首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most mammalian rotaviruses contain tripeptide amino acid sequences in outer capsid proteins VP4 and VP7 which have been shown to act as ligands for integrins alpha2beta1 and alpha4beta1. Peptides containing these sequences and monoclonal antibodies directed to these integrins block rotavirus infection of cells. Here we report that SA11 rotavirus binding to and infection of K562 cells expressing alpha2beta1 or alpha4beta1 integrins via transfection is increased over virus binding to and infection of cells transfected with alpha3 integrin or parent cells. The increased binding and growth were specifically blocked by a monoclonal antibody to the transfected integrin subunit but not by irrelevant antibodies. In our experiments, integrin activation with phorbol ester did not affect virus binding to cells. However, phorbol ester treatment of K562 parent and transfected cells induced endogenous gene expression of alpha2beta1 integrin, which was detectable by flow cytometry 16 h after treatment and quantitatively correlated with the increased level of SA11 virus growth observed after this time. Virus binding to K562 cells treated with phorbol ester 24 h previously and expressing alpha2beta1 was elevated over binding to control cells and was specifically blocked by the anti-alpha2 monoclonal antibody AK7. Virus growth in alpha4-transfected K562 cells which had also been induced to express alpha2beta1 integrin with phorbol ester occurred at a level approaching that in the permissive MA104 cell line. We therefore have demonstrated that two integrins, alpha2beta1 and alpha4beta1, are capable of acting as cellular receptors for SA11 rotavirus.  相似文献   

2.
Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5   总被引:2,自引:0,他引:2  
Rotavirus infection seems to be a multistep process in which the viruses are required to interact with several cell surface molecules to enter the cell. The virus spike protein VP4, which is cleaved by trypsin into two subunits, VP5 and VP8, is involved in some of these interactions. We have previously shown that the neuraminidase-sensitive rotavirus strain RRV initially attaches to a sialic acid-containing cell molecule through the VP8 subunit of VP4 and subsequently interacts with integrin alpha2beta1 through VP5. After these initial contacts, the virus interacts with at least two additional proteins located at the cell surface, the integrin alphavbeta3 and the heat shock cognate protein Hsc70. In this work, we have shown that rotavirus RRV and its neuraminidase-resistant variant nar3 interact with Hsc70 through a VP5 domain located between amino acids 642 and 658 of the protein. This conclusion is based on the observation that a recombinant protein comprising the 300 carboxy-terminal amino acids of VP5 binds specifically to Hsc70 and a synthetic peptide containing amino acids 642 to 658 competes with the binding of the RRV and nar3 viruses to the heat shock protein. The VP5 peptide also competed with the binding to Hsc70 of the recombinant VP5 protein, and an antibody to Hsc70 reduced the binding of the recombinant protein to the surface of MA104 cells. The fact that the synthetic peptide blocks the infectivity of rotaviruses RRV and nar3 but not their binding to cells indicates that the interaction of VP5 with Hsc70 most probably occurs at a postattachment step during the virus entry process.  相似文献   

3.
Theories of morphogenetic pattern formation have included Turing's chemical prepatterns, mechanochemical interactions, cell sorting, and other mechanisms involving guided motion or signalling of cells. Many of these theories presuppose long-range cellular communication or other controls such as chemical concentration fields. However, the possibility that direct interactions between cells can lead to order and structure has not been seriously investigated in mathematical models. In this paper we consider this possibility, with emphasis on cells that reorient and align with each other when they come into contact. We show that such contact responses can account for the formation of multicellular patterns called parallel arrays. These patterns typically occur in tissue cultures of fibroblasts, and consist of clusters of cells sharing a common axis of orientation. Using predictions of a mathematical model and computer simulations of cell motion and interactions we show that contact responses alone, in the absence of other global controls, can promote the formation of these patterns. We suggest other situations in which patterns may result from direct cellular communication. Previous theories of morphogenesis are briefly reviewed and compared with this proposed mechanism.  相似文献   

4.
The chemokine receptors CCR5 and CXCR4 serve, in addition to CD4, as coreceptors for human immunodeficiency virus-1 (HIV-1), and infection with HIV-1 can cause dementia. In brain-derived cells, HIV-1 envelope glycoprotein gp120 initiates a signaling cascade that involves p38 mitogen-activated protein kinase and leads to neuronal cell death. Using mixed neuronal/glial cultures from rats and mice genetically deficient in one or both HIV coreceptors, we show here that CCR5, CXCR4 or both can mediate HIV/gp120 neurotoxicity depending on the viral strain. Paradoxically, we also found evidence for a CCR5-mediated neuroprotective pathway. We identify protein kinase Akt/PKB as an essential component of this pathway, which can be triggered by the CCR5 agonists macrophage inflammatory protein-1beta and regulated-and-normal-T-cell-expressed-and-secreted. Moreover, these CCR5 ligands prevent neuronal cell death induced by stromal cell-derived factor-1, a CXCR4 agonist. Both neurons and glia coexpress CXCR4 and CCR5. Ca2+ imaging experiments demonstrate that engagement of CCR5 prevents CXCR4-triggered increases in intracellular free Ca2+. This finding suggests that CCR5 ligands can protect neurons at least, in part, by modulating CXCR4-mediated toxicity through heterologous desensitization.  相似文献   

5.
Integrins alpha2beta1, alphaXbeta2, and alphaVbeta3 have been implicated in rotavirus cell attachment and entry. The virus spike protein VP4 contains the alpha2beta1 ligand sequence DGE at amino acid positions 308 to 310, and the outer capsid protein VP7 contains the alphaXbeta2 ligand sequence GPR. To determine the viral proteins and sequences involved and to define the roles of alpha2beta1, alphaXbeta2, and alphaVbeta3, we analyzed the ability of rotaviruses and their reassortants to use these integrins for cell binding and infection and the effect of peptides DGEA and GPRP on these events. Many laboratory-adapted human, monkey, and bovine viruses used integrins, whereas all porcine viruses were integrin independent. The integrin-using rotavirus strains each interacted with all three integrins. Integrin usage related to VP4 serotype independently of sialic acid usage. Analysis of rotavirus reassortants and assays of virus binding and infectivity in integrin-transfected cells showed that VP4 bound alpha2beta1, and VP7 interacted with alphaXbeta2 and alphaVbeta3 at a postbinding stage. DGEA inhibited rotavirus binding to alpha2beta1 and infectivity, whereas GPRP binding to alphaXbeta2 inhibited infectivity but not binding. The truncated VP5* subunit of VP4, expressed as a glutathione S-transferase fusion protein, bound the expressed alpha2 I domain. Alanine mutagenesis of D308 and G309 in VP5* eliminated VP5* binding to the alpha2 I domain. In a novel process, integrin-using viruses bind the alpha2 I domain of alpha2beta1 via DGE in VP4 and interact with alphaXbeta2 (via GPR) and alphaVbeta3 by using VP7 to facilitate cell entry and infection.  相似文献   

6.
Mapping the hemagglutination domain of rotaviruses.   总被引:6,自引:2,他引:4       下载免费PDF全文
Most strains of animal rotaviruses are able to agglutinate erythrocytes, and the surface protein VP4 is the virus hemagglutinin. To map the hemagglutination domain on VP4 while preserving the conformation of the protein, we constructed full-length chimeras between the VP4 genes of hemagglutinating (YM) and nonhemagglutinating (KU) rotavirus strains. The parental and chimeric genes were expressed in insect cells, and the recombinant VP4 proteins were evaluated for their capacity to agglutinate human type O erythrocytes. Three chimeric genes, encoding amino acids 1 to 208 (QKU), 93 to 208 (QC), and 93 to 776 (QYM) of the YM VP4 protein in a KU VP4 background, were constructed. YM VP4 and chimeras QKU and QC were shown to specifically hemagglutinate, indicating that the region between amino acids 93 and 208 of YM VP4 is sufficient to determine the hemagglutination activity of the protein.  相似文献   

7.
Bluetongue virus (BTV) is an arthropod-borne virus transmitted by Culicoides species to vertebrate hosts. The double-capsid virion is infectious for Culicoides vector and mammalian cells, while the inner core is infectious for only Culicoides-derived cells. The recently determined crystal structure of the BTV core has revealed an accessible RGD motif between amino acids 168 to 170 of the outer core protein VP7, whose structure and position would be consistent with a role in cell entry. To delineate the biological role of the RGD sequence within VP7, we have introduced point mutations in the RGD tripeptide and generated three recombinant baculoviruses, each expressing a mutant derivative of VP7 (VP7-AGD, VP7-ADL, and VP7-AGQ). Each expressed mutant protein was purified, and the oligomeric nature and secondary structure of each was compared with those of the wild-type (wt) VP7 molecule. Each mutant VP7 protein was used to generate empty core-like particles (CLPs) and were shown to be biochemically and morphologically identical to those of wt CLPs. However, when mutant CLPs were used in an in vitro cell binding assay, each showed reduced binding to Culicoides cells compared to wt CLPs. Twelve monoclonal antibodies (MAbs) was generated using purified VP7 or CLPs as a source of antigen and were utilized for epitope mapping with available chimeric VP7 molecules and the RGD mutants. Several MAbs bound to the RGD motif on the core, as shown by immunogold labeling and cryoelectron microscopy. RGD-specific MAb H1.5, but not those directed to other regions of the core, inhibited the binding activity of CLPs to the Culicoides cell surface. Together, these data indicate that the RGD motif present on BTV VP7 is responsible for Culicoides cell binding activity.  相似文献   

8.
Neisseria gonorrhoeae ( Ngo ) expressing the outer membrane protein OpaHSPG can adhere to and invade epithelial cells via binding to heparan sulphate proteoglycan (HSPG) receptors. In this study, we have investigated the role of syndecan-1 and syndecan-4, two members of the HSPG family, in the uptake of Ngo by epithelial cells. When overexpressed in HeLa cells, both syndecans co-localize with adherent Ngo on the host cell surface. This overexpression of syndecan-1 and syndecan-4 leads to a three- and sevenfold increase in Ngo invasion respectively. In contrast, transfection with the syndecan-1 and syndecan-4 mutant constructs lacking the intracellular domain results in an abrogation of the invasion process, characteristic of a dominant-negative mode of action. A concomitant loss of the capacity to mediate Ngo uptake was also observed with syndecan-4 mutant constructs carrying lesions in the dimerization motif necessary for the binding of protein kinase C (PKC) and phosphatidylinositol 4,5-bisphosphate (PIP2), and mutants that are deficient in a C-terminal EFYA amino acid motif responsible for binding to syntenin or CASK. We conclude that syndecan-1 and syndecan-4 can both mediate Ngo uptake into epithelial cells, and that their intracellular domains play a crucial role in this process, perhaps by mediating signal transduction or anchorage to the cytoskeleton.  相似文献   

9.
Bordetella pertussis attachment to host cells is a crucial step in colonization. In this study, we investigated the specificity of antibodies, induced either by vaccination or infection, capable of reducing bacterial adherence to respiratory epithelial cells. Both sera and purified anti-B. pertussis IgG or IgA fractions efficiently reduced attachment. This effect was found to be mediated mainly by fimbriae-specific antibodies. Antibodies with other specificities did not significantly interfere in the interaction of B. pertussis with respiratory epithelial cells, with the exception of antifilamentous hemaglutinin antibodies, which reduced bacterial attachment. However, this effect was smaller in magnitude than that observed in the presence of fimbriae-specific antibodies. The strong agglutinating activity of antifimbriae antibodies seems to be involved in this phenomenon.  相似文献   

10.
Skin-draining lymph nodes contain a number of dendritic cell (DC) subsets of different origins. Some of these are migratory, such as the skin-derived epidermal Langerhans cells and a separate dermal DC subset, whereas others are lymphoid resident in nature, such as the CD8+ DCs found throughout the lymphoid tissues. In this study, we examine the DC subset presentation of skin-derived self-Ag by migratory and lymphoid-resident DCs, both in the steady state and under conditions of local skin infection. We show that presentation of self-Ag is confined to skin-derived migrating DCs in both settings. Steady state presentation resulted in deletional T cell tolerance despite these DCs expressing a relatively mature phenotype as measured by traditional markers such as the level of MHC class II and CD86 expression. Thus, self-Ag can be carried to the draining lymph nodes by skin-derived DCs and there presented by these same cells for tolerization of the circulating T cell pool.  相似文献   

11.
12.
Rotavirus particles are activated for cell entry by trypsin cleavage of the outer capsid spike protein, VP4, into a hemagglutinin, VP8*, and a membrane penetration protein, VP5*. We have purified rhesus rotavirus VP4, expressed in baculovirus-infected insect cells. Purified VP4 is a soluble, elongated monomer, as determined by analytical ultracentrifugation. Trypsin cleaves purified VP4 at a number of sites that are protected on the virion and yields a heterogeneous group of protease-resistant cores of VP5*. The most abundant tryptic VP5* core is trimmed past the N terminus associated with activation for virus entry into cells. Sequential digestion of purified VP4 with chymotrypsin and trypsin generates homogeneous VP8* and VP5* cores (VP8CT and VP5CT, respectively), which have the authentic trypsin cleavages in the activation region. VP8CT is a soluble monomer composed primarily of beta-sheets. VP5CT forms sodium dodecyl sulfate-resistant dimers. These results suggest that trypsinization of rotavirus particles triggers a rearrangement in the VP5* region of VP4 to yield the dimeric spikes observed in icosahedral image reconstructions from electron cryomicroscopy of trypsinized rotavirus virions. The solubility of VP5CT and of trypsinized rotavirus particles suggests that the trypsin-triggered conformational change primes VP4 for a subsequent rearrangement that accomplishes membrane penetration. The domains of VP4 defined by protease analysis contain all mapped neutralizing epitopes, sialic acid binding residues, the heptad repeat region, and the membrane permeabilization region. This biochemical analysis of VP4 provides sequence-specific structural information that complements electron cryomicroscopy data and defines targets and strategies for atomic-resolution structural studies.  相似文献   

13.
14.
The efficient attachment of pseudorabies virus to cultured cells is dependent on an electrostatic interaction between negatively charged cell surface heparan sulfate and the viral envelope glycoprotein gC. Deletion of the first one-third of gC severely impairs virus attachment, but the mutant virions are still capable of entering cells and establishing an infection via a gC-independent pathway. This region of gC contains three clusters of positively charged amino acids that exactly or nearly conform to proposed consensus motifs for heparin-binding domains (HBDs), and the loss of one or more of these potential HBDs may be responsible for the observed attachment defect. To more directly show the involvement of HBDs in pseudorabies virus attachment to cells, we replaced the first one-third of gC with a single, biochemically defined HBD from apolipoprotein B-100. On the basis of the results of attachment, penetration, and heparin competition assays, the heterologous HBD mediated heparan sulfate-dependent virus attachment, but not to fully wild-type levels. Although the intermediate phenotype is not understood, the apolipoprotein B-100 HBD may represent the smallest defined amino acid sequence that promotes functional herpesvirus attachment to cultured cells.  相似文献   

15.
Very late Ag (VLA)-3, VLA-4, and VLA-5, belonging to the beta-1 subfamily of integrins, have been recently identified as receptors for different binding regions of fibronectin (FN). We have detected VLA-4 and VLA-5, but not VLA-3, on fresh CD3-, CD16+, CD56+ human NK cells by flow cytometry and immunochemical analyses using mAb directed against beta-1, alpha-3, alpha-4, and alpha-5 subunits. Binding assays, performed on FN-coated plates, showed that NK cells specifically adhere to FN and their binding capacity is increased by MgCl2 but not by CaCl2. Using as inhibitory probes a polyclonal antibody against the beta-1 chain of the human FN receptor, the synthetic peptide GRGDSP, which is able to inhibit cellular adhesion mediated by VLA-5, the CS1 fragment, which contains the principal adhesion site in the IIICS domain recognized by VLA-4, and functional mAb directed against alpha-4 or alpha-5 subunits, we show that both VLA-4 and VLA-5 mediate the adhesion of human NK cells to FN. The expression of these integrin receptors may be relevant for NK interaction with extracellular matrix components and other cell types.  相似文献   

16.
17.
18.
Sasaki T  Mann K  Timpl R 《FEBS letters》2001,505(1):173-178
The N-terminal domain of laminin alpha 4 chains corresponds to a short rod-like structure which after recombinant production was found to be modified by chondroitin sulfate. Substitution occurred mainly to a single serine in its N-terminal ASGDG sequence. A similar yet partial modification was also demonstrated for the alpha 4 chain present in extracts of adult mouse tissues. Antibodies to the fragment were useful to demonstrate a relatively high content of alpha 4 in several tissues and for the immunolocalization in various blood vessels, some basement membranes and interstitial regions.  相似文献   

19.
An undecane peptide (Gly-Ser-Pro-Gly-Ile-Pro-Gly-Ser-Thr-Gly-Met) was genetically attached to the N-terminus of ovomucoid third domain (DIII) to investigate structural characteristics of linear IgE and IgG (B cell) epitopes in DIII with respect to modulation of the immune response towards antigenicity and allergenicity. Balb/c mice were sensitized with native DIII, wild type recombinant DIII, and recombinant modified DIII containing the extra amino acid stretch. The immune responses to the antigens were compared using enzyme-linked immunosorbent assay. Interestingly, specific IgE and IgG levels were suppressed when the modified DIII was used as antigen. This was further confirmed by synthesizing immunodominant IgE and IgG epitopes of DIII on cellulose acetate membrane (SPOTs) and probing them with antibodies raised against DIII antigens. Anti-recombinant wild type DIII anti-serum showed strong binding activities to immunodominant IgE and IgG epitopes, while anti-modified DIII serum did not show any significant binding to the IgE and IgG epitopes. Thus, it is clearly demonstrated that the amino acid stretch in DIII is masking the immune reactive epitope. Genetical attachment of peptides into DIII was found to be effective in reducing the production of specific IgE and IgG antibodies in mice.  相似文献   

20.
The role of calcium-dependent protein kinases in the invasion of Toxoplasma gondii into its animal host cells was analyzed. KT5926, an inhibitor of calcium-dependent protein kinases in other systems, is known to block the motility of Toxoplasma tachyzoites and their attachment to host cells. In vivo, KT5926 blocks the phosphorylation of only three parasite proteins, and in parasite extracts only a single KT5926-sensitive protein kinase activity was detected. This activity was calcium-dependent but did not require calmodulin. In a search for calcium-dependent protein kinases in Toxoplasma, two members of the class of calmodulin-like domain protein kinases (CDPKs) were detected. TgCDPK2 was only expressed at the mRNA level in tachyzoites, but no protein was detected. TgCDPK1 protein was expressed in Toxoplasma tachyzoites and cofractionated precisely with the peak of KT5926-sensitive protein kinase activity. TgCDPK1 kinase activity was calcium-dependent but did not require calmodulin or phospholipids. TgCDPK1 was found to be inhibited effectively by KT5926 at concentrations that block parasite attachment to host cells. In vitro, TgCDPK1 phosphorylated three parasite proteins that migrated identical to the three KT5926-sensitive phosphoproteins detected in vivo. Based on these observations, a central role is suggested for TgCDPK1 in regulating Toxoplasma motility and host cell invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号