structure was often distinctly visible, and connections frequently occurred between this outer layer and the plasma membrane. The thick outer layer usually consisted of two parts, the outer part of which was sometimes missing. Within the cells, structures resembling ribosomes were seen, and regions lacking electron density which probably contained deoxyribonucleic acid were also visible.  相似文献   

17.
Tunicamycin--an inhibitor of yeast glycoprotein synthesis   总被引:38,自引:0,他引:38  
Tunicamycin, a glucosamine-containing antibiotic, halted synthesis of the external glycoproteins invertase, acid phosphatase and mannan by yeast protoplasts within 30 min; formation of two intracellular proteins, alpha-glucosidase and alkaline phosphatase, and of glucan continued at the control rate for at least 60–80 min. No accumulation of mannan-free acid phosphatase or invertase was evident in treated cells. Utilization of hexoses and incorporation of 14C-amino acids into protein were not affected. Incorporation of 3H-glucosamine into trichloroacetic acid-insoluble products was only partially reduced. In yeast tunicamycin acts primarily as an inhibitor of glycoprotein synthesis and not of general glucosamine metabolism.  相似文献   

18.
Crude membrane preparations from chick embryo cells catalyse the formation of dolichyl-di-N-acetylchitobiosyl diphosphate [Dol-PP-(GlcNAc)2] from uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). The formation of this glycolipid was stimulated by exogenous dolichyl phosphate and inhibited by tunicamycin. Adding GDP-mannose to the cell-free system containing Dol-PP-(GlcNAc)2 by preincubation led to the formation of a lipid-linked oligosaccharide, containing 8--9 sugar residues. The formation of lipid-linked oligosaccharides was inhibited by GDP-2-deoxy-D-glucose (GDP-dGlc): in this case Dol-PP-(Glc-NAc)2-dGlc accumulated. Subsequent additions of mannosyl residues to this trisaccharide-lipid to form lipid-linked oligosaccharides were not possible. Concomitantly the glycosylation of proteins was blocked. Partially inhibitory conditions were obtained by adding both GDP-dGlc and GDP-Man with an excess of GDP-dGlc. Glycosylation of proteins was observed but the glycopeptides did not contain 2-deoxyglucosyl residues. Also in these cases 2-deoxyglucose-containing glycolipids accumulated. The main glycolipid formed under these conditions was Dol-PP-(GlcNAc)2-Man-dGlc. Lipid-linked oligosaccharides containing 2-deoxyglucose were formed under these conditions, although in small amounts, but were not transferred to protein. So the molecular basis of the inhibitory action of 2-deoxyglucose on glycosylation of protein is the incorporation of 2-deoxyglucosyl residues during early phases of the biosynthesis of the lipid-linked oligosaccharides.  相似文献   

19.
The nonspecific alkaline phosphatase of yeast (Saccharomyces strain 1710) has been purified by ion exchange, hydrophobic, and affinity chromatography. This vacuolar enzyme has a molecular weight of 130,000 and is composed of subunits (probably of 66,000 molecular weight). It also has a small quantity of covalently associated carbohydrate; hydrolysis yielded mannose and glucosamine. The endo-beta-N-acetylglucosaminidase of Streptomyces plicatus released carbohydrate indicating that the latter was attached to protein through an N-acetylglucosaminylasparginyl bond. Synthesis of active alkaline phosphatase by yeast protoplasts is not depressed by tunicamycin, an inhibitor of dolichol-mediated protein glycosylation. Unlike the enzyme normally produced, the alkaline phosphatase which is formed in the presence of the antibiotic does not interact with concanavalin A and, therefore is deficient in or lacking carbohydrate. We infer that there is no regulatory link in yeast between the glycosylation of a protein and its synthesis. The fact that other Asn-GlcNAc-type glycoprotein enzymes of yeast such as acid phosphatase are not produced in their active forms by tunicamycin-treated protoplasts may mean that, as unglycosylated proteins, they cannot be correctly folded or processed. Protoplasts derepressed for phosphatase production contained substantial amounts of a second alkaline phosphatase which differed from the purified enzyme in substrate specificity, sensitivity to calcium, and reactivity with concanavalin A.  相似文献   

20.
Inhibitors of the enzyme aspartate semialdehyde dehydrogenase, a key biological target for the generation of a new class of antibiotic compounds, have been developed. To investigate improvements to binding within an inhibitor series, the lowering of the entropic barrier to binding through conformational restriction was investigated. A library of linear and cyclic substrate analogues was generated and computational docking used to aid in structure selection. The cyclic phosphonate inhibitor 18 was thus identified as complimentary to the enzyme active-site. Synthesis and in vitro inhibition assay revealed a K(i) of 3.8 mM against natural substrate, where the linear analogue of 18, compound 15, had previously shown no inhibitory activity. Two further inhibitors, phosphate analogue diastereoisomers 17a and 17b, were synthesised and also found to have low millimolar K(i) values. As a result of the computational docking investigations, a novel substrate binding interaction was discovered: hydrogen bonding between the substrate (phosphate hydroxy-group as the hydrogen bond donor) and the NADPH cofactor (2'-oxygen as the hydrogen bond acceptor).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号