首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulatory-targeting subunit (RGL), also called GM) of the muscle-specific glycogen-associated protein phosphatase PP1G targets the enzyme to glycogen where it modulates the activity of glycogen-metabolizing enzymes. PP1G/RGL has been postulated to play a central role in epinephrine and insulin control of glycogen metabolism via phosphorylation of RGL. To investigate the function of the phosphatase, RGL knockout mice were generated. Animals lacking RGL show no obvious defects. The RGL protein is absent from the skeletal and cardiac muscle of null mutants and present at approximately 50% of the wild-type level in heterozygotes. Both the level and activity of C1 protein are also decreased by approximately 50% in the RGL-deficient mice. In skeletal muscle, the glycogen synthase (GS) activity ratio in the absence and presence of glucose-6-phosphate is reduced from 0.3 in the wild type to 0.1 in the null mutant RGL mice, whereas the phosphorylase activity ratio in the absence and presence of AMP is increased from 0.4 to 0.7. Glycogen accumulation is decreased by approximately 90%. Despite impaired glycogen accumulation in muscle, the animals remain normoglycemic. Glucose tolerance and insulin responsiveness are identical in wild-type and knockout mice, as are basal and insulin-stimulated glucose uptakes in skeletal muscle. Most importantly, insulin activated GS in both wild-type and RGL null mutant mice and stimulated a GS-specific protein phosphatase in both groups. These results demonstrate that RGL is genetically linked to glycogen metabolism, since its loss decreases PP1 and basal GS activities and glycogen accumulation. However, PP1G/RGL is not required for insulin activation of GS in skeletal muscle, and rather another GS-specific phosphatase appears to be involved.  相似文献   

2.
Adrenaline and insulin are the major hormones regulating glycogen metabolism in skeletal muscle. We have investigated the effects of these hormones on the rate-limiting enzymes of glycogen degradation and synthesis (phosphorylase and glycogen synthase respectively) in GM-/- mice homozygous for a null allele of the major skeletal muscle glycogen targeting subunit (GM) of protein phosphatase 1 (PP1). Hyperphosphorylation of Ser14 in phosphorylase, and Ser7, Ser640 and Ser640/644 of GS, in the skeletal muscle of GM-/- mice compared with GM+/+ mice indicates that the PP1-GM complex is the major phosphatase that dephosphorylates these sites in vivo. Adrenaline caused a 2.4-fold increase in the phosphorylase (-/+AMP) activity ratio in the skeletal muscle of control mice compared to a 1.4 fold increase in GM-/- mice. Adrenaline also elicited a 67% decrease in the GS (-/+G6P) activity ratio in control mice but only a small decrease in the skeletal muscle of GM-/- mice indicating that GM is required for the full response of phosphorylase and GS to adrenaline. PP1-GM activity and the amount of PP1 bound to GM decreased 40% and 45% respectively, in response to adrenaline in control mice. The data support a model in which adrenaline stimulates phosphorylation of phosphorylase Ser14 and GS Ser7 in GM+/+ mice by both kinase activation and PP1-GM inhibition and the phosphorylation of GS Ser640 and Ser640/644 by PP1-GM inhibition alone. Insulin decreased the phosphorylation of GS Ser640 and Ser640/644 and stimulated the GS (-/+G6P) activity ratio by approximately 2-fold in the skeletal muscle of either GM-/- and or control mice, but the low basal and insulin stimulated GS activity ratios in GM-/- mice indicate that PP1-GM is essential for maintaining normal basal and maximum insulin stimulated GS activity ratios in vivo.  相似文献   

3.
Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased by 17% (P < 0.05) in muscle of muscle-G4KO mice. Contraction-induced glycogen breakdown is normal. The increased glycogen synthase activity occurs in spite of decreased signaling through the insulin receptor substrate 1 (IRS-1)-phosphoinositide (PI) 3-kinase-Akt pathway and increased glycogen synthase kinase 3beta (GSK3beta) activity in the basal state. Hexokinase II is increased, leading to an approximately twofold increase in glucose-6-phosphate levels. In addition, the levels of two scaffolding proteins that are glycogen-targeting subunits of protein phosphatase 1 (PP1), the muscle-specific regulatory subunit (RGL) and the protein targeting to glycogen (PTG), are strikingly increased by 3.2- to 4.2-fold in muscle of muscle-G4KO mice compared to wild-type mice. The catalytic activity of PP1, which dephosphorylates and activates glycogen synthase, is also increased. This dominates over the GSK3 effects, since glycogen synthase phosphorylation on the GSK3-regulated site is decreased. Thus, the markedly reduced glucose transport in muscle results in increased glycogen synthase activity due to increased hexokinase II, glucose-6-phosphate, and RGL and PTG levels and enhanced PP1 activity. This, combined with decreased glycogen phosphorylase activity, results in increased glycogen content in muscle in the fasted state when glucose transport is reduced.  相似文献   

4.
In vivo effects of insulin and vanadium treatment on glycogen synthase (GS), glycogen synthase kinase-3 (GSK-3) and protein phosphatase-1 (PP1) activity were determined in Wistar rats with streptozotocin (STZ)-induced diabetes. The skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). Diabetes, vanadium, and insulin in vivo treatment did not affect muscle GSK-3 activity as compared to controls. Following insulin stimulation in 4-week STZ-diabetic rats muscle GS fractional activity (GSFA) was increased 3 fold (p < 0.05), while in 7-week diabetic rats it remained unchanged, suggesting development of insulin resistance in longer term diabetes. Muscle PP1 activity was increased in diabetic rats and returned to normal after vanadium treatment, while muscle GSFA remained unchanged. Therefore, it is possible that PP1 is involved in the regulation of some other cellular events of vanadium (other than regulation of glycogen synthesis). The lack of effect of vanadium treatment in stimulating glycogen synthesis in skeletal muscle suggests the involvement of other metabolic pathways in the observed glucoregulatory effect of vanadium.  相似文献   

5.
Stimulation of glycogen-targeted protein phosphatase 1 (PP1) activity by insulin contributes to the dephosphorylation and activation of hepatic glycogen synthase (GS) leading to an increase in glycogen synthesis. The glycogen-targeting subunits of PP1, GL and R5/PTG, are downregulated in the livers of diabetic rodents and restored by insulin treatment. We show here that the mammalian gene PPP1R3E encodes a novel glycogen-targeting subunit of PP1 that is expressed in rodent liver. The phosphatase activity associated with R3E is slightly higher than that associated with R5/PTG and it is downregulated in streptozotocin-induced diabetes by 60-70% and restored by insulin treatment. Surprisingly, although mRNA for R3E is most highly expressed in rat liver and heart muscle, with only low levels in skeletal muscle, R3E mRNA is most abundant in human skeletal muscle and heart tissues with barely detectable levels in human liver. This species-specific difference in R3E mRNA expression has similarities to the high level of expression of GL mRNA in human but not rodent skeletal muscle. The observations imply that the mechanisms by which insulin regulates glycogen synthesis in liver and skeletal muscle are different in rodents and humans.  相似文献   

6.
Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6-P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3 alpha and -beta genes are replaced with mutant forms (GSK3 alpha/beta S21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3 alpha/beta S21A/S21A/S9A/S9A mice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6-P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6-P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.  相似文献   

7.
Protein phosphatase-1 (PP1) plays an important role in the regulation of glycogen synthesis by insulin. Protein targeting to glycogen (PTG) enhances glycogen accumulation by increasing PP1 activity against glycogen-metabolizing enzymes. However, the specificity of PTG's effects on cellular dephosphorylation and glucose metabolism is unclear. Overexpression of PTG in 3T3-L1 adipocytes using a doxycycline-controllable adenoviral construct resulted in a 10-20-fold increase in PTG levels and an 8-fold increase in glycogen levels. Inclusion of 1 microg/ml doxycycline in the media suppressed PTG expression, and fully reversed all PTG-dependent effects. Infection of 3T3-L1 adipocytes with the PTG adenovirus caused a marked dephosphorylation and activation of glycogen synthase. The effects of PTG seemed specific, because basal and insulin-stimulated phosphorylation of a variety of signaling proteins was unaffected. Indeed, glycogen synthase was the predominant protein whose phosphorylation state was decreased in 32P-labeled cells. PTG overexpression did not alter PP1 protein levels but increased PP1 activity 6-fold against phosphorylase in vitro. In contrast, there was no change in PP1 activity measured using myelin basic protein, suggesting that PTG overexpression specifically directed PP1 activity against glycogen-metabolizing enzymes. To investigate the metabolic consequences of altering PTG levels, glucose uptake and storage in 3T3-L1 adipocytes was measured. PTG overexpression did not affect 2-deoxy-glucose transport rates in basal and insulin-stimulated cells but dramatically enhanced glycogen synthesis rates under both conditions. Despite the large increases in cellular glucose flux upon PTG overexpression, basal and insulin-stimulated glucose incorporation into lipid were unchanged. Cumulatively, these data indicate that PTG overexpression in 3T3-L1 adipocytes discretely stimulates PP1 activity against glycogen synthase and phosphorylase, resulting in a marked and specific increase in glucose uptake and storage as glycogen.  相似文献   

8.
In skeletal muscle both insulin and contractile activity are physiological stimuli for glycogen synthesis, which is thought to result in part from the dephosphorylation and activation of glycogen synthase (GS). PP1G/R(GL)(G(M)) is a glycogen/sarcoplasmic reticulum-associated type 1 phosphatase that was originally postulated to mediate insulin control of glycogen metabolism. However, we recently showed (Suzuki, Y., Lanner, C., Kim, J.-H., Vilardo, P. G., Zhang, H., Jie Yang, J., Cooper, L. D., Steele, M., Kennedy, A., Bock, C., Scrimgeour, A., Lawrence, J. C. Jr., L., and DePaoli-Roach, A. A. (2001) Mol. Cell. Biol. 21, 2683-2694) that insulin activates GS in muscle of R(GL)(G(M)) knockout (KO) mice similarly to the wild type (WT). To determine whether PP1G is involved in glycogen metabolism during muscle contractions, R(GL) KO and overexpressors (OE) were subjected to two models of contraction, in vivo treadmill running and in situ electrical stimulation. Both procedures resulted in a 2-fold increase in the GS -/+ glucose-6-P activity ratio in WT mice, but this response was completely absent in the KO mice. The KO mice, which also have a reduced GS activity associated with significantly reduced basal glycogen levels, exhibited impaired maximal exercise capacity, but contraction-induced activation of glucose transport was unaffected. The R(GL) OE mice are characterized by enhanced GS activity ratio and an approximately 3-4-fold increase in glycogen content in skeletal muscle. These animals were able to tolerate exercise normally. Stimulation of GS and glucose uptake following muscle contraction was not significantly different as compared with WT littermates. These results indicate that although PP1G/R(GL) is not necessary for activation of GS by insulin, it is essential for regulation of glycogen metabolism under basal conditions and in response to contractile activity, and may explain the reduced muscle glycogen content in the R(GL) KO mice, despite the normal insulin activation of GS.  相似文献   

9.
Insulin secretion from pancreatic beta-cells has to be tightly regulated to ensure accurate glucose homeostasis. The capacity of beta-cells to respond to extracellular stimulation is determined by several signaling pathways. One important feature of these pathways is phosphorylation and subsequent dephosphorylation of a wide range of cellular substrates. Protein phosphatase 1 (PP1) is a major eukaryotic serine/threonine protein phosphatase that controls a multitude of physiological processes. We have investigated the expression and cellular distribution of two endogenous inhibitors of PP1 activity in beta-cells. RT-PCR, Western blotting, and immunohistochemistry showed that DARPP-32 and inhibitor-1 are present in insulin-secreting endocrine beta-cells. Subcellular fractionation of mouse islets revealed that both PP1 inhibitors predominantly localized to cytosol-enriched fractions. Inhibitor-1 was also present in fractions containing plasma membrane-associated proteins. These data indicate a potential role for DARPP-32 and inhibitor-1 in the regulation of PP1 activity in pancreatic beta-cell stimulus-secretion coupling.  相似文献   

10.
Neurotensin modulates dopaminergic transmission in the nigrostriatal system. DARPP-32, a dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cAMP-dependent protein kinase, resulting in its conversion into a potent inhibitor of protein phosphatase-1 (PP 1). Here, we examined the effect of neurotensin on DARPP-32 Thr34 phosphorylation using mouse neostriatal slices. Neurotensin stimulated DARPP-32 Thr34 phosphorylation by 4-7-fold with a K(0.5) of approximately 50 nM. The effect of neurotensin was antagonized by a combined neurotensin receptor type-1 (NTR1)/type-2 (NTR2) antagonist, SR142948. It was not antagonized by a NTR1 antagonist, SR48692 or by a NTR2 antagonist, levocabastine; neither was it antagonized by the two combined. Pretreatment with TTX or cobalt abolished the effect of neurotensin. The effect of neurotensin was antagonized by a dopamine D1 antagonist, SCH23390, and by ionotropic glutamate receptor antagonists, MK801 and CNQX. These results indicate that neurotensin stimulates the release of dopamine from nigrostriatal presynaptic terminals in an NMDA receptor- and AMPA receptor-dependent manner, leading to the increase in DARPP-32 Thr34 phosphorylation. Neurotensin stimulated the phosphorylation of Ser845 of the AMPA receptor GluR1 subunit in wild-type mice but not in DARPP-32 knockout mice. Thus, neurotensin, by stimulating the release of dopamine, activates the dopamine D1-receptor/cAMP/PKA/DARPP-32/PP 1 cascade.  相似文献   

11.
The activation of protein phosphastase-1 (PP1) by insulin plays a critical role in the regulation of glycogen metabolism. PTG is a PP1 glycogen-targeting protein, which also binds the PP1 substrates glycogen synthase, glycogen phosphorylase, and phosphorylase kinase (Printen, J. A., Brady, M. J., and Saltiel, A. R. (1997) Science 275, 1475-1478). Through a combination of deletion analysis and site-directed mutagenesis, the regions on PTG responsible for binding PP1 and its substrates have been delineated. Mutagenesis of Val-62 and Phe-64 in the highly conserved (K/R)VXF PP1-binding motif to alanine was sufficient to ablate PP1 binding to PTG. Phosphorylase kinase, glycogen synthase, and phosphorylase binding all mapped to the same C-terminal region of PTG. Mutagenesis of Asp-225 and Glu-228 to alanine completely blocked the interaction between PTG and these three enzymes, without affecting PP1 binding. Disruption of either PP1 or substrate binding to PTG blocked the stimulation of PP1 activity in vitro against phosphorylase, indicating that both binding sites may be important in PTG action. Transient overexpression of wild-type PTG in Chinese hamster ovary cells overexpressing the insulin receptor caused a 50-fold increase in glycogen levels. Expression of PTG mutants that do not bind PP1 had no effect on glycogen accumulation, indicating that PP1 targeting is essential for PTG function. Likewise, expression of the PTG mutants that do not bind PP1 substrates did not increase glycogen levels, indicating that PP1 targeting glycogen is not sufficient for the metabolic effects of PTG. These results cumulatively demonstrate that PTG serves as a molecular scaffold, allowing PP1 to recognize its substrates at the glycogen particle.  相似文献   

12.
The glycogen-associated protein phosphatase (PP1G/ R(GL))may play a central role in the hormonal control of glycogen metabolism in the skeletal muscle. Here, we investigated the in vivo epinephrine effect of glycogen metabolism in the skeletal muscle of the wild-type and R(GL) knockout mice. The administration of epinephrine increased blood glucose levels from 200 +/- +/- 20 to 325 +/- 20 mg/dl in both wild-type and knockout mice. Epinephrine decreased the glycogen synthase -/+ G6P ratio from 0.24 +/- 0.04 to 0.10 +/- 0.02 in the wild-type, and from 0.17 +/- 0.02 to 0.06 +/- 0.01 in the knockout mice. Conversely, the glycogen phosphorylase activity ratio increased from 0.21 +/- 0.04 to 0.65 +/- 0.07 and from 0.30 +/- 0.04 to 0.81 +/- 0.06 in the epinephrine treated wild-type and knockout mice respectively. The glycogen content of the knockout mice was substantially lower (27 percent) than that of both wild-type mice; and epinephrine decreased glycogen content in the wild-type and knockout mice. Also, in Western blot analysis there was no compensation of the other glycogen targeting components PTG/R5 and R6 in the knockout mice compared with the wild-type. Therefore, R(GL) is not required for the epinephrine stimulation of glycogen metabolism, and rather another phosphatase and/or regulatory subunit appears to be involved.  相似文献   

13.
The glycogen-associated regulatory subunit of protein phosphatase-1 (PP-1G) plays a major role in insulin-stimulated glycogen synthesis and thus the regulation of nonoxidative glucose disposal in skeletal muscle. In a general population of Caucasians a polymorphism at codon 905 of PP-1G from an aspartate to tyrosine has been reported to be associated with insulin resistance and hypersecretion. In this report functional studies were performed on rat skeletal muscle L6 cells stably transfected with an Asp905Tyr mutant PP-1G to evaluate the impact of this mutation on cellular responsiveness to insulin and cAMP. Although transfection resulted in a 3-fold increase in mutant PP-1G subunit expression, basal and insulin-stimulated PP-1 catalytic activities were decreased when compared with L6 cells transfected with wild-type PP-1G. The Asp905Tyr mutation resulted in an increase in cellular sensitivity to cAMP agonist, resulting in an inhibition of insulin's stimulatory effect on glycogen synthesis. More importantly, low concentrations of (Bu)2cAMP completely reversed insulin's stimulatory effects on glycogen synthesis when added to insulin-treated cells expressing mutant PP-1G. This was due to a rapid activation of glycogen phosphorylase a and a simultaneous inactivation of glycogen synthase via cAMP-mediated reductions in insulin-stimulated PP-1 catalytic activities. We conclude that an Asp905Tyr mutation of PP-1G is accompanied by a relative increase in sensitivity to cAMP agonists as well as a diminished capacity of the mutant PP-1G to effectively mediate the inhibitory effects of insulin on glycogen breakdown via PP-1 activation.  相似文献   

14.
15.
The effects of insulin and epinephrine on the phosphorylation of glycogen synthase were investigated using rat hemidiaphragms incubated with [32P]phosphate. Antibodies against rabbit skeletal muscle glycogen synthase were used for the rapid purification of the 32P-labeled enzyme under conditions that prevented changes in its state of phosphorylation. The purified material migrated as a single radioactive species (Mapp = 90,000) when subjected to electrophoresis in sodium dodecyl sulfate. Insulin decreased the [32P]phosphate content of glycogen synthase. This effect occurred rapidly (within 15 min) and was observed with physiological concentrations of insulin (25 microunits/ml). The amount of [32P]phosphate removed from glycogen synthase by either different concentrations of insulin or times of incubation with the hormone was well correlated to the extent to which the enzyme was activated. Epinephrine (10 microM) inactivated glycogen synthase and increased its content of [32P]phosphate by about 50%. Cleavage of the immunoprecipitated enzyme with cyanogen bromide yielded two major 32P-labeled fragments of apparent molecular weights equal to approximately 28,000 and 15,000. The larger fragment (Fragment II) displayed electrophoretic heterogeneity similar to that observed with the corresponding CNBr fragment (CB-2) from purified rabbit skeletal muscle glycogen synthase phosphorylated by different protein kinases. Epinephrine increased [32P]phosphate content of both fragments; however, the increase in the radioactivity of the smaller fragment (Fragment I) was more pronounced. Insulin decreased the amount of [32P] phosphate present in Fragments I and II by about 40%. The results presented provide direct evidence that both insulin and epinephrine control glycogen synthase activity by regulating the phosphate present at multiple sites on the enzyme.  相似文献   

16.
We have investigated the effects of insulin on the phosphorylation of glycogen phosphorylase in skeletal muscle. Rat epitrochlearis muscles were incubated in vitro with 32Pi to label cellular phosphoproteins, before being treated with hormones. Phosphorylase, phosphorylase kinase, and glycogen synthase were immunoprecipitated under conditions that prevented changes in their phosphorylation states. Based on measurements of the activity ratio (-AMP/+AMP) and the 32P content of phosphorylase, 4-8% of the phosphorylase in untreated muscles appeared to be phosphorylated. Epinephrine promoted increases of approximately 4-fold in the 32P content and activity ratio. Neither these effects nor the epinephrine-stimulated increases in phosphorylation of glycogen synthase and phosphorylase kinase were attenuated by insulin. However, insulin at physiological concentrations rapidly decreased the 32P content of phosphorylase in muscles incubated without epinephrine. Results from peptide mapping experiments indicate that phosphorylase was phosphorylated at a single site in both control and insulin on phosphorylase represented a decrease in 32P of approximately 50%. By comparison, the 32P content of glycogen synthase and the beta subunit of phosphorylase kinase were decreased by only 20 and 16%, respectively; the 32P content of the kinase alpha subunit was not affected by insulin. The results provide direct evidence that insulin decreases the amount of phosphate in phosphorylase and phosphorylase kinase. These findings have important implications with respect to both the regulation of glycogen metabolism in skeletal muscle and the mechanism of insulin action.  相似文献   

17.
Glucocorticoids cause insulin resistance in skeletal muscle. The aims of the present study were to investigate the effects of contraction on glucose uptake, insulin signaling, and regulation of glycogen synthesis in skeletal muscles from rats treated with the glucocorticoid analog dexamethasone (1 mg x kg(-1) x day(-1) ip for 12 days). Insulin resistance in dexamethasone-treated rats was confirmed by reduced insulin-stimulated glucose uptake (approximately 35%), glycogen synthesis (approximately 70%), glycogen synthase activation (approximately 80%), and PKB Ser(473) phosphorylation (approximately 40%). Chronic dexamethasone treatment did not impair glucose uptake during contraction in soleus or epitrochlearis muscles. In epitrochlearis (but not in soleus), the presence of insulin during contraction enhanced glucose uptake to similar levels in control and dexamethasone-treated rats. Contraction also increased glycogen synthase fractional activity and dephosphorylated glycogen synthase at Ser(645), Ser(649), Ser(653), and Ser(657) normally in muscles from dexamethasone-treated rats. After contraction, insulin-stimulated glycogen synthesis was completely restored in epitrochlearis and improved in soleus from dexamethasone-treated rats. Contraction did not increase insulin-stimulated PKB Ser(473) or glycogen synthase kinase-3 (GSK-3) phosphorylation. Instead, contraction increased GSK-3beta Ser(9) phosphorylation in epitrochlearis (but not in soleus) in muscles from control and dexamethasone-treated rats. In conclusion, contraction stimulates glucose uptake normally in dexamethasone-induced insulin resistant muscles. After contraction, insulin's ability to stimulate glycogen synthesis was completely restored in epitrochlearis and improved in soleus from dexamethasone-treated rats.  相似文献   

18.
Glycogen synthase activity is increased in response to insulin and exercise in skeletal muscle. Part of the mechanism by which insulin stimulates glycogen synthesis may involve phosphorylation and activation of Akt, serine phosphorylation and deactivation of glycogen synthase kinase-3 (GSK-3), leading to dephosphorylation and activation of glycogen synthase. To study Akt and GSK-3 regulation in muscle, time course experiments on the effects of insulin injection and treadmill running exercise were performed in hindlimb skeletal muscle from male rats. Both insulin and exercise increased glycogen synthase activity (%I-form) by 2-3-fold over basal. Insulin stimulation significantly increased Akt phosphorylation and activity, whereas exercise had no effect. The time course of the insulin-stimulated increase in Akt was closely matched by GSK-3alpha Ser(21) phosphorylation and a 40-60% decrease in GSK-3alpha and GSK-3beta activity. Exercise also deactivated GSK-3alpha and beta activity by 40-60%. However, in contrast to the effects of insulin, there was no change in Ser(21) phosphorylation in response to exercise. Tyrosine dephosphorylation of GSK-3, another putative mechanism for GSK-3 deactivation, did not occur with insulin or exercise. These data suggest the following: 1) GSK-3 is constitutively active and tyrosine phosphorylated under basal conditions in skeletal muscle, 2) both exercise and insulin are effective regulators of GSK-3 activity in vivo, 3) the insulin-induced deactivation of GSK-3 occurs in response to increased Akt activity and GSK-3 serine phosphorylation, and 4) there is an Akt-independent mechanism for deactivation of GSK-3 in skeletal muscle.  相似文献   

19.
In insulin-sensitive L6 myocytes, insulin stimulated glycogen synthesis in a dose-dependent manner and lithium further stimulated glycogen synthesis at all insulin concentrations. Lithium alone at 20 mM stimulated glycogen synthesis to the degree similar to the maximal insulin response. Effects of lithium and insulin were fully additive for both glycogen synthesis and glycogen synthase activity. In L6 myocytes, insulin increased phosphorylation of Akt1 and glycogen synthase kinase-3 alpha and beta (GSK-3 alpha and beta), resulting in its activation and inactivation, respectively. Unlike insulin, lithium directly inhibited GSK-3 (both alpha and beta) without affecting phosphorylation of GSK-3. Moreover, lithium in vitro could further inhibit enzyme activity of GSK-3 (both alpha and beta) that was isolated from insulin-stimulated cells (thus already phosphorylated and inactivated by insulin). In summary, insulin increases glycogen synthesis by the Akt1/GSK-3/glycogen synthase pathway, but lithium increases glycogen synthesis by direct inhibition of GSK-3 in L6 myocytes. Inhibitory effects of lithium and insulin on GSK-3 (both alpha and beta) were additive, which may account, at least in part, for their additive effects on glycogen synthase activity and glycogen synthesis in L6 myocytes.  相似文献   

20.
Previous studies showed an insulin-"desensitizing" action of IL-6 on glycogen synthesis in hepatocytes. We recently found no inhibition of the proximal steps of the insulin signal cascade in human skeletal muscle cells. Because these data indicate a possible tissue-specific effect of IL-6, we investigated the influence of IL-6 on insulin-stimulated glycogen synthesis in these cells. At first, we found that incubation of the cells with 20 ng/ml IL-6 alone induced phosphorylation of Ser473 of Akt, but not of Thr308 time dependently and we observed that IL-6 augments insulin-induced Ser473 and Thr308 phosphorylation in the low nanomolar range of insulin. Moreover, IL-6 increased insulin-stimulated phosphorylation of glycogen synthase kinase-3. Accordingly, IL-6 enhanced glycogen synthesis in the presence of 3 and 10 nM insulin, whereas IL-6 alone had only a marginal effect. IL-6 treatment of C57Bl/6 mice readily stimulated phosphorylation of Ser473 in skeletal muscle. Our result that IL-6 did not induce Ser473 phosphorylation in the liver of these mice suggests a tissue-specific effect. Together, our data demonstrate a novel insulin-sensitizing function of IL-6 on glycogen synthesis in skeletal muscle cells and indicate that IL-6 exerts cell/tissue-specific effects on insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号