首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of Damline ewes with twice daily i.v. injections of bovine follicular fluid during the luteal phase for 10, 6 or 2 days before prostaglandin-induced luteolysis resulted in an increase in ovulation rate. This was associated with a large rebound increase in plasma concentrations of FSH after the last injection of bovine follicular fluid. While conception rate was not affected by bovine follicular fluid treatment, a higher percentage embryonic loss was observed between Days 3 and 34 of pregnancy in the 10-day treatment group only compared to controls. This reflected the increase in ovulation rate above the optimum for embryonic survival in this breed. The present results suggest that the increase in ovulation rate induced by bovine follicular fluid treatment in the luteal phase of the cycle before mating would result in a significant increase in the number of lambs born.  相似文献   

2.
A 2-factor factorial array with three replicates (N = 280) was used to simultaneously assess the effects on ovulation rate of two alternative doses of medroxy-progesterone acetate (MPA) (10 or 60 mg), applied during a 6-day priming period, and the effect of a single dosage of a glucogenic formulation, administered immediately before ram exposure to groups of adult seasonally anovular Corriedale ewes. The glucogenic formulation contained 1,2,3-propanetriol (glycerol; 70% vv), 1,2-propanediol (propylene glycol; 20% vv) and distilled water (10% vv). At sponge withdrawal, a single oral dose of 100 ml of this formulation or the same volume of distilled water was administered to treated and control groups, respectively, and ewes were immediately exposed to rams and hormonally-induced oestrous ewes. Data from an ancillary experiment (n = 10) showed significantly (P < 0.005) above normal plasma glucose levels in treated animals at 3 and 6 h after dosage. A significant interaction (P = 0.0006) between MPA priming doses and glucogenic supplementation was detected. Supplemented ewes, among those exposed to the lower dose of MPA, exhibited a higher (P = 0.0098) mean ovulation rate (1.56 ± 0.076) than ewes that did not receive glucogenic treatment (1.31 ± 0.060). In contrast, ovulation rate was significantly decreased (P = 0.021) from 1.30 ± 0.058 to 1.13 ± 0.042 after glucogenic treatment in ewes that were primed with sponges containing 60 mg of MPA. Ewes exposed to 60 mg of MPA were marked by the rams at a significantly later (P < 0.00001) mean time (54.8 ± 1.44 h) than ewes receiving 10 mg sponges (43.6 ± 1.08 h). These results reveal the potential for modifying ovulation rate through short-term glucogenic manipulations, at least during the compressed follicular phase typical of ram-induced ovulations.  相似文献   

3.
The objective of this study was to determine the relative importance of seasonal changes in ovulation rate, fertilization rate and embryo survival as the cause of reduced lambing rates in ewes mated in February compared with those mated in November. The study was conducted at 57 degrees N using mature Mule ewes and Suffolk rams. Sixty ewes were allocated equally to five groups: unbred (UB) or mated at a natural oestrus during November (N) or February (F) by natural (N) or cervical artificial (A) insemination. Groups were maintained separately at pasture supplemented with hay. A raddled vasectomized or non-vasectomized ram was present with UB, NN and NA groups from 26 October 1995 to 1 January 1996 and with UB, FN and FA groups from 25 January 1996 to 31 March 1996. Ewes marked by the ram were recorded twice a day, and those in groups NN, NA, FN and FA were inseminated at their second behavioural oestrus. For all ewes, blood samples were obtained once a day from introduction of the vasectomized rams until 30 days after mating (groups NN, NA, FN and FA) or 20 days after the first oestrus (group UB), and ovulation rate was measured by laparoscopy 7 days after the first oestrus. For ewes in groups NN, NA, FN and FA, ovulation rate was measured again after the second oestrus and ova were recovered from six ewes per group for assessment of fertilization before autotransfer. Pregnancy and lambing rates were recorded at term. Mean (+/- SE) dates of the first recorded oestrus for ewes in groups NN, NA and UB, and FN, FA and UB were 4 +/- 1.1 November and 4 +/- 0.9 February, respectively, and intervals between the first and second oestrus were 16 +/- 0.2 and 17 +/- 0.3 days (P < 0.01), respectively. Ovulation rates were 2.6 +/- 0.08 and 2.0 +/- 0.05 (P < 0.001), and peripheral progesterone concentrations during the luteal phase were 8.5 +/- 0.25 and 7.6 +/- 0.31 ng ml-1 (P < 0.05), for November and February, respectively. The difference in peripheral progesterone concentration was not solely attributable to the difference in ovulation rate. There was no significant effect of month or method of insemination, or of embryo recovery and autotransfer procedures on pregnancy rates and the proportion of ewes that became pregnant were NN 0.92, NA 0.83, FN 0.67 and FA 0.75. For ewes undergoing embryo recovery and autotransfer, ova recovered per corpus luteum were 1.00, 0.93, 1.00 and 0.92, fertilized ova per ovum recovered were 0.69, 0.92, 1.00 and 0.83, and lambs born per corpus luteum were 0.62, 0.79, 0.78 and 0.58 for NN, NA, FN and FA groups, respectively. There were no significant seasonal effects on fertilization rate or embryo survival. It is concluded that a seasonal decline in ovulation rate is the primary cause of reduced lambing rates in ewes mated in February compared with those mated in November. Pregnancy rates were high after mating in both periods and were not enhanced by the use of cervical insemination.  相似文献   

4.
Administration of charcoal-treated bovine follicular fluid to Damline ewes twice daily (i.v.) from Days 1 to 11 of the luteal phase (Day 0 = oestrus) resulted in a delay in the onset of oestrous behaviour and a significant increase in ovulation rate following cloprostenol-induced luteolysis on Day 12. During follicular fluid treatment plasma levels of FSH in samples withdrawn just before injection of follicular fluid at 09:00 h (i.e. 16 h after previous injection of follicular fluid) were initially suppressed, but by Day 8 of treatment had returned to those of controls. However, the injection of follicular fluid at 09:00 h on Day 8 still caused a significant suppression of FSH as measured during a 6-h sampling period. Basal LH levels were higher throughout treatment due to a significant increase in amplitude and frequency of pulsatile secretion. After cloprostenol-induced luteal regression at the end of treatment on Day 12, plasma levels of FSH increased 4-fold over those of controls and remained higher until the preovulatory LH surge. While LH concentrations were initially higher relative to those of controls, there was no significant difference in the amount of LH released immediately before or during the preovulatory surge. These results suggest that the increase in ovulation rate observed during treatment with bovine follicular fluid is associated with the change in the pattern of gonadotrophin secretion in the luteal and follicular phases of the cycle.  相似文献   

5.
Stress reduces fertility in ruminants. Various experimental models, such as insulin-induced hypoglycaemia, have been used to investigate the mechanisms involved, and have revealed abnormal LH profiles (both pulse and surge secretion). This disruption affects follicular function and it is proposed there may be negative consequences on subsequent oocyte morphology. Insulin (5 iu/kg), administered to ewes in the late follicular phase, induced hypoglycemia for 10 h, decreased estradiol concentrations for 8-12 h and delayed the LH surge by 15 h. Although the diameters of dominant follicles just before ovulation were not affected, granulosa cells had fewer pycnotic nuclei, less apoptosis and increased proliferation 16-17 h after the LH surge. Nevertheless, we did not observe gross ultra-structural differences in nuclear, cytoplasmic or cumulus maturity between oocytes from insulin-treated and control animals. This suggests that reduced LH pulsatility and a delay in the LH surge may only produce very subtle changes in gross oocyte morphology, imperceptible by electron microscopy.  相似文献   

6.
Plasma FSH, LH, estradiol (E2) and progesterone (P4) profiles and patterns of follicular growth and regression by ultrasonography were determined after E2 treatment (1 microg/kg) in anestrous ewes. Fifteen ewes were treated with one (group I, n=7) or two (group II, n=4) i.m. injections of E2 with a 24h interval, or two oil injections with a 24h interval (group C, n=4). Blood samples for E2, P4, FSH and LH determinations were collected daily 4 days before the initiation of the treatment (day 0), when bleeding increased to every 2h starting 2h before treatment until 56h after the first injection and from then on every 6h until day 8, and twice per day till the end of the experiment (day 9). During the experimental period (days -4 to 9), transrectal ultrasonic examinations were carried out daily using a 7.5 MHz linear array probe. Number and size of follicles > or =3mm in diameter were recorded. No estrous was detected before, during or after treatment. LH and FSH surges were observed 10-18h after the first E2 injection. The second E2 injection stimulated another release of LH but no surges. E2 inhibited FSH levels before the surge and the second E2 injection induced a longer inhibition. No ovulation was detected by ultrasonography during the experimental period and P4 levels remained low (<0.7 nmol/l) before, during and after the treatment in all ewes. There was an effect of E2 treatment on the diameter of the largest follicle, a decrease could be observed 3 days after the first injection in both ewes of groups I and II. The E2-treated groups had a higher frequency of ewes showing wave emergence on day 3 (day 1.5+/-1,2.4+/-0.4 and 2.5+/-0.5 for control, groups I and II). LH and FSH surges were observed after E2 treatment, but were not able to provoke ovulation neither luteinization. In contrast, the treatment was associated with the regression of the largest follicle and with emergence of a new follicular wave on day 3.  相似文献   

7.
The effect of at least 6 weeks of differential nutrition (high v. low plane) on live weight and ovulation rate was studied in Booroola cross ewes with (F+) and without (++) the putative Booroola gene for fecundity, and non-Booroola local breed ewes. In three experiments, significant differences (range 8–9.6 kg) in live weight at laparoscopy resulted from the differential feeding. Across genotypes, differences in ovulation rate between high and low plane ewes approached significance in Exp. 1 (2.11 vs. 1.76) and were significant in Exp. 2 (1.83 vs. 1.59) and Exp. 3 (2.68 vs. 2.20). Despite significantly higher ovulation rates in F+ Booroola cross ewes compared with ++ ewes (2.99 vs. 1.45), there was no significant interaction between nutrition and genotype; that is, both Booroola genotypes, and non-Booroola ewes exhibited similar ovulation rate responses to nutritionally induced differences in live weight.  相似文献   

8.
Total follicular populations in ewes of high and low ovulation rates.   总被引:1,自引:0,他引:1  
The total ovarian follicular populations were studied in two breeds of ewes which differed greatly in their ovulation rates. Thus 8 Romanov (mean ovulation rate 3.1) and 12 Ile-de-France ewes (mean ovulation rate 1.4) were ovariectomized at oestrus during the breeding season. Each right ovary and 3 left ovaries were sectioned at 7 micron and examined microscopically. The number of small follicles, i.e. with 2 or less layers of granulosa cells, was estimated by a tested sampling procedure whilst all larger follicles were measured and arranged into classes. There were half as many small follicles but 1.5--2 times more large follicles in the ovaries of the Romanov ewes compared to those of the Ile-de-France ewes. The number of atretic follicles was approximately the same in both breeds and does not explain the difference observed in ovulation rate. It is concluded that the higher ovulation rate in the Romanov ewe is due to the greater number of large follicles available to be stimulated for ovulation.  相似文献   

9.
This study was conducted on 110 cross-bred Hisardale x Nali ewes. The ewes were divided into two groups: one group was treated with 2 ml of polyandroalbumin subcutaneously (s.c.) twice at an interval of 28 d, with breeding rams introduced 28 d after the second injection of the drug. The second group served as the untreated controls. Of the 55 ewes in each group, 52 were mated during the 40 d breeding period. The occurance of estrus and estrous cycle length were the same in the two groups. Fortysix ewes in the treated group and 47 ewes in the control group lambed, producing 55 and 47 lambs, respectively. In the treated group, the lambing rate, fecundity and fertility were 100, 96.36 and 88.46%, while these values for the control group were 85.45, 83.64 and 90.38%. Prolificity rates were 1.15 and 0.98 for the treated and control group, respectively.  相似文献   

10.
Affinity chromatography of bovine follicular fluid using Matrix gel Red A resulted in a 20-fold increase in inhibin-like specific activity assessed in a mouse ovulation inhibition test system. When this material was emulsified with Freund's adjuvant and injected into adult Merino ewes their mean ovulation rate was increased from 1.2 to 2.3 (P less than 0.01). Follicles of diameter greater than or equal to 3.5 mm and 2-3.4 mm were also increased (4.33 vs 2.25 and 5.39 vs 2.44 per ewe respectively). The ovulation rate response was variable and transient. Length of oestrous cycles, number of granulosa cells per follicle and seasonal oestrous patterns were not affected. Plasma from the immunized ewes contained antibodies to the immunogen and reversed the ovulation-inhibiting effects of bovine follicular fluid in mice.  相似文献   

11.
12.
Ewes which had been exposed to oestrogenic clover for 3 years showed an elevated ovulation rate but no difference in numbers of primordial follicles compared with normal ewes.  相似文献   

13.
Charcoal-treated bovine follicular fluid (bFF) given as four 5-ml subcutaneous injections to 13 Merino-Border Leicester ewes around the time of natural luteolysis suppressed (P<0.01) plasma levels of follicle stimulating hormone (FSH) [from 1.08 ± 0.05 to 0.41 ± 0.03, mean ± s.e.m. of loge (ng+ 1) /mlplasma]. This was followed (P < 0.01) by hypersecretion or a rebound of FSH (to 1.46 ± 0.11) lasting 32 h in 10 of the treated ewes, and then by a further fall (to 0.73 ± 0.03, P < 0.05) before the surge (1.21 ± 0.07, P < 0.05) associated with the preovulatory surge of luteinizing hormone (LH).Plasma FSH at 56–72 h before the LH surge (i.e., at the time of the FSH rebound) was correlated with the subsequent ovulation rate (n=13, r= + 0.73, P < 0.01). Fewer ewes treated with four injections of 2 or 5 ml of bFF than control ewes (injected with bovine plasma) became pregnant (28 of 41 vs. 38 of 41, χ2 = 4.05, P < 0.05), although plasma progesterone was similar at Day 11 in treated and control ewes. It is concluded that plasma FSH during such a rebound influences the subsequent ovulation rate in sheep.  相似文献   

14.
15.
The specific requirement for FSH in the final stages of preovulatory follicle development was assessed in seasonally anoestrous ewes given 2-h injections of GnRH (250 ng/injection), with (N = 10) or without (N = 10) concurrent treatment with bovine follicular fluid (bFF: 2 ml given i.v. at 8-h intervals). Treatment with bFF significantly (P less than 0.01) suppressed plasma FSH concentrations, but, at least for the first 30 h of treatment, did not influence the magnitude of GnRH-induced LH episodes (mean max. conc. 3.00 +/- 0.39 and 3.63 +/- 0.51 ng/ml for bFF-treated and control ewes, respectively). Of 10 animals treated with GnRH for 72 h, 5/5 control ewes showed oestrus and ovulated whereas 0/5 bFF-treated ewes showed oestrus or ovulated in response to GnRH treatment. There was, however, a transient (13.2 +/- 1.0 h) increase in plasma LH concentrations in the ewes given bFF (mean max. conc. 4.64 +/- 1.57 ng/ml), which was coincident with the preovulatory LH surge recorded in animals given GnRH alone. In 10 GnRH-treated ewes slaughtered after 32 h of treatment, the mean diameter of the largest antral follicle was significantly (P less than 0.001) greater in control ewes (5.92 +/- 0.17 mm) than in animals that were also given bFF (3.94 +/- 0.14 mm). In addition, the incidence of atresia in the 3 largest antral follicles present at this time was greater in bFF-treated ewes. These results show that, when plasma FSH concentrations are suppressed by administration of bFF, although the magnitude of GnRH-induced LH episodes is unchanged, preovulatory follicular development is impaired and ovulation does not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Plasma FSH concentrations were measured in Merino ewes immunized with either an inhibin-enriched preparation from bovine follicular fluid (bFFI) or bovine serum albumin. When compared during the normal oestrous cycle, ewes reimmunized three times with bFFI and which showed increased ovulation rates before the experiment had significantly elevated plasma FSH concentrations on Day 13–14 and at Day 2 of the subsequent cycle. There was a positive correlation (P < 0.05) between plasma FSH concentration and the ovulation rate of the ewes in previous cycles (during the period of immunization) and in the cycle under investigation. In a larger group of ewes immunized against bFFI, which showed a variable increase in ovulation rate, there was no comparable increase in plasma FSH concentration when compared with control ewes in the follicular phase of the cycle.By contrast, when luteolysis was induced by a prostaglandin analogue the bFFI-immunized ewes had lower plasma FSH concentrations than control ewes immediately before and after the preovulatory LH surge. This decrease was significant in the period 9–21 h after the LH surge (P < 0.05–0.01) so that the onset of the second FSH peak was delayed.When the ewes were ovariectomized, the post-castration rise in plasma FSH concentration (but not LH) was delayed for a period of 24 h in bFFI-immunized ewes relative to controls.These experiments show that immunization of ewes with an inhibin-like fraction of bFF does not lead to consistently elevated plasma FSH. However, such ewes have altered feedback regulation leading to differential responses of FSH to prostaglandin-induced luteolysis and to castration.  相似文献   

17.
Wurst AK  Dixon AB  Inskeep EK 《Theriogenology》2007,68(7):1012-1016
The objective was to determine if transrectal ultrasonography for determination of pregnancy in restrained ewes increases embryonic/fetal death or loss of pregnancy. Ten flocks (N=873 ewes) bred in either the estrous or anestrous season were randomized, into control (C) or examined (E) groups within flock. Examined ewes were placed in a tilting squeeze chute and scanned by one of three operators for pregnancy by transrectal ultrasonography once between Days 25 and 100 post-breeding. Control ewes were not subjected to handling in the squeeze chute or pregnancy diagnosis. Two operators counted embryos in E ewes in six flocks. There were no differences between E and C ewes in percent ewes lambing or lambing rate on a per flock basis. Prolificacy per flock was greater in E ewes (P=0.05; 1.53 versus 1.60, C and E, respectively) than in C ewes. Eighty-five percent of exposed ewes lambed in the estrous season, while only 62% of ewes lambed in the anestrous season (P=0.05). Overall prolificacy did not differ with season (1.60 versus 1.53), and there was no season by treatment interaction for any variable tested. Losses averaged 0.02 per E ewe exposed in the estrous season and 0.20 in the anestrous season (P<0.05). Examined ewes in this study had similar pregnancy and lambing rates to C ewes in the same flocks and prolificacy was slightly greater. Based on these data, the combination of transrectal ultrasonography with restraint is safe for pregnancy diagnosis in ewes.  相似文献   

18.
Influence of melatonin on reproductive performance was evaluated by randomly allotting Polypay-type ewes to four treatments: controls in drylot, melatonin-treated ewes in drylot, controls on range, and melatonin-treated ewes on range. An additional group of Targhees and Rambouillets was randomized by breed as control ewes or melatonin-treated ewes to test effect of melatonin in range ewes. All ewes were supplemented with 0.34 kg/head alfalfa-barley (1:1) pellets from 1600 to 1630 h daily, from April 15 to June 30. Ewes maintained on range received no further supplementation, while ewes in drylot received alfalfa pellets for maintenance. Melatonin was fed at 10 mg hd(-1) d(-1) in the pellet to designated ewes in drylot or on range. Three rams were put with each group of ewes on June 1 and rotated among groups at 7-d intervals during the first 30 d of breeding to reduce sire differences. After the first 30 d, ewe groups were combined with all rams. Melatonin induced (P < 0.01) an earlier onset of estrus (approximately 17 d) as indicated by earlier lambing dates in Polypay-type, Rambouillet, and Targhee ewes managed on spring range. Melatonin also increased (P < 0.01) the number of ewes that conceived during the first 30 d of breeding (June) for both management treatments (drylot and range) and for all breeds.  相似文献   

19.
Ovaries were recovered from two groups (n=6/group) of anoestrous Romney Marsh ewes, one group of which had been treated with progesterone implants prior to slaughter. A comparison was made between the maturational characteristics of the follicles > 2 mm diameter recovered from both groups and some significant differences were noted. In particular, the large follicles (> 4 mm diameter) recovered from the progesterone-treated ewes had a significantly (P<0.01) reduced capacity to secrete oestradiol, but enhanced (P<0.01) ability to bind hCG when compared to follicles recovered from control ewes. There were also differences in the relationships between follicular characteristics in the two groups of animals including a significant (P <0.05) correlation between follicular fluid progesterone and hCG binding to theca tissue in large follicles from progesterone-treated animals which did not exist in the control animals. Conversely, in the control animals a significant (P<0.05) relationship existed between oestradiol production and hCG binding to granulosa cells, but there was no such relationship in the follicles from progesterone-treated ewes. These results demonstrate that the treatment of ewes with progesterone during the anoestrous period clearly affects oestradiol synthesis and hCG binding and thus modifies follicular development.  相似文献   

20.
Experiments were conducted with ewes to investigate the effects of an enriched bovine follicular fluid inhibin preparation (INH) on gonadotrophin secretion after the onset of oestrus. Administration of INH (10 mg) 1 h after the onset of oestrus did not significantly alter the preovulatory FSH and LH surges or the second FSH peak. To determine the effects of INH on the second FSH surge, ewes were treated with saline (N = 7) or INH (N = 10) at 4 h (10 mg) and 24 h (5 mg) after the peak of the preovulatory LH surge. The second FSH surge was delayed about 24 h (P less than 0.05) in ewes treated with INH; however, the delay did not alter the interval to the next oestrus. In a third experiment, 16 ewes were assigned to 4 groups in a 2 x 2 factorial with the main effects being ovariectomy at 4 h and INH treatment (10 mg) at 4, 20 and 36 h after the peak of the LH surge. Controls received sham ovariectomy and saline injection as appropriate. Ovariectomy resulted in a rapid increase in serum FSH but not LH and this was delayed (P less than 0.05) by INH treatment. These results indicate that inhibin has a selective inhibitory action on FSH secretion in ewes and suggests that the second FSH surge results from increased basal FSH secretion due to decreased endogenous inhibin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号