首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Although the physiology and metabolism of the growth of yeast strains has been extensively studied, many questions remain unanswered where the induced production of a recombinant protein is concerned. This work addresses the production of a Fusarium solani pisi cutinase by a recombinant Saccharomyces cerevisiae strain induced through the use of a galactose promoter. The strain is able to metabolise the inducer, galactose, which is a much more expensive carbon source than glucose. Both the transport of galactose into the cell-required for the induction of cutinase production-and galactose metabolism are highly repressed by glucose. Different fermentation strategies were tested and the culture behaviour was interpreted in view of the strain metabolism and physiology. A fed-batch fermentation with a mixed feed of glucose and galactose was carried out, during which simultaneous consumption of both hexoses was achieved, as long as the glucose concentration in the medium did not exceed 0.20 g/l. The costs, in terms of hexoses, incurred with this fermentation strategy were reduced to 23% of those resulting from a fermentation carried out using a more conventional strategy, namely a fed-batch fermentation with a feed of galactose.  相似文献   

2.
木糖异构酶在酿酒酵母细胞表面的展示   总被引:2,自引:0,他引:2  
将来源于嗜热细菌Thermus thermophilus的木糖异构酶基因xylA,与酿酒酵母(Sac-charomyces cerevisiae)a-凝集素表面展示载体pYD1的Aga2p亚基C端序列融合。编码融合蛋白的基因序列前接上半乳糖诱导型启动子。用LiAc完整细胞法转化酿酒酵母EBY100。含重组质粒的菌株EBY100/pYD-xylA经半乳糖诱导表达外源融合蛋白,免疫荧光显微镜结果显示外源蛋白被锚定在细胞壁上,木糖异构酶活性测定结果表明,细胞壁上酶活测定值为1.52U,木糖异构酶在酿酒酵母细胞壁上得到活性表达。  相似文献   

3.
The use of a stopped-flow analyser for the monitoring of the production of a secreted recombinant protein, a wild-type cutinase, from S. cerevisiae CEN.PK111-32D pUR7320 is described. Induction is through use of a galactose promoter, and the monitoring facility is used to record the formation of the cutinase and cell density with optical density measurements. A range of induction conditions was studied with a view to using the monitoring to predict the likely level of cutinase formation. Results achieved within 4 to 5 h of induction were of sufficient quality to allow the use of simple modelling relating cutinase formation and cell production to predict likely final specific activities of the product. The utility of such monitoring and prediction is discussed with regards to improved process confidence and definition during fermentation production.  相似文献   

4.
Beet molasses is widely used as a growth substrate for bakers' and distillers' yeast in the production of biomass and ethanol. Most commercial yeasts do not fully utilise the carbohydrates in molasses since they are incapable of hydrolysing the disaccharide melibiose to glucose and galactose. Also, expression of genes encoding enzymes for the utilisation of carbon sources that are alternatives to glucose is tightly regulated, sometimes rates of yeast growth and/or ethanol production. The GAL genes are regulated by specific induction by galactose and repression during growth on glucose. In an industrial distillers' yeast, two genes interacting synergistically in glucose repression of galactose utilization, MIG1 and GAL80, have been disrupted with MEL1, encoding melibiase. The physiology of the wild-type strain and the recombinant strains was investigated on mixtures of glucose and galactose and on molasses. The recombinant strain started to ferment galactose when 9.7 g 1(-1) glucose was still present during a batch fermentation, whereas the wild-type strain did not consume any galactose in the presence of glucose. The ethanol yield in the recombinant strain was 0.50 g ethanol g sugar (-1) in an ethanol fermentation on molasses, compared with 0.48 g ethanol g sugar (-1) for the wild-type strain. The increased ethanol yield was due to utilization of melibiose in the molasses.  相似文献   

5.
By expanded bed adsorption (EBA) it was possible to simultaneously recover and purify the heterologous cutinase directly from the crude feedstock. However, it was observed that in a highly condensed and consequently economically advantageous purification process as EBA, the cultivation step highly influences the following purification step. Thus, the yeast cultivation and cutinase purification by EBA cannot be considered as independent entities, and the understanding of the interactions between them are crucial for the development of a highly cost effective overall cutinase production process. From the cultivation strategies studied, one batch, one continuous and two fed-batch cultivations, the strategy that resulted in a more economical cutinase overall production process was a fed-batch mode with a feeding in galactose. This last cultivation strategy, exhibited the highest culture cutinase activity and bioreactor productivity, being obtained 3.8-fold higher cutinase activity and 3.0-fold higher productivity that could compensate the 40% higher cultivation medium costs when compared with a fed-batch culture with a feeding on glucose and galactose. Moreover, a 3.8-fold higher effective cutinase dynamic adsorption capacity and 3.8-fold higher effective purification productivity were obtained in relation to the fed-batch culture with the feeding on glucose and galactose. The cultivation strategy with a feeding on galactose, that presented 5.6-fold higher effective purification productivity, could also compensate the 32% effective adsorption capacity obtained with a continuous cultivation broth. Furthermore, a 205-fold higher cutinase activity, 24-fold higher bioreactor productivity and 6% of the cultivation medium costs were obtained in relation to the continuous culture.  相似文献   

6.
7.
The GAL1 promoter is one of the strongest inducible promoters in the yeast Saccharomyces cerevisiae. In order to improve recombinant protein production we have developed a fluorescence based method for screening and evaluating the contribution of various gene deletions to protein expression from the GAL1 promoter. The level of protein synthesis was determined in 28 selected mutant strains simultaneously, by direct measurement of fluorescence in living cells using a microplate reader. The highest, 2.4-fold increase in GFP production was observed in a gal1 mutant strain. Deletion of GAL80 caused a 1.3-fold increase in fluorescence relative to the isogenic strain. GAL3, GAL4 and MTH1 gene deletion completely abrogated GFP synthesis. Growth of gal7, gal10 and gal3 also exhibited reduced fitness in galactose medium. Other genetic perturbations affected the GFP expression level only moderately. The fluorescence based method proved to be useful for screening genes involved in GAL1 promoter regulation and provides insight into more efficient manipulation of the GAL system.  相似文献   

8.
Recombinant strains of Saccharomyces cerevisiae, producing hantavirus Puumala nucleocapsid protein for diagnostics and as a candidate vaccine were analyzed for uptake and excretion of intermediary metabolites during process optimization studies of fed-batch bioreactor cultures. Concentrations of glucose, maltose, galactose, pyruvate, acetaldehyde, ethanol, acetate, succinate and formaldehyde (used as a selection agent) were measured in the culture medium in order to find a metabolite pattern, indicative for the physiological state of the producer culture. When the inducer galactose was employed as a growth substrate, the metabolite profile of recombinant yeast cells was different from those of the non-recombinant original strain which excreted considerable amounts of metabolites with this substrate. In contrast, galactose-induced heterologous gene expression was indicated by the absence of excreted intermediary metabolites, except succinate. A model strain expressing a GFP fusion of hantavirus nucleocapsid protein differed in the excretion of metabolites from strains without GFP. In addition, the influence of alkali ions, employed for pH control is also demonstrated.  相似文献   

9.
This study focused on the growth of Saccha-romyces cerevisiae MM01 recombinant strains and the respective production of three extracellular heterologous cutinases: a wild-type cutinase and two cutinases in which the primary structure was fused with the peptides (WP)(2) and (WP)(4), respectively. Different cultivation and strategies were tested in a 2-L shake flask and a 5-L bioreactor, and the respective cell growth and cutinase production were analyzed and compared for the three yeast strains. The highest cutinase productions and productivities were obtained in the fed-batch culture, where wild-type cutinase was secreted up to a level of cutinase activity per dry cell weight (specific cell activity) of 4.1 Umg(-1) with activity per protein broth (specific activity) of 266 Umg(-1), whereas cutinase-(WP)(2) was secreted with a specific cell activity of 2.1 Umg(-1) with a specific activity of 200 Umg(-1), and cutinase-(WP)(4) with a specific cell activity of 0.7 Umg(-1) with a specific activity of 15 Umg(-1). The results indicate that the fusion of hydrophobic peptides to cutinase that changes the physical properties of the fused protein limits cutinase secretion and subsequently leads to a lower plasmid stability and lower yeast cell growth. These effects were observed under different cultivation conditions (shake flask and bioreactor) and cultivation strategies (batch culture versus fed-batch culture).  相似文献   

10.
Ahn JY  Kim YH  Min J  Lee J 《Current microbiology》2006,52(5):340-344
The efficiency of two lipolytic enzymes (fungal cutinase and yeast esterase) in the degradation of dipentyl phthalate (DPeP) was investigated. The DPeP degradation rate of fungal cutinase was surprisingly high, i.e., almost 60% of the initial DPeP (500 mg/L) was decomposed within 2.5 hours, and nearly 40% of the degraded DPeP disappeared within the initial 15 minutes. With the yeast esterase, despite the same concentration, >87% of the DPeP remained even after 3 days of treatment. The final chemical composition after 3 days was significantly dependent on the enzyme used. During degradation with cutinase, most DPeP was converted into 1,3-isobenzofurandione (IBF) by diester hydrolysis. However, in the degradation by esterase, pentyl methyl phthalate, in addition to IBF, was produced in abundance. Toxicity monitoring using various recombinant bioluminescent bacteria showed that the degradation products from yeast esterase contained a toxic hazard, causing oxidative stress and damage to protein synthesis. Ji-Young Ahn, Yang-Hoon Kim are contributed equally to this work  相似文献   

11.
The efficiency of two lypolytic enzymes (fungal cutinase, yeast esterase) in the degradation of di-(2-ethylhexyl)-phthalate (DEHP) was investigated. The DEHP-degradation rate of fungal cutinase was surprisingly high, i.e. almost 70% of the initial DEHP (500 mg/l) was decomposed within 2.5 h and nearly 50% of the degraded DEHP disappeared within the initial 15 min. With the yeast esterase, despite the same concentration, more than 85% of the DEHP remained even after 3 days of treatment. During the enzymatic degradation of DEHP, several DEHP-derived compounds were detected and time-course changes in composition were also monitored. During degradation with fungal cutinase, most DEHP was converted into 1,3-isobenzofurandione (IBF) by diester hydrolysis. In the degradation by yeast esterase, two organic chemicals were produced from DEHP: IBF and an unidentified compound (X). The final chemical composition after 3 days was significantly dependent on the enzyme used. Fungal cutinase produced IBF as a major degradation compound. However, in the DEHP degradation by yeast esterase, compound X was produced in abundance in addition to IBF. The toxic effects of the final degradation products were investigated, using various recombinant bioluminescent bacteria and, as a result, the degradation products from yeast esterase were shown to contain a toxic hazard, causing oxidative stress and damage to protein synthesis.  相似文献   

12.
The efficiency of two lypolytic enzymes (fungal cutinase, yeast esterase) in the degradation of dipropyl phthalate (DPrP) was investigated. The DPrP-degradation rate of fungal cutinase was surprisingly high, i.e., almost 70% of the initial DPrP (500 mg/l) was decomposed within 2.5 h and nearly 50% of the degraded DPrP disappeared within the initial 15 min. With the yeast esterase, despite the same concentration, more than 90% of the DPrP remained even after 3 days of treatment. During the enzymatic degradation of DPrP, several DPrP-derived compounds were detected and time-course changes in composition were also monitored. The final chemical composition after 3 days was significantly dependent on the enzyme used. During degradation with fungal cutinase, most DPrP was converted into 1,3-isobenzofurandione (IBF) by diester hydrolysis. However, in the degradation by yeast esterase, propyl methyl phthalate (PrMP) was produced in abundance in addition to IBF. The toxic effects of the final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including PrMP) from yeast esterase severely caused oxidative stress and damage to protein synthesis in bacterial cells, while in the fungal cutinase processes, DPrP was significantly degraded to non-toxic IBF after the extended period (3 days).  相似文献   

13.
The effects of plasmid promoter strength and origin of replication on cloned gene expression in recombinant Saccharomyces cerevisiae have been studied in batch and continuous culture. The plasmids employed contain the Escherichia coli lacZ gene under the control of yeast promoters regulated by the galactose regulatory circuit. The synthesis of beta-galactosidase was therefore induced by the addition of galactose. The initial induction transients in batch culture were compared for strains containing plasmids with 2mu and ARS1 origins. As expected, cloned gene product synthesis was much lower with the ARS1 plasmid: average beta-galactosidase specific activity was an order of magnitude below that with the 2mu-based plasmid. This was primarily due to the low plasmid stability of 7.5% when the plasmid origin of replication was the ARS1 element. The influence of plasmid promoter strength was studied using the yeast GAL1, GAL10, and hybrid GAL10-CYC1 promoters. The rate of increase in beta-galactosidase specific activity after induction in batch culture was 3-5 times higher with the GAL1 promoter. Growth rate under induced conditions, however, was 15% lower than in the absence of lacZ expression for this promoter system. The influence of plasmid promoter strength on induction behavior and cloned gene expression was also studied in continuous fermentations. Higher beta-galactosidase production and lower biomass concentration and plasmid stability were observed for the strain bearing the plasmid with the stronger GAL1 promoter. Despite the decrease in biomass concentration and plasmid stability, overall productivity in continuous culture using the GAL1 promoter was three times that obtained with the GAL10-CYC1 promoter.  相似文献   

14.
Acetate accumulation under aerobic conditions is a common problem in Escherichia coli cultures, as it causes a reduction in both growth rate and recombinant protein productivity. In this study, the effect of replacing the glucose phosphotransferase transport system (PTS) with an alternate glucose transport activity on growth kinetics, acetate accumulation and production of two model recombinant proteins, was determined. Strain VH32 is a W3110 derivative with an inactive PTS. The promoter region of the chromosomal galactose permease gene galP of VH32 was replaced by the strong trc promoter. The resulting strain, VH32GalP+ acquired the capacity to utilize glucose as a carbon source. Strains W3110 and VH32GalP+ were transformed for the production of recombinant TrpLE-proinsulin accumulated as inclusion bodies (W3110-PI and VH32GalP+-PI) and for production of soluble intracellular green fluorescent protein (W3110-pV21 and VH32GalP+-pV21). W3110-pV21 and VH32GalP+-pV21 were grown in batch cultures. Maximum recombinant protein concentration, as determined from fluorescence, was almost four-fold higher in VH32GalP+-pV21, relative to W3110-pV21. Maximum acetate concentration reached 2.8 g/L for W3110-pV21 cultures, whereas a maximum of 0.39 g/L accumulated in VH32GalP+-pV21. W3110-PI and VH32GalP+-PI were grown in batch and fed-batch cultures. Compared to W3110-PI, the engineered strain maintained similar production and growth rate capabilities while reducing acetate accumulation. Specific glucose consumption rate was lower and product yield on glucose was higher in VH32GalP+-PI fed-batch cultures. Altogether, strains with the engineered glucose uptake system showed improved process performance parameters for recombinant protein production over the wild-type strain.  相似文献   

15.
Previous work demonstrated that acetate production was substantially lower in pyruvate kinase (pyk) mutant of Bacillus subtilis. The significantly lower acetate production in the pyk mutant is hypothesized to have positive effect on recombinant protein production either by lifting the inhibitory effect of acetate accumulation in the medium or redirecting the metabolic fluxes beneficial to biomass/protein synthesis. In this study, the impact of the pyk mutation on recombinant protein production was investigated. Green fluorescent protein (GFP+) was selected as a model protein and constitutively expressed in both the wild-type strain and a pyk mutant. In batch cultures, the pyk mutant produced 3-fold higher levels of recombinant protein when grown on glucose as carbon source. Experimental measurements and theoretical analysis show that the higher protein yield of the mutant is not due to removal of an acetate-associated inhibition of expression or gene dosage or protein stability but a much lower acetate production in the mutant allows for a greater fraction of carbon intake to be directed to protein synthesis.  相似文献   

16.
17.
The use of glucose starvation to uncouple the production of recombinant beta-galactosidase from cell growth in Escherichia coli was investigated. A lacZ operon fusion to the carbon starvation-inducible cst-1 locus was used to control beta-galactosidase synthesis. beta-Galactosidase induction was observed only under aerobic starvation conditions, and its expression continued for 6 h following the onset of glucose starvation. The cessation of beta-galactosidase expression closely correlated with the exhaustion of acetate, an overflow metabolite of glucose, from the culture medium. Our results suggest the primary role of acetate in cst-1-controlled protein expression is that of an energy source. Using this information, we metered acetate to a glucose-starved culture and produced a metabolically sluggish state, where growth was limited to a low linear rate and production of recombiant beta-galactosidase occurred continuously throughout the experiment. The cst-1 controlled beta-galactosidase synthesis was also induced at low dilution rates in a glucose-limited chemostat, suggesting possible applications to high-density cell systems such as glucose-limited recycle reactors. This work demonstrates that by using an appropriate promoter system and nutrient limitation, growth can be restrained while recombinant protein production is induced and maintained.  相似文献   

18.
19.
The methylotrophic yeast Pichia methanolica can be used to express recombinant genes at high levels under the control of the methanol-inducible alcohol oxidase (AUG1) promoter. Methanol concentrations during the induction phase directly affect cellular growth and protein yield. Various methanol concentrations controlled by an on-line monitoring and control system were investigated in mixed glucose/methanol fed-batch cultures of P. methanolica expressing the human transferrin N-lobe protein. The PMAD18 P. methanolica strain utilized is a knock-out for the chromosomal AUG1 gene locus, resulting in a slow methanol utilization phenotype. Maximum growth of 100 g of dry cell weight per liter of culture was observed in cultures grown at 1.0% (v/v) methanol concentration. Maximum recombinant gene expression was observed for cultures controlled at 0.7% (v/v) methanol concentration, resulting in maximum volumetric production of 450 mg of transferrin per liter after 72 h of elapsed fermentation time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号