首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avoiding water loss for insects is critical for survival. Selection for reduced water loss will depend on trade-offs between resources allocated for reproduction and those allocated for resisting desiccation. However, we lack knowledge on how selection for desiccation resistance can affect the male ejaculate. Furthermore, as male ejaculate composition is complex, desiccation resistant females could evolve traits that enable them to derive longevity benefits from mating. Here, we assessed how selection for desiccation resistance impacts male testes and accessory gland size, protein content of these organs, female sperm storage and male ability to inhibit female remating behavior, in the Mexican fruit fly Anastrepha ludens. Additionally, we tested if mating increased longevity and fecundity in desiccation resistant females. Males selected for resistance to desiccation stress had smaller accessory glands and seminal vesicles and females mating with these males stored less sperm compared to control males. Females mating with resistant males had lower fecundity compared to females mating with control males. Desiccation resistant females lived longer than control females, yet this was irrespective of mating. Rapid evolutionary responses to hydric stress can have correlated effects in reproductive capabilities, which are not restricted to pre-copulatory traits. Trade-offs between resistance to desiccation stress are reflected in decreased allocation of resources to reproductive organs. Thus, production of the ejaculate may be costly for A. ludens males. Knowledge on the evolution of ejaculate traits and reproductive organ size in response to directional selection for desiccation resistance, will aid our understanding of differential sex-specific responses to environmental stress.  相似文献   

2.
Speciation involves the evolution of reproductive isolation between populations. One potentially important mechanism is the evolution of pre- or postzygotic isolation between populations as a by-product of adaptation to different environments. In this paper, we tested for assortative mating between allopatric stickleback populations adapted to different ecological niches. Our experimental design controlled for interpopulation interactions and non-adaptive explanations for assortative mating. We found that prezygotic isolation was surprisingly strong: when given a choice, the majority of matings occurred between individuals from similar environments. Our results indicate that the by-product mechanism is a potent source of reproductive isolation, and likely contributed to the origin of sympatric species of sticklebacks.  相似文献   

3.
Rapid evolutionary change over a few generations has been documented in natural populations. Such changes are observed as organisms invade new environments, and they are often triggered by changed interspecific interactions, such as differences in predation regimes. However, in spite of increased recognition of antagonistic male-female mating interactions, there is very limited evidence that such intraspecific interactions could cause rapid evolutionary dynamics in nature. This is because ecological and longitudinal data from natural populations have been lacking. Here we show that in a color-polymorphic damselfly species, male-female mating interactions lead to rapid evolutionary change in morph frequencies between generations. Field data and computer simulations indicate that these changes are driven by sexual conflict, in which morph fecundities are negatively affected by frequency- and density-dependent male mating harassment. These frequency-dependent processes prevent population divergence by maintaining a female polymorphism in most populations. Although these results contrast with the traditional view of how sexual conflict enhances the rate of population divergence, they are consistent with a recent theoretical model of how females may form discrete genetic clusters in response to male mating harassment.  相似文献   

4.
OMKAR  Geetanjali MISHRA 《昆虫学报》2014,57(10):1180-1187
【目的】尽管一雌多雄在瓢虫科中常见,但各研究中获得的数据不足以解释雌虫多次交配和一雌多雄的一般适应性意义或适合度后果。本研究以温度为胁迫因子,旨在评价一雌多雄的某些益处(如增加的适合度)是否可传递给后代。【方法】本研究检测了黄斑盘瓢虫Coelophora saucia (Mulsant) 3种交配处理中的适合度:一雌一雄(与同一雄虫交配5次,1次/d),先后一雌多雄(与5头不同的雄虫依次交配5次,即每天与新的雄虫交配1次),以及同时一雌多雄(放进5头雄虫,任由雌虫选择雄虫,交配5次,1次/d)。观察了各交配处理不同温度下(25, 27和 30℃)繁殖力、卵的育性、后代发育和存活。【结果】结果表明,经历一雌多雄然后进行交配选择或竞争的雌性的繁殖能力最强,后代能在更广温度范围内最好地适应发育和存活。但先后一雌多雄交配的雌性与一雌一雄交配的雌性的繁殖能力相似。【结论】结果说明,在无交配选择或雄性竞争的条件下,一雌多雄的益处不明显。这可能是由于在依次射精的雄性间存在精子竞争,或由于雌性的隐性选择。据我们所知,本研究中观察发现的无交配选择时不表现一雌多雄的益处的现象,之前在昆虫中未观察到过。  相似文献   

5.
Models of age-related mate choice predict female preference for older males as they have proven survival ability. However, these models rarely address differences in sperm age and male mating history when evaluating the potential benefits to females from older partners. We used a novel experimental design to assess simultaneously the relative importance of these three parameters in the hide beetle, Dermestes maculatus. In a two-part experiment we first explored age-related male mating success and subsequently examined the consequences of male age, sperm age and male mating history on female fecundity and fertilization success. In a competitive mating environment, intermediate-age males gained significantly higher mating success than younger or older males. To test the consequences for females of aged-related male mating success, a second set of females were mated to males varying in age (young, intermediate-age and old), in numbers of matings and in timing of the most recent mating. We found that male age had a significant impact on female fecundity and fertilization success. Females mated to intermediate-age males laid more eggs and attained consistently higher levels of fertilization success than females with young and old mates. A male's previous mating history determined his current reproductive effort; virgin males spent longer in copula than males with prior mating opportunities. However, differences in copulation duration did not translate into increased fecundity or fertilization success. There was also little evidence to suggest that fertilization success was dependent on the age of a male's sperm. The experiment highlights the potential direct benefits accrued by females through mating with particular aged males. Such benefits are largely ignored by traditional viability models of age-related male mating success.  相似文献   

6.
Sexual selection can lead to rapid divergence in reproductive characters. Recent studies have indicated that postmating events, such as sperm precedence, may play a key role in speciation. Here, we stress that other components of postmating sexual selection may be involved in the evolution of reproductive isolation. One of these is the reproductive investment made by females after mating (i.e., differential allocation). We performed an experiment designed to assess genetic divergence in the effects of mating on female reproductive performance in flour beetles, Tribolium castaneum. Females were mated to males of three different wild-type genotypes at two different frequencies, in all possible reciprocal combinations. Male genotype affected all aspects of female reproduction, through its effects on female longevity, total offspring production, reproductive rate, mating rate, and fertility. Moreover, male and female genotype interacted in their effects on offspring production and reproductive rate. We use the pattern of these interactions to discuss the evolutionary process of divergence and suggest that the pattern is most consistent with that expected if divergence was driven by sexually antagonistic coevolution. In particular, the fact that females exhibited a relatively weak response to males with which they were coevolved suggests that females have evolved resistance to male gonadotropic signals/stimuli.  相似文献   

7.
Evolutionary changes in traits that affect both ecological divergence and mating signals could lead to reproductive isolation and the formation of new species. Insect cuticular hydrocarbons (CHCs) are potential examples of such dual traits. They form a waxy layer on the cuticle of the insect to maintain water balance and prevent desiccation, while also acting as signaling molecules in mate recognition and chemical communication. Because the synthesis of these hydrocarbons in insect oenocytes occurs through a common biochemical pathway, natural or sexual selection on one role may affect the other. In this review, we explore how ecological divergence in insect CHCs can lead to divergence in mating signals and reproductive isolation. We suggest that the evolution of insect CHCs may be ripe models for understanding ecological speciation.  相似文献   

8.
Genetic and phenotypic variation in female response towards male mating attempts has been found in several laboratory studies, demonstrating sexually antagonistic co-evolution driven by mating costs on female fitness. Theoretical models suggest that the type and degree of genetic variation in female resistance could affect the evolutionary outcome of sexually antagonistic mating interactions, resulting in either rapid development of reproductive isolation and speciation or genetic clustering and female sexual polymorphisms. However, evidence for genetic variation of this kind in natural populations of non-model organisms is very limited. Likewise, we lack knowledge on female fecundity-consequences of matings and the degree of male mating harassment in natural settings. Here we present such data from natural populations of a colour polymorphic damselfly. Using a novel experimental technique of colour dusting males in the field, we show that heritable female colour morphs differ in their propensity to accept male mating attempts. These morphs also differ in their degree of resistance towards male mating attempts, the number of realized matings and in their fecundity-tolerance to matings and mating attempts. These results show that there may be genetic variation in both resistance and tolerance to male mating attempts (fitness consequences of matings) in natural populations, similar to the situation in plant-pathogen resistance systems. Male mating harassment could promote the maintenance of a sexual mating polymorphism in females, one of few empirical examples of sympatric genetic clusters maintained by sexual conflict.  相似文献   

9.
Between-individual variance in potential reproductive rate theoretically creates a load in reproducing populations by driving sexual selection of male traits for winning competitions, and female traits for resisting the costs of multiple mating. Here, using replicated experimental evolution under divergent operational sex ratios (OSR, 9:1 or 1:6 ♀:♂) we empirically identified the parallel reproductive fitness consequences for females and males in the promiscuous flour beetle Tribolium castaneum. Our results revealed clear evidence that sexual conflict resides within the T. castaneum mating system. After 20 generations of selection, females from female-biased OSRs became vulnerable to multiple mating, and showed a steep decrease in reproductive fitness with an increasing number of control males. In contrast, females from male-biased OSRs showed no change in reproductive fitness, irrespective of male numbers. The divergence in reproductive output was not explained by variation in female mortality. Parallel assays revealed that males also responded to experimental evolution: individuals from male-biased OSRs obtained 27% greater reproductive success across 7-day competition for females with a control male rival, compared to males from the female-biased lines. Subsequent assays suggest that these differences were not due to postcopulatory sperm competitiveness, but to precopulatory/copulatory competitive male mating behavior.  相似文献   

10.
Sexual coevolution occurs when changes in the phenotype of one sex select for changes in the other sex. We can identify the "footprint" of this coevolution by mating males and females from different populations and testing for a male-female genotype interaction for a trait associated with male (or female) performance. Here we mated male Drosophila melanogaster from five different continents with females from their own and different continents to test for a male-female interaction for mating speed, a pre-copulatory trait, and female reproductive investment, a post-copulatory trait. We found a strong male-female interaction for mating speed, consistent with previous studies using different populations, suggesting that the potential for sexual coevolution for this trait is present in this species. In contrast, we did not detect a male-female interaction for female reproductive investment. Although a male-female interaction for mating speed is compatible with the hypothesis of ongoing sexual coevolution, the nature of our experimental design is unable to exclude alternate explanations. Thus, the evolutionary mechanisms promoting male-female genotype interactions for pre-copulatory mating traits in D. melanogaster warrant further investigation.  相似文献   

11.
A trend for larger males to obtain a disproportionately high number of matings, as occurs in many animal populations, typically is attributed either to female choice or success in male-male rivalry; an alternative mechanism, that larger males are better able to coercively inseminate females, has received much less attention. For example, previous studies on garter snakes (Thamnophis sirtalis parietalis) at communal dens in Manitoba have shown that the mating benefit to larger body size in males is due to size-dependent advantages in male-male rivalry. However, this previous work ignored the possibility that larger males may obtain more matings because of male-female interactions. In staged trials within outdoor arenas, larger body size enhanced male mating success regardless of whether a rival male was present. The mechanism involved was coercion rather than female choice, because mating occurred most often (and soonest) in females that were least able to resist courtship-induced hypoxic stress. Males do physically displace rivals from optimal positions in the mating ball, and larger males are better able to resist such displacement. Nonetheless, larger body size enhances male mating success even in the absence of such male-male interactions. Thus, even in mating systems where males compete physically and where larger body size confers a significant advantage in male-male competition, the actual selective force for larger body size in males may relate to forcible insemination of unreceptive females. Experimental studies are needed to determine whether the same situation occurs in other organisms in which body-size advantages have been attributed to male-male rather than male-female interactions.  相似文献   

12.
Abstract Most work on adaptive speciation to date has focused on the role of low hybrid fitness as the force driving reinforcement (the evolution of premating isolation after secondary contact that reduces the likelihood of matings between populations). However, recent theoretical work has shown that postmating, prezygotic incompatibilities may also be important in driving premating isolation. We quantified premating, postmating-prezygotic, and early postzygotic fitness effects in crosses among three populations: Drosophila persimilis, D. pseudoobscura USA (sympatric to D. persimilis ), and D. pseudoobscura Bogotá (allopatric to D. persimilis ). Interspecific matings were more likely to fail when they involved the sympatric populations than when they involved the allopatric populations, consistent with reinforcement. We also found that failure rate in sympatric mating trials depended on whether D. persimilis females were paired with D. pseudoobscura males or the reverse. This asymmetry most likely indicates differences in discrimination against heterospecific males by females. By measuring egg laying rate, fertilization success and hatching success, we also compared components of postmating-prezygotic and early postzygotic isolation. Postmating-prezygotic fitness costs were small and not distinguishable between hetero- and conspecific crosses. Early postzygotic fitness effects due to hatching success differences were also small in between-population crosses. There was, however, a postzygotic fitness effect that may have resulted from an X-linked allele found in one of the two strains of D. pseudoobscura USA. We conclude that the postmating-prezygotic fitness costs we measured probably did not drive premating isolation in these species. Premating isolation is most likely driven in sympatric populations by previously known hybrid male sterility.  相似文献   

13.
A few matings are sufficient for females to maximize their reproductive success, while male fitness usually increases with an increase in the number of matings. However, females of a majority of insects mate multiple times. This presents an evolutionary puzzle and brings an understanding that some benefits are associated with it. Therefore, to understand the costs and benefits of multiple matings, we performed an experimental study in a ladybird beetle, Anegleis cardoni and observed reproductive performance and longevity of adults as direct benefits and offspring development and survival as indirect benefits. This is the first time that the effect of multiple matings is being evaluated on offspring development and survival in a ladybird beetle. Results clearly reveal that females directly benefit from multiple matings in terms of increased lifetime fecundity and egg viability, but their longevity decreases with increased number of matings. Best-fit curves on lifetime fecundity and percent egg viability revealed that maximum fecundity and egg viability were both attained after 17 matings. Developmental duration of offspring decreased and their survival increased with an increase in number of matings. Developmental duration was shortest after 20 matings and longest after a single mating.  相似文献   

14.
Competition for females generally results in some males adopting alternative reproductive tactics to acquire matings. For fish, the ecological and evolutionary consequences of these tactics are not well understood because of an inability to link directly the interactions of individuals on the breeding grounds with genetic data. This study combines behavioural observations with genetic estimates of male reproductive success within an intensively studied wild population of lacustrine brook trout (Salvelinus fontinalis). Male brook trout exhibit a conditional reproductive strategy with small males adopting a peripheral position to that of larger dominant males in their proximity to spawning females. Parentage analysis of eggs collected from wild redds confirmed the reproductive success of individual males. Males relegated to peripheral positions during spawning participated frequently in spawning events, but in most cases the first male to spawn was the sole contributor, and no more than two males contributed successfully to a single brood. While behavioural observations of salmonines suggests that reproduction is partitioned among males in a manner dependent upon body size and proximity to spawning females, the genetic evidence from this study suggests a more limited distribution of reproductive success in the field. The genetic contributions of male brook trout are highly skewed towards larger males for this population. A review of the salmonine literature suggests little difference in individual reproductive success for males exhibiting size-related tactics within a conditional mating strategy vs. precocial maturation. Collectively, these genetic studies provide new insights on the evolution of alternative life histories among salmonines.  相似文献   

15.
Polyandry promotes enhanced offspring survival in decorated crickets   总被引:7,自引:0,他引:7  
Although female multiple mating is ubiquitous in insects, its adaptive significance remains poorly understood. Benefits to multiple mating can accrue via direct material benefits, indirect genetic benefits, or both. We investigated the effects of multiple mating in the decorated cricket, Gryllodes sigillatus, by simultaneously varying the number of times that females mated and the number of different males with which they mated, measuring aspects of female fecundity and elements of offspring performance and viability. Multiple matings resulted in enhanced female fitness relative to single matings when females mated with different partners, but not when females mated repeatedly with the same male. Specifically, polyandrous females produced significantly more offspring surviving to reproductive maturity than did monogamous females mating once or mating repeatedly with the same male. These results suggest that the benefit females gain from multiple mating is influenced primarily by genetic and not material benefits.  相似文献   

16.
A captive group of rhesus macaques (Macaca mulatta) was observed during the breeding season to determine if consortship behavior, rather than promiscuous matings, resulted in higher reproductive success for either partner. The 38 adult females in this group were observed “in consort” with the 5 adult or 4 subadult males on 179 occasions. Most of these consortships were short-term, lasting less than one day. Six females engaged in consortships with one male that spanned more than three days, but the majority of these long-term associations did not result in a pregnancy with that male. The term “consortship” has been traditionally accepted as a specific nonhuman primate mating pattern, but the exact nature of this behavioral pattern and its evolutionary importance have been less clearly understood. Consort behavior could be considered a precursor to a monogamous mating system if long-term exclusive sexual associations resulted in higher reproductive success for the participants. But this study demonstrates that for rhesus macaques, who exhibit both consort behavior and more promiscuous matings, there is no clear reproductive advantage to long-term consortships. In light of the inconsistent use of the term consortship, the possible adaptive significance of an exclusive male-female sexual association for the evolution of human mating patterns needs to be reevaluated.  相似文献   

17.
Sexual conflict is now recognised as an important driver of sexual trait evolution. However, due to their variable outcomes and effects on other fitness components, the detection of sexual conflicts on individual traits can be complicated. This difficulty is exemplified in the beetle Callosobruchus maculatus, where longer matings increase the size of nutritious ejaculates but simultaneously reduce female future receptivity. While previous studies show that females gain direct benefits from extended mating duration, females show conspicuous copulatory kicking behaviour, apparently to dislodge mating males prematurely. We explore the potential for sexual conflict by comparing several fitness components and remating propensity in pairs of full sibling females where each female mated with a male from an unrelated pair of full sibling males. For one female, matings were terminated at the onset of kicking, whereas the other’s matings remained uninterrupted. While fecundity (number of eggs) was similar between treatments, uninterrupted matings enhanced adult offspring numbers and fractionally also longevity. However, females whose matings were interrupted at the onset of kicking exhibited an increased propensity to remate. Since polyandry can benefit female fitness in this species, we argue that kicking, rather than being maladaptive, may indicate that females prefer remating over increased ejaculate size. It may thus be difficult to assess the presence of sexual conflict over contested traits such as mating duration when females face a trade off between direct benefits gained from one mating and indirect benefits from additional matings.  相似文献   

18.
Identifying the factors that contribute to the adaptive significance of mating preferences is one major goal of evolutionary research and is largely unresolved. Both direct and indirect benefits can contribute to mate choice evolution. Failure to consider the interaction between individual consequences of mate choice may obscure the opposing effects of individual costs and benefits. We investigate direct and indirect fitness effects of female choice in a desert fly (Drosophila mojavensis), a species where mating confers resistance to desiccation stress. Females prefer males that provide a direct benefit: greater resistance to desiccation stress. Mating preferences also appear to have indirect consequences: daughters of preferred males have lower reproductive success than daughters of unpreferred males, although additional experimentation will be needed to determine if the indirect consequences of female preferences actually arise from 'sexually antagonistic' variation. Nevertheless, the results are intriguing and are consistent with the hypothesis that an interaction between direct and indirect benefits maintains sexually antagonistic variation in these desert flies: increased desiccation resistance conferred by mating might offset the cost of producing low-fecundity daughters.  相似文献   

19.
We have examined the fitness consequences of random and potentially non-random matings within two populations taken from inside, and two from outside a hybrid zone in Chorthippus parallelus. When given the opportunity to mate non-randomly, females from all populations laid egg pods more quickly than females obliged to mate at random. A range of fitness parameters measured on the offspring did not show increased fitness following potential non-random mating for any population. However, in non-hybrid populations, the sons of non-randomly mated females had about twice the mating success of the sons of those females forced to mate at random, suggesting the existence of heritable variation for male reproductive success. Hybrid dysfunction did not occur amongst the offspring of randomly mated hybrid females, demonstrating that the lack of dysfunction within these populations is not due to the evolution of assortative mating within them.  相似文献   

20.
Most hypotheses related to the evolution of female‐biased extreme sexual size dimorphism (SSD) attribute the differences in the size of each sex to selection for reproduction, either through selection for increased female fecundity or selection for male increased mobility and faster development. Very few studies, however, have tested for direct fitness benefits associated with the latter – small male size. Mecaphesa celer is a crab spider with extreme SSD, whose males are less than half the size of females and often weigh 10 times less. Here, we test the hypotheses that larger size in females and smaller size in males are sexually selected through differential pre‐ and postcopulatory reproductive benefits. To do so, we tested the following predictions: matings between small males and large females are more likely to occur due to mate choice; females mated to small males are less likely to accept second copulation attempts; and matings between small males and large females will result in larger clutches of longer‐lived offspring. Following staged mating trials in the laboratory, we found no support for any of our predictions, suggesting that SSD in M. celer may not be driven by pre‐ or post‐reproductive fitness benefits to small males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号