首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Laminin and elastin, two major constituents of the extracellular matrix, bind to cells via the elastin-laminin receptor (ELR), a receptor distinct from integrins. Despite the ubiquitous nature of elastin and laminin in the matrix, the consequences of activation of the ELR are unknown. Because integrins are capable of mechanosensitive transduction, we hypothesized that the ELR would exert a similar function. Accordingly, we examined the effects of cyclical stretch on canine coronary smooth muscle gene expression and proliferation that are mediated by the ELR. Northern blot analyses showed a 31% decrease in serum-induced expression of c-fos when cells were stretched for 30 min on elastin, but no change in expression was observed on collagen. Serum-induced proliferation of stretched cells was markedly attenuated on elastin when compared with collagen. Both the molecular (decreased c-fos expression) and biological (decreased proliferation) responses on elastin were restored after blockade of the ELR with the elastin fragment hexapeptide (valine-glycine-valine-alanine-proline-glycine, VGVAPG). The inhibition was specific for this peptide, as another hydrophobic hexapeptide (valine-serine-leucine-serine-proline-glycine, VSLSPG) did not inhibit the responses. These results demonstrate that cyclic stretch inhibits c-fos expression and proliferation of coronary vascular smooth muscle cells grown on elastin matrixes, a mechanosensitive response that is transduced by the ELR.  相似文献   

2.
The occluded canine tail artery, which comes off in the same plane as the aortoiliac junction, has been used as a flow model for cerebral aneurysms. These experiments were designed to determine if it is a realistic distensible model of human intracranial aneurysms. Distensibility studies were done on the aorta, and the iliac and tail arteries of four dogs. From these pressure-volume studies, tension-strain curves, elastances, and collagen slack were obtained. The tail artery is stiffer longitudinally and more distensible circumferentially than the other vessels. The iliac arteries and the aorta are not significantly different. The elastance of elastin and collagen is lower in the tail artery, and the collagen is more wavy circumferentially. Longitudinally, the collagen slack is least for the tail artery, and the elastance of elastin is not different in all three vessels. The number of elastin layers in the iliac and tail arteries seen in cross section is not significantly different, but the aorta is different from both these vessels. In another four dogs the aorta proximal to the trifurcation was cannulated and infused with saline to increase pressure. India ink marks were put on the surface to measure changes in length. Photographs were taken at intervals of 10 mmHg(1 mmHg = 133.3 Pa). This was done with the vessels tethered and untethered in the body and then taken out and studied with the same method in vitro. Arteries tethered in the body expanded circumferentially more than longitudinally. The tail artery becomes less distensible if untethered in the body and therefore acts more like an aneurysm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The goal of the present study was to evaluate the effects of relatively short-term chronic intermittent hypoxia (CIH) on endothelial function of resistance vessels in the skeletal muscle and cerebral circulations. Sprague-Dawley rats were exposed to 14 days of CIH (10% fraction of inspired oxygen for 1 min at 4-min intervals, 12 h/day, n = 6). Control rats (n = 6) were housed under normoxic conditions. After 14 days, resistance arteries of the gracilis muscle (GA) and middle cerebral arteries (MCA) were isolated and cannulated with micropipettes, perfused and superfused with physiological salt solution, and equilibrated with 21% O2-5% CO2 in a heated chamber. The arteries were pressurized to 90 mmHg, and vessel diameters were measured via a video micrometer before and after exposure to ACh (10-7-10-4 M), sodium nitroprusside (10-6 M), and acute reduction of Po2 in the perfusate/superfusate (from 140 to 40 mmHg). ACh-induced dilations of GA and MCA from animals exposed to CIH were greatly attenuated, whereas responses to nitroprusside were similar to controls. Dilations of both GA and MCA in response to acute reductions in Po2 were virtually abolished in animals exposed to CIH compared with controls. These findings suggest that exposure to CIH reduces the bioavailability of nitric oxide in the cerebral and skeletal muscle circulations and severely blunts vasodilator responsiveness to acute hypoxia.  相似文献   

4.
The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na(+) reabsorption. Recently we demonstrated that Ca(2+) signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na(+)/Ca(2+) exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca(2+) signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P < 0.001; n = 16 each) rats. Pressurized mesenteric resistance arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1-100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca(2+) signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca(2+). These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca(2+) release and increased Ca(2+) entry, respectively. The increased SR Ca(2+) release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ~70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca(2+) signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca(2+) signaling. These molecular and functional changes provide a mechanism for the increased peripheral vascular resistance (whole body autoregulation) that underlies the sustained hypertension.  相似文献   

5.
This study compared the vasodilatory responses to magnesium sulfate (MgSO(4)) of cerebral and mesenteric resistance arteries and determined whether the responses varied between different gestational groups. Third-order branches (<200 microm) of the posterior cerebral (PCA) and mesenteric arteries (MA) were dissected from nonpregnant (NP; n = 6), late pregnant (LP; day 19, n = 6), and postpartum (PP; day 3, n = 6) Sprague-Dawley rats. A concentration-response curve was performed by replacing the low-MgSO(4) (1.2 mM) HEPES buffer solution with increasing concentrations of MgSO(4) (4, 6, 8, 16, and 32 mM) and measuring lumen diameter at each concentration. All groups exhibited concentration-dependent dilation to MgSO(4), decreasing the amount of tone in the vessels. However, MA were significantly more sensitive to MgSO(4) than PCA. Whereas there was no difference in the response between different gestational groups in MA, the PCA from the LP and PP groups showed a significantly diminished response to MgSO(4). The percent dilation at 32 mM MgSO(4) for PCA versus MA in NP, LP, and PP animals was 36 +/- 2 vs. 51 +/- 7% (P < 0.05), 19 +/- 9 vs. 54 +/- 6% (P < 0.01 vs. PCA and NP), and 12 +/- 5 vs. 52 +/- 11% (P < 0.01 vs. PCA and NP). These results demonstrate that MgSO(4) is a vasodilator of small resistance arteries in the cerebral and mesenteric vascular beds. The refractory responses of the PCA in LP and PP groups demonstrate changes in the cerebrovascular vasodilatory mechanisms with gestation. The greater sensitivity of the MA to MgSO(4)-induced vasodilation suggests that the prophylactic effect of MgSO(4) on eclamptic seizures may be more closely related to the lowering of systemic blood pressure than to an effect on cerebral blood flow.  相似文献   

6.
The purpose of the present study was to examine the effects of portal hypertension on agonist-induced myosin phosphorylation and RhoA expression in vascular smooth muscle. A possible link to cAMP-dependent events was also examined. Portal hypertension was produced by stenosis of the portal vein. Vessel segments were treated with or without 50 microM of the PKA inhibitor Rp-cAMPS for 30 min and subsequently stimulated with 10(-4) M phenylephrine. Myosin regulatory light-chain phosphorylation was detected by immunoblotting. Total RNA from first-order mesenteric arteries and portal veins was isolated and amplified by RT-PCR using RhoA and GAPDH primers. RhoA protein expression was also measured in first-order mesenteric arteries using Western blot analysis. Myosin phosphorylation in maximally stimulated first-order mesenteric arteries was significantly lower in portal hypertensive animals (19.9 +/- 2.86%) when compared with sham-operated control (43.8 +/- 3.53%). Inhibition of PKA selectively increased myosin phosphorylation to 34.7 +/- 4.18%. Rp-cAMPS did not affect the phosphorylation of the portal veins or superior mesenteric arteries. RhoA mRNA and membrane-associated RhoA protein expression in portal hypertensive first-order mesenteric arteries were significantly lower when compared with controls. Acute inhibition of PKA had no effect on RhoA mRNA expression. However, it restored membrane-associated RhoA protein expression in portal hypertensive vessels to control levels. The results suggest that reductions in membrane-associated RhoA expression, which appear to be regulated by cAMP-dependent events, lead to reduced myosin phosphorylation and may underlie the reduced vasoconstrictor effectiveness in the resistance vasculature of portal hypertensive intestine.  相似文献   

7.
To study the role of hydrogen sulfide (H2S) in hypoxic pulmonary vascular structural remodeling (HPVSR), a total of 24 Wistar rats were randomly divided into three groups: control group (n = 8), hypoxia group (n = 8) and hypoxia with sodium hydrosulfide (hy + NaHS) group (n = 8). The mean pulmonary artery pressure (mPAP), plasma H2S and the percentage of muscularized arteries (MA), partially muscularized arteries (PMA) and nonmuscularized arteries (NMA) in small pulmonary vessels were measured. Collagen I and III, elastin, transforming growth factor-beta3 (TGF-beta3), proliferative cell nuclear antigen (PCNA) and human urotensin II(U-II) expressions were detected by immunohistochemical assay. The mRNA expressions of procollagen I and III, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinease-1 (TIMP-1) were detected by in situ hybridization. The results showed that NaHS significantly increased plasma H2S, decreased mPAP and the percentage of MA and PMA of small pulmonary vessels in rats under hypoxia. Meanwhile, NaHS inhibited the proliferation of pulmonary artery smooth muscle cells (PASMCs) represented by a decrease in the expressions of PCNA and human U-II in pulmonary artery wall. NaHS reduced the expression of collagen I and III, elastin and TGF-beta3 protein and decreased the expressions of procollagen I and III mRNA in pulmonary arteries of rats under hypoxia, but it did not impact the ratio of TIMP-1 mRNA to MMP-1mRNA in pulmonary arteries of rats under hypoxia. These data suggested that H2S played an important role in the development of HPVSR.  相似文献   

8.
In this study, filtration flows through the walls of the rat aorta, pulmonary artery (PA), and inferior vena cava (IVC), vessels with very different susceptibilities to atherosclerosis, were measured as a function of transmural pressure (DeltaP), with intact and denuded endothelium on the same vessel. Aortic hydraulic conductivity (L(p)) is high at 60 mmHg, drops approximately 40% by 100 mmHg, and is pressure independent to 140 mmHg. The trends are similar in the PA and IVC, dropping 42% from 10 to 40 mmHg and flat to 100 mmHg (PA) and dropping 33% from 10 to 20 mmHg and essentially flat to 60 mmHg (IVC). Removal of the endothelium renders L(p)(DeltaP) flat: it increases L(p) of the aorta by approximately 75%, doubles L(p) of the PA, and quadruples L(p) of the IVC. Specific resistance (1/L(p)) of the aortic endothelium is approximately 47% of total resistance; i.e., the endothelium accounts for approximately 47% of the DeltaP drop at 100 mmHg. The PA value is 55% at >40 mmHg, and the IVC value is 23% at 10 mmHg. L(p) of the intact aorta, PA, and IVC are order 10(-8), 10(-7), and 5 x 10(-7) cm.s(-1).mmHg(-1), and wall thicknesses are 145.8 microm (SD 9.3), 78.9 microm (SD 3.3), and 66.1 microm (SD 4.1), respectively. These data are consistent with the different wall structures of the three vessels. The rat aortic L(p) data are quantitatively consistent with rabbit L(p)(DeltaP) (Tedgui A and Lever MJ. Am J Physiol Heart Circ Physiol 247: H784-H791, 1984; Baldwin AL and Wilson LM. Am J Physiol Heart Circ Physiol 264: H26-H32, 1993), suggesting that intimal compression under pressure loading may also play a role in L(p)(DeltaP) in these other vessels. Despite very different driving DeltaP, nominal transmural water fluxes of these three vessels are very similar and, therefore, cannot alone account for their differences in disease susceptibility. The different fates of macromolecular tracers convected by these water fluxes into the walls of these vessels may account for this difference.  相似文献   

9.
To determine whether simulated microgravity in rats is associated with vascular dysfunction, we measured responses of isolated, pressurized mesenteric resistance artery segments (157- to 388-microm ID) to vasoconstrictors, pressure, and shear stress after 28-day hindlimb suspension (HS). Results indicated no differences between HS and control (C) groups in 1) sensitivity or maximal responses to vasoconstrictors (norepinephrine, phenylephrine, serotonin, KCl); 2) ID, external diameter, or ratio of wall thickness to ID; 3) distensibility; or 4) vasodilatory responses to shear stress. Myogenic tone was attenuated (P < 0.05) in HS arteries vs. C, as evidenced by 1) decreased magnitude of tone in larger vessels (second-order branch off superior mesenteric artery, 261- to 388-microm ID) at pressures >/=40 mmHg in the presence of phenylephrine (10(-7) M) and 2) decreased magnitude of tone in smaller vessels (third-order branch off superior mesenteric artery, 157- to 277-microm ID), which exhibited spontaneous tone, at pressures > or =70 mmHg. This attenuation of myogenic tone after HS could contribute to orthostatic intolerance because myogenic tone contributes to the overall tone of resistance arteries.  相似文献   

10.
Mammalian small arteries exhibit pressure-dependent myogenic behaviour characterised by an active constriction in response to an increased transmural pressure or an active dilatation in response to a decreased transmural pressure. This study aimed to determine whether pressure-dependent myogenic responses are a functional feature of amphibian arteries. Mesenteric and skeletal muscle arteries from the common European frog (Rana temporaria) were cannulated at either end with two fine glass micropipettes in the chamber of an arteriograph. Arterial pressure-diameter relationships (5-40 mmHg) were determined in the presence and absence of Ca2+. All arteries dilated passively with increasing pressure in the absence of Ca2+. In the presence of Ca2+ proximal mesenteric branches and tibial artery branches dilated with increasing transmural pressure but tone (p < 0.05) was evident in both arteries. A clear myogenic response to a step increase or decrease in pressure was observed in small distal arteries (6 of 13 mesenteric and 7 of 10 sciatic branches) resulting in significantly (p < 0.05) narrower diameters in Ca2+ in the range 10-40 mmHg in mesenteric and 20-40 mmHg in sciatic arteries, respectively. The results demonstrate that arteries of an amphibian can generate spontaneous pressure-dependent tone. This is the first study to demonstrate myogenic contractile behaviour in arteries of nonmammalian origin.  相似文献   

11.
Skin-surface cooling elicits a pronounced systemic pressor response, which has previously been reported to be associated with peripheral vasoconstriction and may not fully account for the decrease in systemic vascular conductance. To test the hypothesis that whole body skin-surface cooling would also induce renal and splanchnic vasoconstriction, 14 supine subjects performed 26 skin-surface cooling trials (15-18 degrees C water perfused through a tube-lined suit for 20 min). Oral and mean skin temperature, heart rate, stroke volume (Doppler ultrasound), mean arterial blood pressure (MAP), cutaneous blood velocity (laser-Doppler), and mean blood velocity of the brachial, celiac, renal, and superior mesenteric arteries (Doppler ultrasound) were measured during normothermia and skin-surface cooling. Cardiac output (heart rate x stroke volume) and indexes of vascular conductance (flux or blood velocity/MAP) were calculated. Skin-surface cooling increased MAP (n = 26; 78 +/- 5 to 88 +/- 5 mmHg; mean +/- SD) and decreased mean skin temperature (n = 26; 33.7 +/- 0.7 to 27.5 +/- 1.2 degrees C) and cutaneous (n = 12; 0.93 +/- 0.68 to 0.36 +/- 0.20 flux/mmHg), brachial (n = 10; 32 +/- 15 to 20 +/- 12), celiac (n = 8; 85 +/- 22 to 73 +/- 22 cm.s(-1).mmHg(-1)), superior mesenteric (n = 8; 55 +/- 16 to 48 +/- 10 cm.s(-1).mmHg(-1)), and renal (n = 8; 74 +/- 26 to 64 +/- 20 cm.s(-1).mmHg(-1); all P < 0.05) vascular conductance, without altering oral temperature, cardiac output, heart rate, or stroke volume. These data identify decreases in vascular conductance of skin and of brachial, celiac, superior mesenteric, and renal arteries. Thus it appears that vasoconstriction in both peripheral and visceral arteries contributes importantly to the pressor response produced during skin-surface cooling in humans.  相似文献   

12.
Cerebral artery vasospasm is a major cause of death and disability in patients experiencing subarachnoid hemorrhage (SAH). Currently, little is known regarding the impact of SAH on small diameter (100-200 microm) cerebral arteries, which play an important role in the autoregulation of cerebral blood flow. With the use of a rabbit SAH model and in vitro video microscopy, cerebral artery diameter was measured in response to elevations in intravascular pressure. Cerebral arteries from SAH animals constricted more (approximately twofold) to pressure within the physiological range of 60-100 mmHg compared with control or sham-operated animals. Pressure-induced constriction (myogenic tone) was also enhanced in arteries from control animals organ cultured in the presence of oxyhemoglobin, an effect independent of the vascular endothelium or nitric oxide synthesis. Finally, arteries from both control and SAH animals dilated as intravascular pressure was elevated above 140 mmHg. This study provides evidence for a role of oxyhemoglobin in impaired autoregulation (i.e., enhanced myogenic tone) in small diameter cerebral arteries during SAH. Furthermore, therapeutic strategies that improve clinical outcome in SAH patients (e.g., supraphysiological intravascular pressure) are effective in dilating small diameter cerebral arteries isolated from SAH animals.  相似文献   

13.
Previous attempts to determine developmental changes in the vascular myogenic response have been confounded by the presence of competing vasoactive stimuli or the use of isolated vessels with markedly different baseline diameters. To circumvent these issues, small mesenteric arteries (diameter approximately 150 microm) from 1- and 10-day-old piglets were studied in vitro under no-flow conditions. In situ studies demonstrated that the intravascular pressure and diameter of these vessels were similar in both age groups, allowing an effective comparison of the myogenic response not obscured by differences in basal diameter. The pressure-diameter relationship was age specific. Thus, although small mesenteric arteries from both age groups demonstrated myogenic constriction in response to stepwise increases in pressure (0 to 100 mmHg, in 20-mmHg increments), the intensity of contraction was significantly greater in vessels from 1-day-old piglets particularly within the pressure range normally experienced by these vessels in situ. Attenuation or activation of PKC with calphostin C or indolactam, respectively, substantially altered the pressure-diameter relationship in 1-, but not 10-day-old arteries; thus calphostin C essentially eliminated the contractile response to pressure elevation in younger subjects, whereas indolactam significantly increased the intensity of the myogenic response and shifted its activation point to a lower pressure range. Immunoblots carried out on protein recovered from these arteries revealed the presence of alpha, beta, epsilon, iota, and lambda; notably, expression of the alpha- and epsilon-isoforms substantially decreased between postnatal days 1 and 10.  相似文献   

14.
The inner diameter and wall thickness of rat middle cerebral arteries (MCAs) were measured in vitro in both a pressure-induced, myogenically-active state and a drug-induced, passive state to quantify active and passive mechanical behavior. Elasticity parameters from the literature (stiffness derived from an exponential pressure-diameter relationship, beta, and elasticity in response to an increment in pressure, Einc-p) and a novel elasticity parameter in response to smooth muscle cell (SMC) activation, Einc-a, were calculated. beta for all passive MCAs was 9.11 +/- 1.07 but could not be calculated for active vessels. The incremental stiffness increased significantly with pressure in passive vessels; Einc-p (10(6) dynes/cm2) increased from 5.6 +/- 0.5 at 75 mmHg to 14.7 +/- 2.4 at 125 mmHg, (p < 0.05). In active vessels, Einc-p (10(6) dynes/cm2) remained relatively constant (5.5 +/- 2.4 at 75 mmHg and 6.2 +/- 1.0 at 125 mmHg). Einc-a (10(6) dynes/cm2) increased significantly with pressure (from 15.1 +/- 2.3 at 75 mmHg to 49.4 +/- 12.6 at 125 mmHg, p < 0.001), indicating a greater contribution of SMC activity to vessel wall stiffness at higher pressures.  相似文献   

15.
At 110-111 days gestation, instrumented fetal sheep were administered saline or dexamethasone (2.2 microgram. kg(-1). h(-1) iv) for 48 h. Measurement of fetal blood pressure showed a greater increase in dexamethasone-treated (n = 6) compared with control (n = 5) fetuses (7.3 +/- 2.3 vs. 0.6 +/- 2.3 mmHg, P < 0.05). Fetuses were delivered by cesarean section, and the femoral muscle and brain were obtained under halothane anesthesia. Femoral and middle cerebral arteries (approximately 320-micrometer internal diameter) were evaluated using wire myography. Sensitivity to KCl (2.5-125 mM) and the magnitude of the maximal vasoconstriction to 125 mM K(+) were similar in femoral and middle cerebral arteries from dexamethasone-treated vs. control fetuses. Acetylcholine-induced vasorelaxation was similar in femoral arteries from control and dexamethasone-treated fetuses. Middle cerebral arteries did not relax to acetylcholine. Sensitivity to endothelin-1 (ET-1; 0.1 pM-0.1 microM) and magnitude of the ET-1-induced vasoconstriction were greater in femoral arteries from dexamethasone-treated vs. control fetuses (P < 0.05). Autoradiographical studies with receptor-specific ligands demonstrated increased ET(A)-receptor binding, the principal receptor subtype, in femoral muscle vessels (P < 0.001) but decreased ET(A)-receptor binding in middle cerebral arteries (P < 0.01) from dexamethasone-treated compared with control fetuses. Relatively little ET(B)-receptor binding was evident in all tissues examined. We conclude that hyperreactivity to ET-1, due to increased ET(A)-receptor binding, may be involved in the dexamethasone-induced increase in peripheral vascular resistance in fetal sheep in vivo.  相似文献   

16.
Eclampsia is thought to be similar to hypertensive encephalopathy, whereby acute elevations in intravascular pressure cause forced dilatation (FD) of intrinsic myogenic tone of cerebral arteries and arterioles, decreased cerebrovascular resistance, and hyperperfusion. In the present study, we tested the hypothesis that pregnancy and/or the postpartum period predispose cerebral arteries to FD by diminishing pressure-induced myogenic activity. We compared the reactivity to pressure (myogenic activity) as well as factors that modulate the level of tone of third-order branches (<200 microm) of the posterior cerebral artery (PCA) that were isolated from nonpregnant (NP, n = 7), late-pregnant (LP, 19 days, n = 10), and postpartum (PP, 3 days, n = 8) Sprague-Dawley rats under pressurized conditions. PCAs from all groups of animals developed spontaneous tone within the myogenic pressure range (50-150 mmHg) and constricted arteries at 100 mmHg (NP, 30 +/- 3; LP, 39 +/- 4; and PP, 42 +/- 7%; P > 0.05). This level of myogenic activity was maintained in the NP arteries at all pressures; however, both LP and PP arteries dilated at considerably lower pressures compared with NP, which lowered the pressure at which FD occurred from >175 for NP to 146 +/- 6.5 mmHg for LP (P < 0.01 vs. NP) and 162 +/- 7.7 mmHg for PP (P < 0.01 vs. NP). The amount of myogenic tone was also significantly diminished at 175 mmHg compared with NP: percent tone for NP, LP, and PP animals were 35 +/- 2, 11 +/- 3 (P < 0.01 vs. NP), and 20 +/- 7% (P < 0.01 vs. NP), respectively. Inhibition of nitric oxide (NO) with 0.1 mM N(omega)-nitro-l-arginine (l-NNA) caused constriction of all vessel types that was significantly increased in the PP arteries, which demonstrates significant basal NO production. Reactivity to 5-hydroxytryptamine (serotonin) was assessed in the presence of l-NNA and indomethacin. There was a differential response to serotonin: PCAs from NP animals dilated, whereas LP and PP arteries constricted. These results suggest that both pregnancy and the postpartum period predispose the cerebral circulation to FD at lower pressures, a response that may lower cerebrovascular resistance and promote hyperperfusion when blood pressure is elevated, as occurs during eclampsia.  相似文献   

17.
Vascular dysfunction characterized by a hyperreactivity to vasoconstrictors and/or impaired vascular relaxation contributes to increased incidence of cardiovascular disease in diabetes. Endothelin (ET)-1, a potent vasoconstrictor, is chronically elevated in diabetes. However, the role of ET-1 in resistance versus larger vessel function in mild diabetes remains unknown. Accordingly, this study investigated vascular function of third-order mesenteric arteries and basilar arteries in control Wistar and Goto-Kakizaki (GK) rats, a model of mild Type 2 diabetes. Six weeks after the onset of diabetes, contractile responses to 0.1-100 nM ET-1 and relaxation responses to 1 nM-10 microM acetylcholine (ACh) in vessels preconstricted (baseline + 60%) with serotonin (5-HT) were assessed by myograph studies in the presence or absence of a nitric oxide synthase (NOS) inhibitor, N-nitro-L-arginine (L-NNA). Maximum contractile response to ET-1 was augmented in mesenteric vessels (155 +/- 18% in GK vs. 81 +/- 6% in control; n = 5-7) but not in the basilar artery (134 +/- 29% in GK vs. 107 +/- 17% in control; n = 4 per group). However, vascular relaxation was impaired in the basilar arteries (22 +/- 4% in GK vs. 53 +/- 7% in control; n = 4 per group) but not in mesenteric arteries of GK rats. Inhibition of NOS decreased the relaxation response of basilar arteries to 15 +/- 8% and 42 +/- 5% in GK and control rats, respectively; whereas, in resistance vessels, corresponding values were 56 +/- 7% and 89 +/- 3% (vs. 109 +/- 2% and 112 +/- 3% without NOS blockade), indicating the involvement of different vasorelaxation-promoting pathways in these vascular beds. These findings provide evidence that the ET system is activated even under mild hyperglycemia and that it contributes to the hyperreactivity of resistance vessels, therefore, the ET system may play an important role in elevated blood pressure in Type 2 diabetes.  相似文献   

18.
Diminished constriction of arteries and veins following exposure to microgravity or bed rest is associated with a reduced ability to augment peripheral vascular resistance (PVR) and stroke volume during orthostasis. We tested the hypothesis that small mesenteric arteries and veins, which are not exposed to large pressure shifts during simulated microgravity via head-down tail suspension (HDT), will exhibit decrements in adrenergic constriction after HDT in rats. Small mesenteric arteries and veins from control (Con; n = 41) and HDT (n = 35) male Sprague-Dawley rats were studied in vitro. Vasoactive responsiveness to norepinephrine (NE) in arteries (10(-9) to 10(-4) M) and veins (pressure-diameter responses from 2 to 12 cmH(2)O after incubation in 10(-6) or 10(-4) M NE) were evaluated. Plasma concentrations of atrial (ANP) and NH(2)-terminal prohormone brain (NT-proBNP) natriuretic peptides were also measured. In mesenteric arteries, sensitivity and maximal responsiveness to NE were reduced with HDT. In mesenteric veins there was a diminished venoconstriction to NE at any given pressure in HDT. Plasma concentrations of both ANP and NT-proBNP were increased with HDT, and maximal arterial and venous constrictor responses to NE after incubation with 10(-7) M ANP or brain natriuretic peptide (BNP) were diminished. These data demonstrate that, in a vascular bed not subjected to large hydrodynamic differences with HDT, both small arteries and veins have a reduced responsiveness to adrenergic stimulation. Elevated levels of circulating ANP or NT-proBNP could adversely affect the ability of these vascular beds to constrict in vivo and conceivably could alter the intrinsic constrictor properties of these vessels with long-term exposure.  相似文献   

19.
Epidemiological and animal studies suggest that diet-induced epigenetic modifications in early life can contribute to development of the metabolic syndrome in adulthood. We previously reported features of the metabolic syndrome in adult offspring of rats fed a diet rich in animal fat during pregnancy and suckling. We now report a study to compare the relative effects of high-fat feeding during 1) pregnancy and 2) the suckling period in the development of these disorders. As observed previously, 6-mo-old female offspring of fat-fed dams suckled by the same fat-fed dams (OHF) demonstrated raised blood pressure, despite being fed a balanced diet from weaning. Female offspring of fat-fed dams "cross fostered" to dams consuming a control diet during suckling (OHF/C) demonstrated raised blood pressure compared with controls (OC) [systolic blood pressure (SBP; mmHg) means +/- SE: OHF/C, 132.5 +/- 3.0, n = 6 vs. OC, 119.0 +/- 3.8, n = 7, P < 0.05]. Female offspring of controls cross fostered to dams consuming the fat diet (OC/HF) were also hypertensive [SBP (mmHg) 131.0 +/- 2.5 mmHg, n = 6 vs. OC, P < 0.05]. Endothelium-dependent relaxation (EDR) of male and female OHF and OHF/C mesenteric small arteries was similar and blunted compared with OC (P < 0.001). OC/HF arteries showed profoundly impaired EDR (OC/HF vs. OHF, P < 0.001). OHF/C and OC/HF demonstrated hyperinsulinemia and increased adiposity. Features of the metabolic syndrome in adult offspring of fat-fed rats can be acquired both antenatally and during suckling. However, exposure during pregnancy confers adaptive protection against endothelial dysfunction induced by maternal fat feeding during suckling.  相似文献   

20.
Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20-200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY (P < 0.05) and SHRSP (P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity (P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120-140 vs. 140-180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号