首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the effect of counter ions (Na+) on the secondary conformation and functionality of the lysozyme, we have studied the interaction of lysozyme with counterion associated iron oxide nanoparticles (IONPs). The investigation was carried out at pH 7.4 and 9.0, with three different types of NPs, namely, bare IONPs, low molecular weight chitosan modified IONPs (LMWC-IONPs) and the counterion (Na+) associated sodium tripolyphosphate IONPs (STP-LMWC-IONPs) and confirmed by using various spectroscopy techniques. The difference in UV–vis absorbance (ΔA) between native and STP-LMWC-IONPs interacted hen egg white lysozyme (HEWL) was greater than that between native and NPs interacted HEWL at pH 9.0 compared with pH 7.4. Furthermore, STP-LMWC-IONPs exhibited quenching effect on lysozyme fluorescence spectrum at pH 9.0 due to binding of Na+ counterions to the protein, confirming denaturation of the latter. After HEWL interaction with STP-LMWC-IONPs (pH 9.0), CD spectra revealed a conformational change in the secondary structure of HEWL. Also, counterion induced lysozyme inactivation, due to interaction with nanoparticles at pH 9.0, was confirmed by enzymatic activity assay involving lysis of Micrococcus lysodeikticus. In conclusion, pH 9.0 was observed to be a more favorable condition, compared to pH 7.4, for the strongest electrostatic interaction between lysozyme and NPs. We postulate that the counterions in nanoparticle surface-coating can ameliorate protein misfolding or unfolding and also prevent their aggregation and, therefore, can be considered as a powerful and potential therapeutic strategy to treat incurable neurodegenerative disorders.  相似文献   

2.
Various experimental studies of hen egg white lysozyme (HEWL) in water and TFE/water clearly indicate structural differences between the native state and TFE state of HEWL, e.g. the helical content of the protein in the TFE state is much higher than in the native state. However, the available detailed NMR studies were not sufficient to determine fully a structure of HEWL in the TFE state. Different molecular dynamics (MD) simulations, i.e. at room temperature, at increased temperature and using proton–proton distance restraints derived from NMR NOE data, have been used to generate configurational ensembles corresponding to the TFE state of HEWL. The configurational ensemble obtained at room temperature using atom-atom distance restraints measured for HEWL in TFE/water solution satisfies the experimental data and has the lowest protein energy. In this ensemble residues 50–58, which are part of the β-sheet in native HEWL, adopt fluctuating α-helical secondary structure.  相似文献   

3.
This work examines the inhibitory effect of TCEP on the in vitro fibrillation of hen lysozyme at pH 2. We demonstrate that the inhibition of hen lysozyme fibrillation by TCEP follows a dose-dependent manner. Our data show that the addition of TCEP prevents α-to-β transition and promoted unfolding of lysozyme. Moreover, our findings suggested that the TCEP-induced attenuated fibrillation is associated with disulfide disruption and structural unfolding of HEWL.  相似文献   

4.
Although unfolding of protein in the liquid state is relatively well studied, its mechanisms in the solid state, are much less understood. We evaluated the reversibility of thermal unfolding of lysozyme with respect to the water content using a combination of thermodynamic and structural techniques such as differential scanning calorimetry, synchrotron small and wide-angle X-ray scattering (SWAXS) and Raman spectroscopy. Analysis of the endothermic thermal transition obtained by DSC scans showed three distinct unfolding behaviors at different water contents. Using SWAXS and Raman spectroscopy, we investigated reversibility of the unfolding for each hydration regime for various structural levels including overall molecular shape, secondary structure, hydrophobic and hydrogen bonding interactions. In the substantially dehydrated state below 37 wt% of water the unfolding is an irreversible process and can be described by a kinetic approach; above 60 wt% the process is reversible, and the thermodynamic equilibrium approach is applied. In the intermediate range of water contents between 37 wt% and 60 wt%, the system is phase separated and the thermal denaturation involves two processes: melting of protein crystals and unfolding of protein molecules. A phase diagram of thermal unfolding/denaturation in lysozyme - water system was constructed based on the experimental data.  相似文献   

5.
We have provided evidence that hen egg white lysozyme (HEWL) existed in alpha helical and beta structure dominated molten globule (MG) states at high pH and in the presence of tertiary butanol, respectively. Circular dichroism (CD), intrinsic fluorescence, ANS binding and acrylamide-induced fluorescence quenching techniques have been used to investigate alkali-induced unfolding of HEWL and the effect of tertiary butanol on the alkaline-induced state. At pH 12.75, HEWL existed as molten globule like intermediate. The observed MG-like intermediate was characterized by (i) retention of 77% of the native secondary structure, (ii) enhanced binding of ANS (approximately 5 times) compared to native and completely unfolded state, (iii) loss of the tertiary structure as indicated by the tertiary structural probes (near-UV, CD and Intrinsic fluorescence) and (iv) acrylamide quenching studies showed that MG state has compactness intermediate between native and completely unfolded states. Moreover, structural properties of the protein at isoelectric point (pI) and denatured states have also been described. We have also shown that in the presence of 45% tertiary butanol (t-butanol), HEWL at pH 7.0 and 11.0 (pI 11.0) existed in helical structure without much affecting tertiary structure. Interestingly, MG state of HEWL at pH 12.7 transformed into another MG state (MG2) at 20% t-butanol (v/v), in which secondary structure is mainly beta sheets. On further increasing the t-butanol concentration alpha helix was found to reform. We have proposed that formation of both alpha helical and beta sheet dominated intermediate may be possible in the folding pathway of alpha + beta protein.  相似文献   

6.
The thermodynamics and kinetics of unfolding of 28 bacteriophage T4 lysozyme variants were compared by using urea gradient gel electrophoresis. The mutations studied cause a variety of sequence changes at different residues throughout the polypeptide chain and result in a wide range of thermodynamic stabilities. A striking relationship was observed between the thermodynamic and kinetic effects of the amino acid replacements: All the substitutions that destabilized the native protein by 2 kcal/mol or more also increased the rate of unfolding. The observed increases in unfolding rate corresponded to a decrease in the activation energy of unfolding (delta Gu) at least 35% as large as the decrease in thermodynamic stability (delta Gu). Thus, the destabilizing lesions bring the free energy of the native state closer to that of both the unfolded state and the transition state for folding and unfolding. Since a large fraction of the mutational destabilization is expressed between the transition state and the native conformation, the changes in folding energetics cannot be accounted for by effects on the unfolded state alone. The results also suggest that interactions throughout much of the folded structure are altered in the formation of the transition state during unfolding.  相似文献   

7.
RDCs for the 14 kDa protein hen egg-white lysozyme (HEWL) have been measured in eight different alignment media. The elongated shape and strongly positively charged surface of HEWL appear to limit the protein to four main alignment orientations. Furthermore, low levels of alignment and the protein’s interaction with some alignment media increases the experimental error. Together with heterogeneity across the alignment media arising from constraints on temperature, pH and ionic strength for some alignment media, these data are suitable for structure refinement, but not the extraction of dynamic parameters. For an analysis of protein dynamics the data must be obtained with very low errors in at least three or five independent alignment media (depending on the method used) and so far, such data have only been reported for three small 6–8 kDa proteins with identical folds: ubiquitin, GB1 and GB3. Our results suggest that HEWL is likely to be representative of many other medium to large sized proteins commonly studied by solution NMR. Comparisons with over 60 high-resolution crystal structures of HEWL reveal that the highest resolution structures are not necessarily always the best models for the protein structure in solution.  相似文献   

8.
The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (~100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day?1. Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs.  相似文献   

9.
At least 25 human proteins can fold abnormally to form pathological deposits that are associated with several degenerative diseases. Despite extensive investigation on amyloid fibrillation, the detailed molecular mechanisms remain rather elusive and there are currently no effective cures for treating these amyloid diseases. The present study examined the effects of dithiothreitol on the fibrillation of hen egg-white lysozyme (HEWL). Our results revealed that the fibrillation of hen lysozyme was significantly inhibited by reduced dithiothreitol (DTTred) while oxidized dithiothreitol (DTTox) had no anti-aggregating activity. Effective inhibitory activity against hen lysozyme fibrillation was observed only when DTTred was added within 8 days of incubation. Our results showed that the initial addition of DTTred interacted with HEWL, leading to a loss in conformational stability. It was concluded from our findings that DTTred-induced attenuation of HEWL fibrillation may be associated with disulfide disruption and extensive structural unfolding of HEWL. Our data may contribute to rational design of effective therapeutic strategies for amyloid diseases.  相似文献   

10.
Sasahara K  Demura M  Nitta K 《Proteins》2002,49(4):472-482
The equilibrium and kinetic folding of hen egg-white lysozyme was studied by means of circular dichroism spectra in the far- and near-ultraviolet (UV) regions at 25 degrees C under the acidic pH conditions. In equilibrium condition at pH 2.2, hen lysozyme shows a single cooperative transition in the GdnCl-induced unfolding experiment. However, in the GdnCl-induced unfolding process at lower pH 0.9, a distinct intermediate state with molten globule characteristics was observed. The time-dependent unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by using stopped-flow circular dichroism at pH 2.2. Immediately after the dilution of denaturant, the kinetics of refolding shows evidence of a major unresolved far-UV CD change during the dead time (<10 ms) of the stopped-flow experiment (burst phase). The observed refolding and unfolding curves were both fitted well to a single-exponential function, and the rate constants obtained in the far- and near-UV regions coincided with each other. The dependence on denaturant concentration of amplitudes of burst phase and both rate constants was modeled quantitatively by a sequential three-state mechanism, U<-->I<-->N, in which the burst-phase intermediate (I) in rapid equilibrium with the unfolded state (U) precedes the rate-determining formation of the native state (N). The role of folding intermediate state of hen lysozyme was discussed.  相似文献   

11.
Protein aggregation leading to formation of amyloid fibrils is a symptom of several diseases like Alzheimer’s, type 2 diabetes and so on. Elucidating the poorly understood mechanism of such phenomena entails the difficult task of characterizing the species involved at each of the multiple steps in the aggregation pathway. It was previously shown by us that spontaneous aggregation of hen-eggwhite lysozyme (HEWL) at room temperature in pH 12.2 is a good model to study aggregation. Here in this paper we investigate the growth kinetics, structure, function and dynamics of multiple intermediate species populating the aggregation pathway of HEWL at pH 12.2. The different intermediates were isolated by varying the HEWL monomer concentration in the 300 nM—0.12 mM range. The intermediates were characterized using techniques like steady-state and nanosecond time-resolved fluorescence, atomic force microscopy and dynamic light scattering. Growth kinetics of non-fibrillar HEWL aggregates were fitted to the von Bertalanffy equation to yield a HEWL concentration independent rate constant (k = (6.6±0.6)×10−5 s−1). Our results reveal stepwise changes in size, molecular packing and enzymatic activity among growing HEWL aggregates consistent with an isodesmic aggregation model. Formation of disulphide bonds that crosslink the monomers in the aggregate appear as a unique feature of this aggregation. AFM images of multiple amyloid fibrils emanating radially from amorphous aggregates directly confirmed that on-pathway fibril formation was feasible under isodesmic polymerization. The isolated HEWL aggregates are revealed as polycationic protein nanoparticles that are robust at neutral pH with ability to take up non-polar molecules like ANS.  相似文献   

12.
Amyloid fibril depositions are associated with many neurodegenerative diseases as well as amyloidosis. The detailed molecular mechanism of fibrillation is still far from complete understanding. In our previous study of in vitro fibrillation of hen egg white lysozyme, an irreversible partially unfolded intermediate was characterized. A similarity of unfolding kinetics found for the secondary and tertiary structure of lysozyme using deep UV resonance Raman (DUVRR) and tryptophan fluorescence spectroscopy leads to a hypothesis that the unfolding might be a two-state transition. In this study, chemometric analysis, including abstract factor analysis (AFA), target factor analysis (TFA), evolving factor analysis (EFA), multivariate curve resolution-alternating least squares (ALS), and genetic algorithm, was employed to verify that only two principal components contribute to the DUVRR and fluorescence spectra of soluble fraction of lysozyme during the fibrillation process. However, a definite conclusion on the number of conformers cannot be made based solely on the above spectroscopic data although chemometric analysis suggested the existence of two principal components. Therefore, electrospray ionization mass spectrometry (ESI-MS) was also utilized to address the hypothesis. The protein ion charge state distribution (CSD) envelopes of the incubated lysozyme were well fitted with two principal components. Based on the above analysis, the partial unfolding of lysozyme during in vitro fibrillation was characterized quantitatively and proven to be a two-state transition. The combination of ESI-MS and Raman and fluorescence spectroscopies with advanced statistical analysis was demonstrated to be a powerful methodology for studying protein structural transformations.  相似文献   

13.
A disulfide-bridged variant of bacteriophage T4 lysozyme has been found to undergo a low- as well as high-temperature unfolding transition in guanidinium chloride [see Chen and Schellman (1989)]. The kinetics for this process have been followed for several temperatures, a range of guanidinium chloride concentrations, and a number of values of pH. Microscopic rate constants for protein unfolding and refolding were extracted from these data to explore the nature of the cold unfolding transition. The data were interpreted using transition-state theory. It was found that the Arrhenius energy is temperature dependent. The transition state is characterized by (1) a high energy and low entropy compared to the native state, (2) a heat capacity which is closer to the native state than to the unfolded state, and (3) a low exposure to solvent compared to the unfolded state, as judged by its interaction with guanidinium chloride. With increasing concentration of guanidinium chloride, the low-temperature unfolding rate increases strongly, and the refolding rate decreases very strongly.  相似文献   

14.
Sasahara K  Nitta K 《Proteins》2006,63(1):127-135
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding.  相似文献   

15.
The reformation of secondary structure for unfolded, disulfide reduced hen egg white lysozyme (HEWL) upon interaction with surfactants was studied using CD, fluorescence and IR (infrared) techniques. Equilibrium CD studies showed that reduced HEWL when mixed with negatively charged surfactants, such as SDS (sodium dodecyl sulfate), gradually regains average helical structure to a level equivalent to that obtained for the oxidized form also in SDS, but both forms lose tertiary structure in such environments. This non-native structure recovery process begins with monomer surfactant interaction but at higher concentrations is in part dependent on micelle formation, with the helical fraction reaching its maximum value with each surfactant only above the CMC. Fluorescence changes were more complex, evidencing an intermediate state at lower surfactant concentration. With positively charged surfactants the degree of helicity recovered was less, and the intermediate state in fluorescence was not seen. Stopped flow dynamics studies showed the CD kinetics fit to two exponentials as did the fluorescence. The faster steps in CD and fluorescence detected kinetics appear to be correlated which suggests formation of an intermediate on rapid interaction of the micelle and protein. The second step then reflected attainment of a stable surfactant solvated state which attains maximum helicity and moves the Trps to a more hydrophobic environment, which may occur in independent steps, as the slower kinetics are not well correlated.  相似文献   

16.
We have employed nuclear magnetic resonance (NMR) measurements of hydrogen exchange to identify residue-level conformational changes in hen egg white lysozyme (HEWL) as induced by salt precipitation. Deuterated HEWL was dissolved into a phosphate (H2O) buffer and precipitated at pH 2.1 upon addition of solid KSCN or (ND4)2SO4, allowing isotope labeling of unfolded regions. After 1 h, each precipitate was then dissolved at pH 3.8 to initiate refolding and preserve labeling and subsequently purified for NMR analysis. HEWL precipitated by 1.0 M KSCN exhibited increased hydrogen exchange at 14 residues out of 42 normally well-protected in the native state. Of the affected residues, 9 were situated in the beta-sheet/loop domain. A similar, though less extensive, effect was observed at 0.2 M KSCN. Precipitation by 1.2 M (ND4)2SO4 resulted in none of the changes detected with KSCN. The popularity of ammonium sulfate as a precipitant is thus supported by this observed preservation of structural integrity. KSCN, in comparison, produced partial unfolding of specific regions in HEWL due most likely to known preferential interactions between -SCN and proteins. The severity of unfolding increased with KSCN concentration such that, at 1.0 M KSCN, almost the entire beta-sheet/loop domain of HEWL was disrupted. Even so, a portion of the HEWL core encompassed by three alpha-helices remained intact, possibly facilitating precipitate dissolution.  相似文献   

17.
The thermal denaturation of lysozyme dissolved in aqueous phosphate buffer (pH 5.1) and glycerol was studied by Fourier-transform infrared (FTIR) spectroscopy. In both solvents, a single temperature-induced conformational transition was observed but at the distinctly different temperatures of 73 °C in aqueous buffer and 94 ± 2 °C in glycerol. No changes in the secondary structure were observed in glycerol up to 90 °C. Thus, FTIR data were consistent with the formation of a highly ordered molten globule state at temperatures below 90 °C followed by lysozyme unfolding at higher temperatures in glycerol.  相似文献   

18.
Arai S  Hirai M 《Biophysical journal》1999,76(4):2192-2197
To clarify mechanisms of folding and unfolding of proteins, many studies of thermal denaturation of proteins have been carried out at low protein concentrations because in many cases thermal denaturation accompanies a great tendency of aggregation. As small-angle x-ray scattering (SAXS) measurements are liable to use low-concentration solutions of proteins to avoid aggregation, SAXS has been regarded as very difficult to observe detailed features of thermal structural transitions such as intramolecular structural changes. By using synchrotron radiation SAXS, we have found that the presence of repulsive interparticle interaction between proteins can maintain solute particles separately to prevent further aggregation in thermal denaturation processes and that under such conditions the thermal structural transition of hen egg-white lysozyme (HEWL) holds high reversibility even at 5% w/v HEWL below pH approximately 5. Because of the use of the high concentration of the solutions, the scattering data has enough high-statistical accuracy to discuss the thermal structural transition depending on the structural hierarchy. Thus, the tertiary structural change of HEWL starts from mostly the onset temperature determined by the differential scanning calorimetry measurement, which accompanies a large heat absorption, whereas the intramolecular structural change, corresponding to the interdomain correlation and polypeptide chain arrangement, starts much prior to the above main transition. The present finding of the reversible thermal structural transitions at the high protein concentration is expected to enable us to analyze multiplicity of folding and unfolding processes of proteins in thermal structural transitions.  相似文献   

19.
In this study, the fibrillation of hen egg‐white lysozyme (HEWL) in the absence and presence of different concentrations of silybin was studied by thioflavin T spectroscopy, Congo red binding assays, 8‐anilino‐1‐naphthalenesulfonic acid (ANS) fluorescence assay, circular dichroism, and transmission electron microscopy. The experimental results indicated that not only the fibrillation of HEWL at high temperature (65°C) and low pH (pH = 2.0) could be inhibited effectively by silybin but also the inhibition of HEWL by silybin followed a dose‐dependent manner. Molecular docking studies indicated that 2 possible binding modes could be found in the interaction between silybin and HEWL via van der Waals forces and electrostatic forces as well as hydrogen bonding. One of these 2 conformations was directly entered into the cavity of HEWL (binding site I); the other was bound to the surface of HEWL (binding site II). In this way, silybin could not only increase the hydrophobicity of the cavity or the surface of HEWL but also influence the microenvironment of the binding site, which was able to stabilize the structure of HEWL and delay the process of HEWL fibrosis.  相似文献   

20.
To understand the role of ATP underlying the enhanced amyloidosis of hen egg white lysozyme (HEWL), the synchrotron radiation circular dichroism, combined with tryptophan fluorescence, dynamic light-scattering, and differential scanning calorimetry, is used to examine the alterations of the conformation and thermal unfolding pathway of the HEWL in the presence of ATP, Mg2+-ATP, ADP, AMP, etc. It is revealed that the binding of ATP to HEWL through strong electrostatic interaction changes the secondary structures of HEWL and makes the exposed residue W62 move into hydrophobic environments. This alteration of W62 decreases the β-domain stability of HEWL, induces a noncooperative unfolding of the secondary structures, and produces a partially unfolded intermediate. This intermediate containing relatively rich α-helix and less β-sheet structures has a great tendency to aggregate. The results imply that the ease of aggregating of HEWL is related to the extent of denaturation of the amyloidogenic region, rather than the electrostatic neutralizing effect or monomeric β-sheet enriched intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号