首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《The Journal of cell biology》1993,121(6):1433-1444
SPARC (osteonectin/BM40) is a secreted protein that modifies the interaction of cells with extracellular matrix (ECM). When we added SPARC to cultured rabbit synovial fibroblasts and analyzed the secreted proteins, we observed an increase in the expression of three metalloproteinases--collagenase, stromelysin, and the 92-kD gelatinase-- that together can degrade both interstitial and basement membrane matrices. We further characterized the regulation of one of these metalloproteinases, collagenase, and showed that both collagenase mRNA and protein are upregulated in fibroblasts treated with SPARC. Experiments with synthetic SPARC peptides indicated that a region in the neutral alpha-helical domain III of the SPARC molecule, which previously had no described function, was involved in the regulation of collagenase expression by SPARC. A sequence in the carboxyl-terminal Ca(2+)-binding domain IV exhibited similar activity, but to a lesser extent. SPARC induced collagenase expression in cells plated on collagen types I, II, III, and V, and vitronectin, but not on collagen type IV. SPARC also increased collagenase expression in fibroblasts plated on ECM produced by smooth muscle cells, but not in fibroblasts plated on a basement membrane-like ECM from Engelbreth-Holm-Swarm sarcoma. Collagenase was induced within 4 h in cells treated with phorbol diesters or plated on fibronectin fragments, but was induced after 8 h in cells treated with SPARC. A number of proteins were transiently secreted by SPARC-treated cells within 6 h of treatment. Conditioned medium that was harvested from cultures 7 h after the addition of SPARC, and depleted of residual SPARC, induced collagenase expression in untreated fibroblasts; thus, part of the regulation of collagenase expression by SPARC appears to be indirect and proceeds through a secreted intermediate. Because the interactions of cells with ECM play an important role in regulation of cell behavior and tissue morphogenesis, these results suggest that molecules like SPARC are important in modulating tissue remodeling and cell-ECM interactions.  相似文献   

2.
Expression of secreted protein acidic and rich in cysteine (SPARC)/osteonectin, a collagen-binding matricellular protein, is frequently associated with tissues with high rates of collagen turnover, such as bone. In the oral cavity, expression of SPARC/osteonectin has been localized to the periodontal ligament (PDL), a collagen-rich tissue with high rates of collagen turnover. The PDL is critical for tooth position within the alveolar bone and for absorbing forces generated by chewing. To characterize the function of SPARC/osteonectin in PDL, SPARC/osteonectin expression in murine PDL was evaluated by immunochemistry at 1, 4, 6, and >18 months. Highest levels of SPARC/osteonectin were detected at 1 and >18 months, with decreased levels associated with adult (4–6 months) PDL. To determine whether the absence of SPARC/osteonectin expression influenced cellular and fibrillar collagen content in PDL, PDL of SPARC-null mice was evaluated using histological stains and compared with that of wild-type (WT). Our results demonstrated decreased numbers of nuclei in PDL of SPARC-null mice at 1 month. In addition, decreased collagen volume fractions were found at 1 and >18 months and decreases in thick collagen fiber volume fraction were detected at 4, 6, and >18 months in SPARC-null PDL. The greatest differences in cell number and in collagen content between SPARC-null and WT PDL coincided with ages at which levels of SPARC/osteonectin expression were highest in WT PDL, at 1 and >18 months. These results support the hypothesis that SPARC/osteonectin is critical in the control of tissue collagen content and indicate that SPARC/osteonectin is necessary for PDL homeostasis. (J Histochem Cytochem 58:871–879, 2010)  相似文献   

3.
Transforming growth factor-beta(1) (TGF-beta(1)) increases synthesis of secreted protein, acidic and rich in cysteine (SPARC), as well as fibronectin (FN) and type I collagen. However, little is known about the regulatory mechanism of SPARC expression. We examined the effect of FN on SPARC expression by TGF-beta(1) in cultures of human periodontal ligament cells (HPL cells). TGF-beta(1) increased the SPARC and SPARC mRNA levels in HPL cells. Extracellular matrix (ECM) produced by HPL cells in the presence of TGF-beta(1) also increased the SPARC levels. Contents of FN and type I collagen in the ECM were increased by TGF-beta(1). HPL cells cultured on FN-coated plates secreted more SPARC than those on non-coated plates. However, type I collagen had little effect on SPARC levels. The addition of anti-alpha5 antibody to the cultures abolished the increase in SPARC mRNA expression by TGF-beta(1). This study demonstrated that FN may be partly involved in the increase in SPARC expression by TGF-beta(1) in HPL cells.  相似文献   

4.
A dual enzyme disaggregation method using collagenase and then trypsin was developed that allowed the reproducible initiation of primary cultures from Atlantic salmon Salmo salar gills. Cultures had both epithelial and fibroblast morphology and persisted for an average of 20 passages. Growth was dependent upon a minimum concentration of 5% foetal calf serum (FCS) for fibroblasts and 10% FCS for epithelial cells. Growth was mostly independent of substrate, although epithelial cells showed increased growth on type I collagen gels. Matrigel? cell culture substrate produced reduced growth of fibroblasts and did not benefit epithelial cell growth. Epithelial cells reacted with monoclonal antibodies (MAbs) against mammalian cytokeratins, and fibroblast cells reacted with MAbs against mammalian fibronectin and type I collagen. The method also produced two long‐term cultures: one epithelial and one fibroblast that have been designated RGE‐2 and RGF respectively.  相似文献   

5.
Fibroblasts have a major role in the synthesis and reorganization of extracellular matrix that occur during wound repair. An impaired biosynthetic or functional response of these cells to stimulation by growth factors might contribute to the delayed wound healing noted in aging. We, therefore, compared the responses of dermal fibroblasts from young and elderly individuals (26, 29, 65, 89, 90, and 92 years of age) to transforming growth factor-β1 (TGF-β1) with respect to: (1) the synthesis of type I collagen and SPARC (two extracellular matrix proteins that are highly expressed by dermal fibroblasts during the remodeling phase of wound repair) and (2) the contraction of collagen gels, an in vitro assay of wound contraction. With the exception of one young donor, all cultures exposed for 44 hours to 10 ng/ml TGF-β1 exhibited a 1.6- to 5.5-fold increase in the levels of secreted type 1 collagen and SPARC, relative to untreated cultures, and exhibited a 2.0- to 6.2-fold increase in the amounts of the corresponding mRNAs. Moreover, the dose-response to TGF-β1 (0.1–10 ng/ml), as determined by synthesis of type I collagen and SPARC mRNA, was as vigorous in cells from aged donors as in cells from a young donor. In assays of collagen gel contraction, fibroblasts from all donors were stimulated to a similar degree by 10 ng/ml TGF-β1. In conclusion, cells from both young and aged donors exhibited similar biosynthetic and contractile properties with exposure to TGF-β1. It therefore appears that the impaired wound healing noted in the aged does not result from a failure of their dermal fibroblasts to respond to this cytokine. © 1994 Wiley-Liss, Inc.  相似文献   

6.
The purpose of this study is to differentiate roles of several growth factors and cytokines in proliferation and differentiation of pulp cells during development and repair. In human pulp cell cultures, laminin and type I collagen levels per cell remained almost constant during the whole culture period (22 days). On the other hand, secreted protein, acidic and rich in cysteine (SPARC/osteonectin) and alkaline phosphatase (ALPase) levels markedly increased after the cultures reached confluence. Laminin and type I collagen, as well as fibronectin, stimulated the spreading of pulp cells within 1 h. Adding transforming growth factor-β (TGF-β) decreased laminin and ALPase levels, whereas it increased SPARC and fibronectin levels 3- to 10-fold. Western and Northern blots showed that TGF-β enhanced SPARC synthesis at the protein and mRNA levels. Basic fibroblast growth factor (bFGF) decreased type I collagen, laminin, SPARC, and ALPase levels without changing the fibronectin level. Platelet-derived growth factor (PDGF) selectively decreased laminin, SPARC, and ALPase levels. Epidermal growth factor (EGF) also decreased SPARC and ALPase levels. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) decreased type I collagen and laminin levels, and abolished SPARC and ALPase syntheses. Of these peptides, bFGF and PDGF showed the greatest stimulation of [3H]thymidine incorporation into DNA. TGF-β, EGF, and TNF-α had less effect on DNA synthesis, whereas IL-1β inhibited DNA synthesis. These findings demonstrated that TGF-β, bFGF, EGF, PDGF, TNF-α, and IL-1β have characteristically different patterns of actions on DNA, laminin, type I collagen, fibronectin, ALPase, and SPARC syntheses by pulp cells. J. Cell. Physiol. 174:194–205, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Feeder-cell-independent serially propagating keratinocytes from rat oral mucosa (tongue) dissolved reconstituted type I [3H]collagen fibrils, although rather slowly. Analysis of the conditioned medium from such cultures revealed secretion of a Mr = 65,000 collagenase which remained almost entirely latent in the absence of exogenous protease activity. Addition of trypsin (0.1-1.0 microgram/ml) or plasmin (1.0-4.0 micrograms/ml) resulted in substantial acceleration of the collagenolytic process in stimulated secretion of latent collagenase and, at higher concentrations, in conversion of the latent enzyme to the catalytic form. The keratinocyte collagenase was indistinguishable from interstitial, fibroblast-type collagenases by several criteria including: cleavage of native type I collagen in solution at the characteristic collagenase-sensitive locus at 22 degrees C and dissolution of reconstituted type I collagen fibrils at 35 degrees C; activation by trypsin and by organomercurials and inhibition by Zn2+ and Ca2+ chelators; and cross-reaction with antibody to fibroblast-type procollagenase. Expression of collagenolytic activity in keratinocyte cultures was effectively regulated by cell density. The activity (on a per cell basis) was maximal at 10-20% confluence and was more than 95% "contact-inhibited" at subconfluent and early confluent densities (2-4 X 10(5)/cm2). Our findings show that mucosal keratinocytes possess a potent enzymatic apparatus for degradation of interstitial collagen fibrils which includes a classical vertebrate collagenase.  相似文献   

8.
A neutral metal protease has been identified which cleaves native type V collagen under conditions where pepsinized type IV collagen or the interstitial collagens are not significantly degraded. The enzyme is secreted into the media of cultured M50-76 reticulum cell sarcoma (malignant macrophages) and leiomyosarcoma tumor cells. Biosynthetically labeled type V collagen prepared from organ cultures of human amnion membrane is used for a routine assay of type V collagenolytic activity. The partially purified enzyme a) exists in a latent form requiring trypsin activation for maximum activity; b) has a molecular weight estimated by molecular sieve chromatography of approximately 80,000 daltons; c) is inhibited by EDTA but not phenylmethylsulfonyl fluoride; and d) produces specific cleavage products of both A and B collagen chains.  相似文献   

9.
SPARC-null mice exhibit accelerated cutaneous wound closure.   总被引:19,自引:0,他引:19  
Expression of SPARC (secreted protein acidic and rich in cysteine; osteonectin, BM-40), an extracellular matrix (ECM) associated protein, is coincident with matrix remodeling. To further identify the functions of SPARC in vivo, we have made excisional wounds on the dorsa of SPARC-null and wild-type mice and monitored closure over time. A significant decrease in the size of the SPARC-null wounds, in comparison to that of wild-type, was observed at Day 4 and was maximal at Day 7. Although substantial differences in the percentage of proliferating cells were not apparent in SPARC-null relative to wild-type wounds, primary cultures of SPARC-null dermal fibroblasts displayed accelerated migration, relative to wild-type fibroblasts, in wound assays in vitro. Although the expression of collagen I mRNA in wounds, as measured by in situ hybridization (ISH), was not significantly different in SPARC-null vs wild-type mice, the collagen content of unwounded skin appeared to be substantially lower in the SPARC-null animals. By hydroxyproline analysis, the concentration of collagen in SPARC-null skin was found to be half that of wild-type skin. Moreover, we found an inverse correlation between the efficiency of collagen gel contraction by dermal fibroblasts and the concentration of collagen within the gel itself. We propose that the accelerated wound closure seen in SPARC-null dermis results from its decreased collagen content, a condition contributing to enhanced contractibility.  相似文献   

10.
SPARC (secreted protein, acidic and rich in cysteine), also known as osteonectin, is an extracellular Ca+2-glycoprotein that inhibits the incorporation of [3H]-and delays the onset of S-phase in synchronized cultures of bovine aortic endothelial (BAE) cells. This effect appears not to be dependent on the functional properties of SPARC associated with changes in cell shape or inhibition of cell spreading. In this study we investigate the conditions under which cell cycle modulation occurs in different types of cells. Human umbilical vein endothelial cells, a transformed fetal BAE cell line, and bovine capillary endothelial cells exhibited a sensitivity to SPARC and a cationic peptide from a non-Ca+2-region of SPARC (peptide 2.1, 0.2—0.8 mM) similar to that observed in BAE cells. In contrast, human foreskin fibroblasts and fetal bovine ligament fibroblasts exhibited an increase in the incorporation of [3H]-in the presence of 25 μM—0.2 mM peptide 2.1; inhibition was observed at concentrations in excess of 0.4 mM. This biphasic modulation could be further localized to a sequence of 10 amino acids comprising the N-terminal half of peptide 2.1. A synthetic peptide from another cationic region of SPARC (peptide 2.3) increased [3H]-incorporation by BAE cells and fibroblasts in a dose-dependent manner. In endothelial cells, a stimulation of 50% was observed at a concentration of 0.01 mM; fibroblasts required ~ 100-fold more peptide 2.3 for levels of stimulation comparable to those obtained in endothelial cells. The observation that SPARC and unique SPARC peptides can differentially influence the growth of fibroblasts and endothelial cells in a concentration-dependent manner suggests that SPARC might regulate proliferation of specific cells during wound repair and remodeling. © 1993 Wiley-Liss, Inc.  相似文献   

11.
The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC) and portal fibroblasts (PF). In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5’-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myo)fibroblasts and their contribution to the progression of liver fibrosis.  相似文献   

12.
13.
Cardiac tissue from mice that do not express secreted protein acidic and rich in cysteine (SPARC) have reduced amounts of insoluble collagen content at baseline and in response to pressure overload hypertrophy compared with wild-type (WT) mice. However, the cellular mechanism by which SPARC affects myocardial collagen is not clearly defined. Although expression of SPARC by cardiac myocytes has been detected in vitro, immunohistochemistry of hearts demonstrated SPARC staining primarily associated with interstitial fibroblastic cells. Primary cardiac fibroblasts isolated from SPARC-null and WT mice were assayed for collagen I synthesis by [(3)H]proline incorporation into procollagen and by immunoblot analysis of procollagen processing. Bacterial collagenase was used to discern intracellular from extracellular forms of collagen I. Increased amounts of collagen I were found associated with SPARC-null versus WT cells, and the proportion of total collagen I detected on SPARC-null fibroblasts without propeptides [collagen-α(1)(I)] was higher than in WT cells. In addition, the amount of total collagen sensitive to collagenase digestion (extracellular) was greater in SPARC-null cells than in WT cells, indicating an increase in cell surface-associated collagen in the absence of SPARC. Furthermore, higher levels of collagen type V, a fibrillar collagen implicated in collagen fibril initiation, were found in SPARC-null fibroblasts. The absence of SPARC did not result in significant differences in proliferation or in decreased production of procollagen I by cardiac fibroblasts. We conclude that SPARC regulates collagen in the heart by modulating procollagen processing and interactions with fibroblast cell surfaces. These results are consistent with decreased levels of interstitial collagen in the hearts of SPARC-null mice being due primarily to inefficient collagen deposition into the extracellular matrix rather than to differences in collagen production.  相似文献   

14.
Fetal bovine bone cells synthesize bone-specific matrix proteins   总被引:3,自引:2,他引:1  
We isolated cells from both calvaria and the outer cortices of long bones from 3- to 5-mo bovine fetuses. The cells were identified as functional osteoblasts by indirect immunofluorescence using antibodies against three bone-specific, noncollagenous matrix proteins (osteonectin, the bone proteoglycan, and the bone sialoprotein) and against type 1 collagen. In separate experiments, confluent cultures of the cells were radiolabeled and shown to synthesize and secrete osteonectin, the bone proteoglycan and the bone sialoprotein by immunoprecipitation and fluorography of SDS polyacrylamide gels. Analysis of the radiolabeled collagens synthesized by the cultures showed that they produced predominantly (approximately 94%) type I collagen, with small amounts of types III and V collagens. In agreement with previous investigators who have employed the rodent bone cell system, we confirmed in bovine bone cells that (a) there was a typical cyclic AMP response to parathyroid hormone, (b) freshly isolated cells possessed high levels of alkaline phosphatase, which diminished during culture but returned to normal levels in mineralizing cultures, and (c) cells grown in the presence of ascorbic acid and beta-glycerophosphate rapidly produced and mineralized an extracellular matrix containing largely type I collagen. These results show that antibodies directed against bone-specific, noncollagenous proteins can be used to clearly identify bone cells in vitro.  相似文献   

15.
Affinity-purified antibodies have been used in combination with the peroxidase-antiperoxidase technique to study the distribution of osteonectin and collagen types I and III in porcine dental tissues. Tissue sections (2 mm thick), including unerupted (fetal) or erupted (adult) teeth, were fixed in periodate-lysine-paraformaldehyde, demineralized in 12% w/v ethylenediaminetetraacetic acid, and after embedding, 6 micron sections were prepared for immunolocalization. Strong staining for osteonectin was observed in dentine of unerupted teeth and in the associated alveolar bone. Light to moderate staining was observed in the dental pulp, stratum intermedium, stellate reticulum, and the reticular elements in the endosteal spaces. In erupted teeth, osteonectin staining in dentine was concentrated around dentinal tubules and the associated alveolar bone stained with variable intensity. Cementum was poorly stained. However, the periodontal ligament and reticular material in the endosteal spaces showed moderate to strong staining. Weaker staining was apparent in the pulp and lamina propria of the gingiva. In comparison, type I collagen showed a similar distribution to osteonectin in both fetal and adult tissues, whereas type III collagen was generally restricted to the periodontal ligament, reticular elements of the endosteal spaces, and Sharpey's fibers in bone and cementum. Both odontoblast and ameloblast layers in fetal tissues stained for osteonectin and type III collagen.  相似文献   

16.
Fibrillar collagen is the primary component of the cardiac interstitial extracellular matrix. This extracellular matrix undergoes dramatic changes from birth to adulthood and then into advanced age. As evidence, fibrillar collagen content was compared in sections from neonates, adult, and old hearts and was found to increase at each respective age. Cardiac fibroblasts are the principle cell type that produce and control fibrillar collagen content. To determine whether fibroblast production, processing, and deposition of collagen differed with age, primary cardiac fibroblasts from neonate, adult, and old mice were isolated and cultured in 3-dimensional (3D) fibrin gels. Fibroblasts from each age aligned in fibrin gels along points of tension and deposited extracellular matrix. By confocal microscopy, wild-type neonate fibroblasts appeared to deposit less collagen into fibrillar structures than fibroblasts from adults. However, by immunoblot analysis, differences in procollagen production and processing of collagen I were not detected in neonate versus adult fibroblasts. In contrast, fibroblasts from old mice demonstrated increased efficiency of procollagen processing coupled with decreased production of total collagen. SPARC is a collagen-binding protein previously shown to affect cardiac collagen deposition. Accordingly, in the absence of SPARC, less collagen appeared to be associated with fibroblasts of each age grown in fibrin gels. In addition, the increased efficiency of procollagen alpha 1(I) processing in old wild-type fibroblasts was not detected in old SPARC-null fibroblasts. Increased levels of fibronectin were detected in wild-type neonate fibroblasts over that of adult and old fibroblasts but not in SPARC-null neonate fibroblasts versus older ages. Immunostaining of SPARC overlapped with that of collagen I but not to that of fibronectin in 3D cultures. Hence, whereas increases in procollagen processing, influenced by SPARC expression, plausibly contribute to increased collagen deposition in old hearts, other cellular mechanisms likely affect differential collagen deposition by neonate fibroblasts.  相似文献   

17.
In order to ensure that MSCs designed for in vivo cartilage repair do not untowardly differentiate into osteoblasts and mineralize in situ, we tested whether siRNA-induced suppression of cbfa1/Runx2 affected the osteogenic and chondrogenic differentiation potential of the murine cell line C3H10T1/2. Anti-cbfa1/Runx2 siRNA decreased the levels of cbfa1/Runx2 mRNA and protein by 65-80%, and also markedly reduced the expression of osteoblast-related genes such as Dlx5, osterix, collagen type I, alkaline phosphatase (AP), osteocalcin, SPARC/osteonectin and osteopontin, leading to a temporal expression of AP enzyme activity and mineralization potential delayed by at least some 7-9 days. Furthermore, siRNA-transfected cells, grown under chondrogenic conditions did not display biologically significant changes in the expression of aggrecan, collagen type II or type X, or histology when grown in micropellets or monolayer cultures. Finally, when cells were propagated in osteogenic medium and injected into the tibial muscles of SCID mice, no overtly mineralized bone tissue emerged. These experiments indicate that a major transient reduction of cbfa1/Runx2 expression in MSCs is sufficient to delay osteoblastic differentiation, both in vitro and in vivo, while chondrogenesis seemed to be sustained.  相似文献   

18.
19.
Fibroblast (F) and epithelial (E) cells were obtained as primary outgrowths from explants of fetal porcine maxillary molars and subcultured up to four passages in monolayers enriched with either cell type. Histology of a tooth bud after 1 day in culture showed intact odontogenic E cell layers which were the probable source of the E cell outgrowths. After 2 months in culture, the fourth passage E cells demonstrated morphological differentiation by an alteration in cell packing and the formation of domes and nodules, when E and F cells were cocultured. Occasionally the nodules grew to considerable size, indicating the potential of these cells to aggregate and reorganize into odontogenic tissues even on culture dishes. The cells were characterized in monolayer culture by immunocytochemical staining. Laminin and type IV collagen staining was distributed diffusely throughout the culture, whereas type I collagen and osteonectin staining was predominantly localized in the F cells. Radiolabelled proteins from both E and F cell media produced similar collagen patterns (95% type I, 4% type V, 1% other), except that the F cells appeared to produce active collagenase. In addition, the E cells produced two radiolabelled proteins (relative masses of 50,000 and 53,000) that reacted with an affinity-purified antibody directed against porcine amelogenin. These experiments show that cells subcultured from tooth buds and grown in monolayer cultures can be used to study tooth organogenesis in vitro, as well as enamel protein biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号