首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated whether incubation of cultured human aortic endothelial cells (HAEC) with crystalline silica at the concentration 1 cm2/ml (chosen on the basis of a pilot experiment) leads to alterations typical of apoptosis. The binding of annexin V as early, and DNA fragmentation as late events of apoptosis were measured besides the number of cells with depolarized mitochondria. The generation of reactive oxygen species (ROS) by HAEC in presence of silica was determined as well as silica ability to in vitro generate hydroxyl radicals was investigated. After 18 h of silica incubation, about 30% of viable cells bound annexin V. After 24 h of silica treatment, the percentage of cells with fragmented DNA (Tunel positive) was 27% and it increased up to 50% after 48 h, whereas in untreated cells this percentage was 7% and 11% after 24 and 48 h, respectively. The presence of fragmented DNA in cells treated with silica was confirmed by agarose gel electrophoresis. In agreement with these results showing an induction of HAEC apoptosis by silica incubation, the number of cells with depolarized mitochondria was significantly higher after silica treatment as compared to the control. Apoptosis was also obtained with silica added to aliquots of anti-C5a-absorbed-medium. In the cells exposed to silica there was a significant increasing of ROS generation in comparison to the untreated cells. Apoptosis might be due to peroxidative stress since silica can generate hydroxyl radicals.  相似文献   

2.

Background  

Published work suggests that some types of endothelial cells undergo apoptosis in response to ligation of the receptor Fas (CD95, APO1) but other types are resistant. Because heterogeneity among endothelial cells from different tissues, has been demonstrated, the purpose of this study was to determine, if Fas ligation and/or activation by human Fas ligand induces apoptosis and caspase activities, in cultured human coronary artery endothelial cells, and the differences between TNF-a and FAS induced apoptosis in these cells.  相似文献   

3.
Thyrotropin (TSH) induces morphological changes in cultures of normal rat thyroid cell lines and in primary bovine thyroid cells. It also induces a specific reorganization of the microfilaments of the thyroid cells. Both effects are fully reversible and are mimicked by 8-bromo-cAMP. These results indicate that the trophic response of TSH involves changes in the organization of the actin-containing filaments, probably mediated through cAMP, followed by changes in cell shape.  相似文献   

4.
The GTPase Rho is known to mediate the assembly of integrin-containing focal adhesions and actin stress fibers. Here, we investigate the role of Rho in regulating the distribution of the monocyte-binding receptors E-selectin, ICAM-1, and VCAM-1 in human endothelial cells. Inhibition of Rho activity with C3 transferase or N19RhoA, a dominant negative RhoA mutant, reduced the adhesion of monocytes to activated endothelial cells and inhibited their spreading. Similar effects were observed after pretreatment of endothelial cells with cytochalasin D. In contrast, dominant negative Rac and Cdc42 proteins did not affect monocyte adhesion or spreading. C3 transferase and cytochalasin D did not alter the expression levels of monocyte-binding receptors on endothelial cells, but did inhibit clustering of E-selectin, ICAM-1, and VCAM-1 on the cell surface induced by monocyte adhesion or cross-linking antibodies. Similarly, N19RhoA inhibited receptor clustering. Monocyte adhesion and receptor cross-linking induced stress fiber assembly, and inhibitors of myosin light chain kinase prevented this response but did not affect receptor clustering. Finally, receptor clusters colocalized with ezrin/moesin/ radixin proteins. These results suggest that Rho is required in endothelial cells for the assembly of stable adhesions with monocytes via the clustering of monocyte-binding receptors and their association with the actin cytoskeleton, independent of stress fiber formation.  相似文献   

5.
The aim of our study was to analyse the cytoskeletal organization of prepubertal goat oocytes. Microtubule and microfilament organization during in vitro maturation of prepubertal and adult goat oocytes and presumptive zygotes of in vitro matured-in vitro fertilized (IVM-IVF) prepubertal goat oocytes were analysed. Oocytes were matured in M-199 with hormones and serum and inseminated with frozen-thawed sermatozoa. Oocytes and presumptive zygotes were treated with anti-alpha-tubulin antibody and fluorescein isothiocyanate (FITC)-labelled goat anti-mouse antibody to stain the microtubules. Microfilaments were localized by means of phalloidin 5 microg/ml conjugated with fluorescein isothiocyanate (FITC-phalloidin). DNA was stained with propidium iodide. Stained oocytes were observed under a confocal laser scanning microscope. At the germinal vesicle nuclear stage, microfilaments were distributed at the cortex of the oocytes. After in vitro maturation, 91.7% of metaphase II (MII) oocytes from adult goats displayed microfilaments in the cortex and within the polar body and were characterized by the presence of a microfilament thickening at the cortical region over the meiotic spindle. In prepubertal goat MII oocytes only 5.7% of oocytes displayed microfilaments at the cortex and within the polar body. After insemination, most of the zygotes displayed microfilaments distributed at the cortex. An undefined microtubular network was observed in adult and prepubertal goat oocytes at the germinal vesicle stage. After in vitro maturation, 100% of MII oocytes from adult goats displayed microtubules on the meiotic spindle and within the polar body. This pattern of distribution was observed in 71.6% of prepubertal goat oocytes. Undefined microtubule networks were present in most of the zygotes analysed. In conclusion, cytoskeletal differences were found between prepubertal and adult goat MII oocytes. Furthermore, most of the zygotes from IVM-IVF prepubertal goat oocytes displayed cytoskeletal anomalies.  相似文献   

6.
Efforts to develop functional tissue-engineered blood vessels have focused on improving the strength and mechanical properties of the vessel wall, while the functional status of the endothelium within these vessels has received less attention. Endothelial cell (EC) function is influenced by interactions between its basal surface and the underlying extracellular matrix. In this study, we utilized a coculture model of a tissue-engineered blood vessel to evaluate EC attachment, spreading, and adhesion formation to the extracellular matrix on the surface of quiescent smooth muscle cells (SMCs). ECs attached to and spread on SMCs primarily through the alpha(5)beta(1)-integrin complex, whereas ECs used either alpha(5)beta(1)- or alpha(v)beta(3)-integrin to spread on fibronectin (FN) adsorbed to plastic. ECs in coculture lacked focal adhesions, but EC alpha(5)beta(1)-integrin bound to fibrillar FN on the SMC surface, promoting rapid fibrillar adhesion formation. As assessed by both Western blot analysis and quantitative real-time RT-PCR, coculture suppressed the expression of focal adhesion proteins and mRNA, whereas tensin protein and mRNA expression were elevated. When attached to polyacrylamide gels with similar elastic moduli as SMCs, focal adhesion formation and the rate of cell spreading increased relative to ECs in coculture. Thus, the elastic properties are only one factor contributing to EC spreading and focal adhesion formation in coculture. The results suggest that the softness of the SMCs and the fibrillar organization of FN inhibit focal adhesions and reduce cell spreading while promoting fibrillar adhesion formation. These changes in the type of adhesions may alter EC signaling pathways in tissue-engineered blood vessels.  相似文献   

7.
Human umbilical vein endothelial cells (ECs) adhere in vitro to proteins of the extracellular matrix including fibronectin (fn) and vitronectin (vn). Specific receptors for fn and vn have been previously characterized. These receptors belong to a family of membrane glycoproteins characterized (a) by being a transmembrane complex of two noncovalently linked subunits and (b) by recognizing the tripeptide Arg-Gly-Asp on their respective ligands. In this paper we investigated how vn and fn control the organization of their respective receptors over the surface of ECs. It was found that the clustering of individual receptors and the organization thereafter of focal contacts occurred only when ECs were exposed to the specific ligand and did not occur on the opposite ligand. The shape of receptor clusters was slightly different and a colocalization of the two receptors was found when ECs were cultured on a mixed matrix of fn plus vn. Adhesion was selectively inhibited by vn or fn receptor antibodies on their respective substrates. The clustering of both receptors preceded the association of vinculin with focal contacts and stress fiber formation. Also, the vn receptor, in the absence of associated fn receptor, was capable of inducing the organization of the membrane-microfilament interaction complex. Overall, these results indicate that individual matrix ligands induce only the clustering of their respective membrane receptors. The clustering of only one receptor is capable of supporting the subsequent formation of focal contacts and the local assembly of related cytoskeletal proteins.  相似文献   

8.
Huang YT  Chen SU  Chou CH  Lee H 《Cellular signalling》2008,20(8):1521-1527
Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells.  相似文献   

9.
Spiral artery remodeling at the maternal–fetal interface is crucial for successful pregnancy and requires the interaction between the first trimester trophoblast and the endothelial cells of the maternal vessels. However, the precise mechanism of this dialog has yet to be determined. The current study investigated whether lysophosphatidic acid (LPA) modulates trophoblast–endothelial crosstalk in vitro. HTR-8/SVneo trophoblast cell line (H8) was seeded on top of Geltrex, incubated with LPA or LPA + NS-398 (selective cyclooxygenase-2 inhibitor), LPA + 1400W (selective inducible nitric oxide synthase inhibitor) or LPA + IL-6 neutralizing antibody and assayed for tube formation to model the acquisition of trophoblast endovascular phenotype. The supernatants were collected and used as conditioned media (CM). To test trophoblast–endothelial crosstalk, the endothelial cell line EA.hy926 was incubated with trophoblast CM. The CM from LPA-induced tubulogenesis stimulated endothelial cells migration and did not modify the apoptosis. Soluble factors derived from cyclooxygenase-2 and IL-6 pathways were involved in H8–EA.hy926 interaction under the LPA effect. Moreover, LPA increased the levels of IL-6 mRNA by cyclooxygenase-2 pathway in H8 cells. Collectively, LPA promotes trophoblast–endothelial crosstalk in vitro and induces the release of trophoblast soluble factors that stimulate endothelial cells migration without changes in apoptosis. The evidence presented here provides new insights about an active role of LPA as a lipid mediator regulating vascular remodeling at the maternal–fetal interface.  相似文献   

10.
The role of individual integrins in human beta-cell development and function is largely unknown. This study describes the contribution of alpha(v)-integrins to human beta-cell adhesion, spreading, and motility. Developmental differences in alpha(v)-integrin utilization are addressed by comparing the responses of adult and fetal beta-cells, and vitronectin is used as a substrate based on its unique pattern of expression in the developing pancreas. Fetal and adult beta-cells attached equally to vitronectin and integrin alpha(v)beta(5) was found to support the adhesion of both mature and immature beta-cell populations. Fetal beta-cells were also observed to spread and migrate on vitronectin, and integrin alpha(v)beta(1) was found to be essential for these responses. In contrast to their fetal counterparts, adult beta-cells failed to either spread or migrate and this deficit was associated with a marked down-regulation of alpha(v)beta(1) expression in adult islet preparations. The integrin alpha(v)beta(3) was not found to support significant beta-cell attachment or migration. Based on our findings, we conclude that integrins alpha(v)beta(5) and alpha(v)beta(1) are important mediators of human beta-cell adhesion and motility, respectively. By supporting fetal beta-cell migration, alpha(v)beta(1) could play an important role in early motile processes required for islet neogenesis.  相似文献   

11.
We previously showed that an elevated content of fibrinogen (Fg) increased formation of filamentous actin and enhanced endothelial layer permeability. In the present work we tested the hypothesis that Fg binding to endothelial cells (ECs) alters expression of actin‐associated endothelial tight junction proteins (TJP). Rat cardiac microvascular ECs were grown in gold plated chambers of an electrical cell‐substrate impedance system, 8‐well chambered, or in 12‐well plates. Confluent ECs were treated with Fg (2 or 4 mg/ml), Fg (4 mg/ml) with mitogen‐activated protein kinase (MEK) kinase inhibitors (PD98059 or U0126), Fg (4 mg/ml) with anti‐ICAM‐1 antibody or BQ788 (endothelin type B receptor blocker), endothelin‐1, endothelin‐1 with BQ788, or medium alone for 24 h. Fg induced a dose‐dependent decrease in EC junction integrity as determined by transendothelial electrical resistance (TEER). Western blot analysis and RT‐PCR data showed that the higher dose of Fg decreased the contents of TJPs, occludin, zona occluden‐1 (ZO‐1), and zona occluden‐2 (ZO‐2) in ECs. Fg‐induced decreases in contents of the TJPs were blocked by PD98059, U0126, or anti‐ICAM‐1 antibody. While BQ788 inhibited endothelin‐1‐induced decrease in TEER, it did not affect Fg‐induced decrease in TEER. These data suggest that Fg increases EC layer permeability via the MEK kinase signaling pathway by affecting occludin, ZO‐1, and ZO‐2, TJPs, which are bound to actin filaments. Therefore, increased binding of Fg to its major EC receptor, ICAM‐1, during cardiovascular diseases may increase microvascular permeability by altering the content and possibly subcellular localization of endothelial TJPs. J. Cell. Physiol. 221: 195–203, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

12.
Neuropeptide Y (NPY), 36-amino acid amidated peptide expressed in central and peripheral neurons, regulates a variety of physiological activities, including food intake, energy expenditure, vasoconstriction, anxiolysis, nociception and ethanol consumption. NPY binds to a family of G-protein coupled receptors whose activation results in inhibition of adenylyl cyclase activity. To more fully characterize the signal transduction pathways utilized by the NPY receptor subtypes, the pathways leading to phosphorylation of the extracellular signal regulated protein kinases 1 and 2 (ERK) have been compared in CHO cells expressing each of the four cloned human NPY receptor subtypes, Y(1), Y(2), Y(4) and Y(5). NPY Y(1), Y(2), Y(4) and Y(5) receptor-mediated ERK phosphorylation was blocked by pertussis toxin (PTX) exposure, indicating that all four receptors are coupled to inhibitory G(i/o) proteins. Exposure to the protein kinase C (PKC) inhibitor GF109203X diminished Y(1), Y(2) and Y(4) receptor-mediated ERK phosphorylation but completely blocked Y(5) receptor-mediated ERK phosphorylation. Additionally, Y(5) receptor-mediated ERK phosphorylation was inhibited by the phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin to a greater extent than was Y(1)-mediated ERK phosphorylation. These results demonstrate that in CHO cells, the Y(5) receptor and the Y(1), Y(2) and Y(4) receptors utilize different pathways to activate ERK.  相似文献   

13.
Tissue transglutaminase (tTgase) contributes to the organisation of the basement membrane and is therefore thought to be important for the integrity and stability of the vessel wall. In the present study, we hypothesised that the HMG-CoA reductase inhibitor atorvastatin may up-regulate the tTgase expression in endothelial cells and thereby exert beneficial effects on endothelial function. Treatment of human umbilical vein endothelial cells (HUVEC) with atorvastatin (1-10 microM) caused a clear increased expression of tTgase in both permeabilised and non-permeabilised HUVEC. In contrast, stimulation of HUVEC with TNFalpha had no substantial effect on tTgase expression or localisation but inhibited the atorvastatin-induced up-regulation and externalisation of tTgase. Propidium iodide staining revealed that statin-induced apoptosis is not responsible for the enhanced expression. By inducing the expression of tTgase, statins may promote tTgase-mediated stabilisation of the basement membrane. This effect of atorvastatin may contribute to the beneficial role of statins on endothelial function.  相似文献   

14.
Dermatopontin (DPT), an extracellular matrix (ECM) protein, has been previously shown to be upregulated in the infarct zone of experimentally induced myocardial infarction (MI) rats. However, the accurate role that DPT exerts in the ventricular remodeling process after MI remains poorly understood. In this study, we evaluated the expression pattern of DPT mRNA and protein as well as its secretion in cultured neonatal rat cardiomyocytes (CMs) and cardiac fibroblasts (CFs) under conditions of hypoxia and serum deprivation (hypoxia/SD). Further, we tested the possible roles of DPT in CFs adhesion, spreading, migration and proliferation, which greatly promote the ventricular remodeling process after MI. Results showed that hypoxia/SD stimulated DPT expression and secretion in CMs and CFs and that DPT promoted adhesion, spreading and migration of CFs whereas had no effect on CFs proliferation. In addition, functional blocking antibodies specific for integrin α3 and β1 significantly reduced CFs adhesion and migration that DPT induced, suggesting that integrin α3β1 is at least one receptor for CFs adhesion and migration to DPT. These results implicated that DPT participates in the ventricular remodeling process after MI and may act as a potential therapeutic target for ventricular remodeling.  相似文献   

15.
Cell shape is involved in a variety of cellular activities including proliferation, adhesion, migration, and transformation. Agents known to promote differentiation, such as retinoic acid, butyrate, and dibutyryl cyclic AMP, induce marked alterations in cell shape which are often accompanied by changes in cell functions. In this paper we study the effects of the differentiating polar solvent dimethyl sulfoxide (DMSO) on cytoskeleton, adhesion, and growth properties of cultured mouse B16 melanoma cells. DMSO induced a progressive reorganization of the cytoskeleton which was fully developed in 4 days of continuous exposure to the agent. DMSO-treated cells developed thick and regularly oriented microfilament bundles of the stress fiber type ending at vinculin-rich areas of focal contact between the ventral membrane and the substratum (interference reflection microscopydark adhesion plaques). Such a rearrangement of the cytoskeleton resulted in increased adhesion to the substratum and inhibition of cell growth in comparison to control untreated cells. Cells which became highly flattened and tightly adherent after exposure to DMSO for 4 days progressively reverted their phenotype to that of control untreated cells within 3 days of DMSO withdrawal. Namely, they lost stress fibers and adhesion plaques, became rounded and less adherent, and increased their growth rate. These results indicate that DMSO can change the transformed appearance of B16 mouse melanoma cells to a phenotype which is typical of a variety of nontransformed cells in culture.  相似文献   

16.
17.
To investigate the regulatory mechanism of cell adhesion, we have searched for cellular inhibitory factors which prevent cell adhesion. The brain cytosol was found to inhibit the adhesion of various transformed cells to the substratum. An inhibitory 120-kDa protein was purified by sequential column chromatography. Peptide sequencing revealed that the protein is identical to amphiphysin1. GST-amphiphysin1 suppressed the attachment of HeLa cells to the plate when cells were cultured in the serum-containing medium. Vitronectin, a major cell-adhesive protein in serum and a ligand to alpha(v)beta3 integrin, was responsible for this cell attachment, and the vitronectin action was blocked by GST-amphiphysin1. GST-amphiphysin1 also inhibited the vitronectin-mediated spreading and migration of malignant melanoma cells. Furthermore, GST-amphiphysin1 bound directly to vitronectin. These findings point to the interesting possibility that amphiphysin1 could be a useful tool to inhibit cell-adhesive vitronectin.  相似文献   

18.
Infiltration of activated neutrophils into the lung appears to be a key element in the severe lung injury that develops in animal models of acute lung injury. Partial liquid ventilation with perflubron has been shown to ameliorate tissue damage compared with conventional mechanical ventilation in acute lung injury models. Pilot experiments indicated that indirect exposure to perflubron could modulate the degree to which subsequent neutrophil binding to endothelial cell monolayers was upregulated after lipopolysaccharide activation. Endothelial cell monolayers preexposed to perflubron showed >40% reductions in the surface steady-state levels of E-selectin and intercellular adhesion molecule-1 achieved after proinflammatory activation (P < 0.05), which correlated with a reduction in the real-time association constants measured by biosensor techniques. These results indicate that direct contact with the perflubron liquid phase is not necessary to attenuate inflammatory responses. Rather, diffusion of perflubron from the alveolar space into the adjacent pulmonary vascular endothelial layer may modulate neutrophil adhesion and thereby reduce the rate of infiltration of activated neutrophils into the injured lung.  相似文献   

19.
Mesenchymal stem cells (MSCs) have anti-inflammatory and immunosuppressive properties and may be useful in the therapy of diseases such as arteriosclerosis. MSCs have some ability to traffic into inflamed tissues, however to exploit this therapeutically their migratory mechanisms need to be elucidated. This study examines the interaction of murine MSCs (mMSCs) with, and their migration across, murine aortic endothelial cells (MAECs), and the effects of chemokines and shear stress. The interaction of mMSCs with MAECs was examined under physiological flow conditions. mMSCs showed lack of interaction with MAECs under continuous flow. However, when the flow was stopped (for 10 min) and then started, mMSCs adhered and crawled on the endothelial surface, extending fine microvillous processes (filopodia). They then spread extending pseudopodia in multiple directions. CXCL9 significantly enhanced the percentage of mMSCs adhering, crawling and spreading and shear forces markedly stimulated crawling and spreading. CXCL9, CXCL16, CCL20 and CCL25 significantly enhanced transendothelial migration across MAECs. The transmigrated mMSCs had down-regulated receptors CXCR3, CXCR6, CCR6 and CCR9. This study furthers the knowledge of MSC transendothelial migration and the effects of chemokines and shear stress which is of relevance to inflammatory diseases such as arteriosclerosis.  相似文献   

20.
The plant cytoskeleton orchestrates such fundamental processes in cells as division, growth and development, polymer cross-linking, membrane anchorage, etc. Here, we describe the influence of Cd2+, Ni2+, Zn2+, and Cu2+ on root development and vital organization of actin filaments into different cells of Arabidopsis thaliana line expressing GFP-FABD2. CdSO4, NiSO4, CuSO4, and ZnSO4 were used in concentrations of 5–20 µM in this study. It was found that Cd, Ni, and Cu cause dose-dependent primary root growth inhibition and alteration of the root morphology, whereas Zn slightly stimulates root growth and does not affect the morphology of Arabidopsis roots. This growth inhibition/stimulation correlated with the various sensitivities of microfilaments to Cd, Ni, Cu, and Zn action. It was established that Cd, Ni, and Cu affected predominantly the actin filaments of meristematic cells. Cells of transition and elongation zones demonstrated strong actin filament sensitivity to Cd and Cu. Microfilaments of elongating root cells were more sensitive to Ni and Cu. Although Cd, Ni, and Cu stimulated root hair growth after long-term treatment, actin filaments were destroyed after 1 h exposure with these metals. Zn did not disrupt native actin filament organization in root cells. Thus, our investigation shows that microfilaments act as sensitive cellular targets for Cd, Ni, and Cu. More data on effects on native actin filaments organization would contribute to a better understanding of plant tolerance mechanisms to the action of these metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号