首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dose-response (DR) curves for several angiotensin analogs were examined on isolated rabbit detrusor strips with washout and rest between each addition. The order of potency was [Val5]-angiotensin II greater than [Ile5]-angiotensin II greater than [Ile5]-angiotensin I greater than [Val4]-angiotensin III. Repeated cumulative DR to [Val5]-AII resulted in a gradual increase in potency and intrinsic activity for four DR. However, the maximum force generated occurred at lower agonist concentrations and was less than that of the single methods, suggesting tachyphylaxis. Atropine (1.0 microM) shifted the cumulative DR curve downward, suggesting some cholinergic component possibly involving a presynaptic site of action. The magnitude of field-stimulated atropine-resistant contractions was reduced by both 1.0 and 10 microM saralasin as well as 10 microM naloxone. Tissue binding with 125I-labelled angiotensin II on isolated detrusor smooth muscle membranes indicated specific binding saturation occurred at 14.3 fmol/mg with a KD of 0.72 nM in EDTA-Tris buffered saline. Thus our results show that angiotensin II (AII) receptors can be demonstrated in destrusor muscle by ligand binding experiments on cell membranes and that saralasin and naloxone partially block atropine-resistant contractions. However, it seems unlikely that AII serves as a neurotransmitter because of the delay in onset of action of exogenous AII in isolated bath experiments and the apparent inability of saralasin to totally abolish the atropine-resistant field-stimulated preparation. If AII serves a role in neurotransmission it most probably is as a neuromodulator.  相似文献   

2.
Binding of [125I-Tyr8]bradykinin (BK) was measured in homogenates of epithelial and smooth muscle layers of the guinea pig ileum. Binding assays were performed at 4 degrees C for 40 min (smooth muscle) or 90 min (epithelium) in 25 mM PIPES buffer at pH 6.8 in the presence of 1 mM 1,10-phenanthroline, 140 micrograms/mL bacitracin, 1 mM captopril, 1 mM dithiothreitol, and 0.1% bovine serum albumin. Specific binding of [125I-Tyr8]BK (0.32 nM) to epithelial and smooth muscle cell membranes was linearly related to protein concentration between 0.05 and 0.5 mg/mL. Equilibrium experiments showed that specific binding of [125I-Tyr8]BK was saturable and Scatchard analysis indicated the presence of a high affinity site with a Kd value of 1.6 nM and a Bmax of 156 fmol/mg of protein in the epithelial cell membranes. In smooth muscle membranes, Kd was 1.8 nM and the maximum number of binding sites was 58 fmol/mg of protein. Unlabelled peptides, namely bradykinin, [Tyr8]BK, [Hyp3]BK, D-Arg[Hyp3]BK, [Hyp3,Tyr(Me8)]BK, and kallidin displaced [125I-Tyr8]BK binding while other peptides, angiotensin II and substance P, had no effect. A series of B2-receptor antagonists displaced [125I-Tyr8]BK from specific binding sites with IC50 values ranging from 16 to 152 nM on epithelial cell membranes; similar values were obtained from smooth muscle cell membranes. These findings suggest that the binding sites in both preparations are of the B2 type. B1-receptor agonists and antagonists were found to be inactive at concentrations up to 10(-4) M. Results obtained in the two preparations were compared and a positive highly significant correlation was demonstrated between the two sets of data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. The effect of substance P on the mechanical activity of carp intestinal bulb smooth muscle was investigated in vitro. 2. Bath-applied substance P (1 nM-1 microM) caused concentration-dependent contraction of the smooth muscle. The EC50 value was 20 +/- 3 nM (N = 13). 3. Pretreatment with tetrodotoxin (780 nM) or atropine (500 nM) partially decreased the contractile response to substance P, while methysergide (3 microM) did not decrease the response. 4. The contractile response to substance P was not decreased by [D-Pro2, D-Trp7.9]-substance P or [D-Pro4, D-Trp7.9]-substance P (4-11) pretreatment (10 microM for 5 min). 5. Exposure of the intestinal bulb to substance P (100 nM and 1 microM for 15 min) decreased the response to subsequent application of substance P, physalaemin and eledoisin in a concentration dependent manner, while the contractile response to acetylcholine or methionine-enkephalin was not affected. 6. Exposure of the intestinal bulb to physalaemin and eledoisin (100 nM for 15 min) decreased the response to subsequent application of substance P. 7. The above results indicate that substance P causes the contraction of the carp intestinal bulb smooth muscle through its direct action on the smooth muscle and its indirect action through enteric cholinergic nerves. Long-term exposure to substance P causes desensitization of the preparation to substance P, physalaemin and eledoisin at the receptor level.  相似文献   

4.
The aim of the present study was to clarify smooth muscle- and region-dependent distributions of the oxytocin receptor that mediates oxytocin-induced contraction in the nonpregnant porcine myometrium by means of mechanical and radioligand ([3H]-oxytocin) binding studies. In Krebs solution, oxytocin (0.1-300 nM) caused concentration-dependent contractions of the cornual myometrium, and the longitudinal muscle was more sensitive than the circular muscle. [Arg8]-vasopressin and [deamino-Cys1, D-Arg8]-vasopressin also contracted the myometrium, and the order of the potency was oxytocin > [Arg8]-vasopressin > [deamino-Cys(1), D-Arg(8)]-vasopressin. Treatment with a high concentration of oxytocin selectively inhibited the contraction of oxytocin and [Arg8]-vasopressin without affecting the responses of acetylcholine and high-K+. Selective cross inhibition was also observed in the presence of a high concentration of [Arg(8)]-vasopressin. The oxytocin-induced contraction was resistant to tetrodotoxin and atropine, but was reduced by verapamil or by the removal of external Ca2+, indicating that oxytocin has a direct action on smooth muscle cells and that extracellular Ca2+ plays an important role for the contraction. In Kumagai solution, oxytocin caused contraction of the cornual longitudinal muscle (-logEC50 = 8.5) but not the circular muscle. Longitudinal muscles of other regions (corpus and cervix) were also responsive to oxytocin, but the -logEC50 value differed from region to region (cornua > corpus = cervix). On the other hand, oxytocin failed to cause contraction of the corpus and cervical circular muscles. 3H-Oxytocin bound to crude membrane preparations of the myometrium in a concentration-dependent (0.084-2.7 nM) saturable manner. Scatchard analysis of equilibrium binding data revealed the presence of a single class of binding site with an apparent dissociation constant (Kd, 1.1-1.5 nM), but receptor density (Bmax) differed in the two muscle layer types (longitudinal muscle: circular muscle = 5:1) and tended to decrease from the cornua to the cervix. In conclusion, the receptor specific for oxytocin is present in the porcine myometrium and mediates the contractile responses of both oxytocin and [Arg8]-vasopressin. The distribution of the oxytocin receptors differs according to the type of muscle layer (longitudinal muscle > circular muscle) and the region of the uterus.  相似文献   

5.
Calmidazolium in macromolecular concentrations inhibited the electric and contractile activity of smooth muscle cells (SMC). The concentrations causing a 50% inhibition of oscillations on the action potential (AP) plate were equal to 1 X 10(-6) microM, AP amplitude was 3 X 10(-6) microM and contraction amplitude was 1 X 10(-6) microM. Calcium ionophore A 23187/8 X 10(-7) microM, added to the normal Krebs solution, decreased rapid AP components amplitude and increased the contraction power of the isolated SMC strip by 62 +/- 9%. A 23187, though to a lesser extent, increased smooth muscle contractions during the action of calmidazolium. With combined use of A 23187 and calmidazolium, rapid AP components were depressed to a greater extent than each of them taken separately. The data obtained point to the presence of calmodulin or similar protein in SMC of the calcium channels.  相似文献   

6.
Receptors for galanin in membranes from the rat gastric and jejunal smooth muscle were studied using [125I] radioiodinated synthetic porcine galanin. Specific binding was time and temperature dependent. At 32 degrees C radioligand was degraded in the presence of smooth muscle membranes in a time-dependent manner. At optimal experimental conditions, the equilibrium binding analyses showed the presence of a single population of high affinity binding sites in both the rat stomach and jejunum (Kd value of 2.77 +/- 0.78 nM and 4.93 +/- 1.74 nM for stomach and jejunal smooth muscle membranes, respectively). The concentration of the high affinity binding sites was 58.19 +/- 11.04 and 32.36 +/- 5.68 fmol/mg protein, for gastric and jejunal preparations, respectively. Specific binding was completely inhibited by 10(-6) M of nonradioactive galanin; was 75% blocked by 1 microM of galanin(9-29); it was 10% blocked by 1 microM of galanin(15-29). Galanin(1-15) at a concentration of 1 microM was ineffective for inhibiting [125I]galanin binding. Deletion of four C-terminal amino acid residues from galanin(9-29) to give galanin(9-25) also resulted in almost complete loss of affinity. Radioiodinated galanin and N-terminally deleted fragments had receptor binding potency in the following order: galanin(1-29) greater than galanin(9-29) greater than galanin(15-29). We conclude that the C-terminal part of the galanin chain is important for the rat gastric and jejunal smooth muscle membrane receptor recognition and binding and that N-terminal amino acid sequences are probably not so important, since galanin(1-15) was not active but galanin(9-29) retained most of the receptor binding activity.  相似文献   

7.
Previous studies from our laboratory demonstrated that long-term hypoxia (LTH) altered in vitro contractile responses to oxytocin in full-thickness myometrial strips from pregnant sheep. The present study was designed to determine, first, if the reduced contractile response to oxytocin following LTH is the result of combined effects on longitudinal and circular smooth muscle or if the effect is specific to a single muscle layer and, second, if the reduced contractile response to oxytocin following LTH is caused by changes in oxytocin-receptor protein. Pregnant ewes were maintained at high altitude (3820 m) from Day 30 to Days 137-142 of gestation, when the ewes were killed for collection of myometrial tissue. Tissue was also collected from age-matched, normoxic controls. Longitudinal and circular layers were separated, length-tension curves generated to determine optimal resting tension, and all strips exposed to increasing half-log doses of oxytocin ranging from 10-12 to 10-6.5 M. The expression of oxytocin-receptor protein was measured using Western blot analysis. We found that LTH did not affect KCl-induced contraction of either smooth muscle layer, whereas the sensitivity of both myometrial layers to oxytocin was altered. A decreased maximum contractile response of the circular layer to oxytocin was also observed. Additionally, LTH decreased expression of oxytocin-receptor protein in the circular layer and increased levels in the longitudinal layer. Results from the present study indicate that LTH alters contractile responses and oxytocin-receptor protein expression in a layer-specific manner in the pregnant sheep myometrium.  相似文献   

8.
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a proinflammatory mediator, but its effects on airway smooth muscle (ASM) have never been assessed. Tension measurements performed on guinea pig ASM showed that 5-oxo-ETE induced sustained concentration-dependent positive inotropic responses (EC50 = 0.89 microM) of somewhat lower amplitude than those induced by carbamylcholine and the thromboxane A2 (TXA2) agonist U-46619. Transient inotropic responses to 5-oxo-ETE were recorded in Ca2+-free medium, suggesting mobilization of intracellular Ca2+. Meanwhile, the sustained contraction, which required Ca2+ entry, was partially blocked by 1 microM nifedipine (an L-type Ca2+ channel blocker) but relatively insensitive to 100 microM Gd3+. The 5-oxo-ETE responses were also inhibited by indomethacin and SC-560 [a cyclooxygenase (COX-1) inhibitor] pretreatments but not by NS-398 (a selective COX-2 inhibitor). The contractile effects of 5-oxo-ETE on ASM were inhibited by the selective TXA2 receptor (TP receptor) antagonist SQ-29548 (-75%) and by 2-(p-amylcinnamoyl) amino-4-chlorobenzoic acid pretreatment, a phospholipase A2 inhibitor (-66%), suggesting that the major part of its effect is mediated by the release of TXA2. ASM responses to 5-oxo-ETE were also blocked by the Rho-kinase inhibitor Y-27632, which also partially inhibited the response to the TP receptor agonist U-46619, suggesting that the contractile response is due in part to Ca2+ sensitization of ASM cell myofilaments.  相似文献   

9.
The effects of L-type calcium channel blockers (CCBs) selective for the gastrointestinal tract (pinaverium) or non-selective (nicardipine and diltiazem), were investigated on CCK-, CCh- or KCl-induced contraction of smooth muscle cells (SMC) isolated from the circular muscle layer of normal or of inflamed human colons. In the normal tissue colon, whatever the contractile agent used, CCK-8 (1nM), CCh (1nM) or KCl (20mM), a micromolar concentration of pinaverium significantly inhibited contraction (88.36%, 93.10%, 93.92% inhibition respectively); this effect was concentration-dependent for CCh (IC50 = 0.73 +/- 0.08nM) and for CCK (IC50 = 0.92 +/- 0.12nM). In parallel, both nicardipine and diltiazem inhibit significantly contraction of isolated SMC. In inflamed colons, pinaverium (1 microM) display a significant higher efficacy than diltiazem or nicardipine to reduce cell contraction induced by CCK-8 or by KCl. In addition, RT-PCR experiments were performed to evidence tissue specificity of the L-type calcium channel. They revealed the expression of the messenger of the a-1 subunit L-type calcium channel (binding site of such CCBs), consistent with the expression of the rbC-2 splice variant of the alpha1-C gene.In conclusion: (i) the inhibition by calcium channel blockers of agonist-induced contractile activity suggest a modulation of SMC contraction upon extracellular calcium via 'L-type' voltage-dependent calcium channel; (ii) this study provides a rationale for the clinical use of pinaverium in colonic motor disoders affecting the contractility of SMC, since it appeared to decrease the contraction even in pathological situation; and (iii) RT-PCR experiments confirms the presence in human colon SMC of the alpha-1 subunit mRNA of calcium channel.  相似文献   

10.
This study was aimed to investigate the vascular activity of caffeic acid phenethylester (CAPE), one of the major components of honeybee propolis. Experiments were performed on rat thoracic aortic rings, mounted in an isolated organ bath and connected to an isometric force transducer. The effect of CAPE (0.1-300 microM) was evaluated on tissue pre-contracted with phenylephrine (PE, 1 microM) or with KCl (100 mM). In another set of experiments, tissue was incubated with CAPE (1-100 microM) and responses to PE (0.01-3 microM) or KCl (60 mM) were evaluated. The effect of CAPE on cytosolic Ca(2+) concentration in aortic smooth muscle cells stimulated with PE or KCl was also evaluated. CAPE (0.1-300 microM) caused a concentration-dependent relaxation (pEC(50) 4.99 +/- 0.19; Emax 100.75 +/- 1.65%; n = 4) of tissue pre-contracted with PE that was reduced by endothelium removal or by incubation with N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM). CAPE also relaxed KCl-precontracted tissue (pEC(50) 4.40 +/- 0.08; n = 4). CAPE inhibited contractile responses to PE or to KCl, and also inhibited the contractile response to PE obtained in a Ca(2+)-free medium. In addition, CAPE inhibited the increase in cytosolic Ca(2+) concentration triggered by stimulation of aortic smooth muscle cells with PE or KCl. Our results demonstrate a vascular activity for CAPE, that is only partially dependent on nitric oxide. Indeed, at high concentrations, CAPE vasorelaxant effect occurs also in absence of endothelium and it is likely due to an inhibitory effect on calcium movements through cell membranes.  相似文献   

11.
We describe novel potent endothelin (ET) antagonists that are highly potent and selective for the ETA receptor (selective to ET-1). Of the synthetic analogs based on ETA antagonist BE-18257A isolated from Streptomyces misakiensis (IC50 value for ETA receptor on porcine aortic smooth muscle cells (VSMCs); 1.4 microM), the compounds BQ-123 and BQ-153 greatly improved the binding affinity of [125I]ET-1 for ETA receptors on VSMCs (IC50; 7.3 and 8.6 nM, respectively), whereas they barely inhibited [125I]ET-1 binding to ETB receptors (nonselective with respect to isopeptides of ET family) in the cerebellar membranes (IC50; 18 and 54 microM, respectively). Associated with the increased affinity for ETA receptors, these peptides antagonized ET-1-induced constriction of isolated porcine coronary artery. However, there was a small amount of ET-1-induced vasoconstriction resistant to these antagonists, which paralleled the incomplete inhibition of [125I]ET-1 binding in the membrane of the aortic smooth muscle layer. These data suggest that the artery has both ETA and ETB receptors responsible for ET-1-induced vasoconstriction. The antagonists shifted the concentration-response curve to the right for ET-1 in the coronary artery, and increased the apparent dissociation constant in the Scatchard analysis of [125I]ET-1 binding on the VSMCs without affecting the binding capacity, indicative of the competitive antagonism for ETA receptor. In conscious rats, pretreatment with the antagonists markedly antagonized ET-1-induced sustained pressor responses in dose-dependent fashion without affecting ET-1-induced transient depressor action, suggesting that the pressor action is mediated by ETA receptors, while the depressor action is mediated by ETB receptors. In addition, pretreatment with the potent antagonists prevented ET-1-induced sudden death in mice. Thus, these potent ETA antagonists should provide a powerful tool for exploring the therapeutic uses of ETA antagonists in putative ET-1-related disorders.  相似文献   

12.
Contractile and prostaglandin E (PGE)-producing effects of adrenergic agonists were compared in the rabbit isolated vas deferens to determine which adrenergic receptor(s) potentially could mediate neural responses. Additionally, interactions among receptors were elucidated by comparing responses to norepinephrine, phenylephrine and isoproterenol to those in the presence of selective adrenergic agonists or antagonists. Norepinephrine increased the force of muscle contraction and the immunoassayable PGE concentrations in a concentration-dependent manner with EC50's of 55 +/- 8 and 112 +/- 39 microM, respectively. Propranolol (10 microM) enhanced the contractile effects of norepinephrine (p less than 0.01) whereas yohimbine (100 microM) or prazosin (1 microM) reduced norepinephrine-induced contractions and PGE production (p less than 0.01). Propranolol did not alter the PGE production induced by norepinephrine. Metoprolol (100 microM) also enhanced contractile effects of norepinephrine (p less than 0.05). The beta adrenergic agonist, isoproterenol (100 nM), decreased the contractile, but not the PGE-producing, effects of phenylephrine (p less than 0.001). Isoproterenol, given alone, increased PGE concentrations and inhibited electrically-induced force generation in a concentration-dependent manner. These results are consistent with the presence of alpha receptors on the vas deferens which mediate smooth muscle contraction and PGE generation. Beta receptors which mediate relaxation and PGE production also are present. Tentative identification of the beta receptor subtype revealed the presence of a beta 1 receptor.  相似文献   

13.
To test the hypothesis that binding site regulation is the primary process controlling the responsiveness of the rat's myometrium to oxytocin during pregnancy, I have studied the effects of oxytocin on longitudinal and circular strips of myometrium in vitro throughout pregnancy. Longitudinal muscle was as sensitive on day 10 of pregnancy (EC50 = 1.6 nM) as it was at term (EC50 = 1.3 nM) and there was no significant change in the mean maximal force developed in response to the hormone (2.1 +/- 0.9 vs. 1.5 +/- 0.3 N cm-2). Circular muscle on the other hand was essentially refractory to the hormone until day 21 of pregnancy at which time its sensitivity and the maximum response were similar to those of longitudinal muscle. These results indicated that regulation of oxytocin sensitivity in the two muscle layers was temporally different, and they suggested different mechanisms. The effect of oxytocin on longitudinal muscle was not compatible with the hypothesis that changes in binding site number regulate the responsiveness of the tissue, whereas the effect on circular muscle was.  相似文献   

14.
To more clearly define the physiologic roles of thromboxane (TX)A2 and primary prostaglandins (PG) in vascular tissue we examined vascular contractility, cell signaling, and growth responses. The growth-promoting effects of (15S)-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U46619; TXA2 agonist), PGF2 alpha, and PGE2 consisted of protein synthesis and proto-oncogene expression, but not DNA synthesis or cell proliferation. U46619 contracted rat aortas and increased cultured rat aortic vascular smooth muscle cell intracellular free calcium concentration [Ca2+]i, [3H]inositol monophosphate (IP) accumulation, myosin light chain phosphorylation, and protein synthesis ([3H]leucine incorporation) with EC50 values ranging from 10 to 50 nM. Each of these responses was inhibitable with the TXA2 receptor antagonist [1S]1 alpha,2 beta(5Z),3 beta,4 alpha-7-(3-[2- [(phenylamino)carbonyl]hydrazino]methyl)-7-oxabicyclo[2.2.1]hept-2- yl-5-heptenoic acid (SQ29548). In contrast, PGF2 alpha increased [Ca2+]i, [3H]IP, and protein synthesis with EC50 values of 30-230 nM but contracted rat aortas with an EC50 of 4800 nM. PGE2 increased [Ca2+]i, [3H]IP accumulation, protein synthesis, and contracted rat aortas with EC50 values of 2.5-3.5 microM. TXA2 receptor blockade prevented PGF2 alpha- and PGE2-induced aortic contraction and cell myosin light chain phosphorylation, but not cell signaling or protein synthesis. Binding studies to vascular smooth muscle TXA2 receptors using 1S-[1 alpha,2 beta(5Z),3 alpha(1E,3S),4 alpha]-7-(3-[3-hydroxy-4-(p- [125I]iodophenoxy)-1-butenyl]7-oxabicyclo[2.2.1]hept-2-yl)-5-hepte noic acid ([125I]BOP) showed U46619, SQ29548, PGF2 alpha, and PGE2 competition for TXA2 receptor binding at concentrations similar to their EC50 values for aortic contraction, while binding competition with [3H]PGF2 alpha and [3H]PGE2 demonstrated the specificity of [125I]BOP and SQ29548 for TXA2 receptors. The results suggest that 1) PGF2 alpha- and E2-stimulated vessel contraction is due to cross-agonism at vascular TXA2 receptors; 2) PGF2 alpha stimulates TXA2 receptor-independent vascular smooth muscle protein synthesis at nanomolar concentrations, consistent with an interaction at its primary receptor; and 3) TXA2 is a potent stimulus for vascular smooth muscle contraction and protein synthesis. We suggest that the main physiologic effect of PGF2 alpha may be as a stimulus for vascular smooth muscle cell hypertrophy, not as a contractile agonist.  相似文献   

15.
To study cellular mechanisms influencing vascular reactivity, vascular smooth muscle cells (VSMC) were obtained by enzymatic dissociation of the rat mesenteric artery, a highly reactive, resistance-type blood vessel, and established in primary culture. Cellular binding sites for the vasoconstrictor hormone angiotensin II (AII) were identified and characterized using the radioligand 125I-angiotensin II. Freshly isolated VSMC, and VSMC maintained in primary culture for up to 3 wk, exhibited rapid, saturable, and specific 125I-AII binding similar to that seen with homogenates of the intact rat mesenteric artery. In 7-d primary cultures, Scatchard analysis indicated a single class of high-affinity binding sites with an equilibrium dissociation constant (Kd) of 2.8 +/- 0.2 nM and a total binding capacity of 81.5 +/- 5.0 fmol/mg protein (equivalent to 4.5 x 10(4) sites per cell). Angiotensin analogues and antagonists inhibited 125I-AII binding to cultured VSMC in a potency series similar to that observed for the vascular AII receptor in vivo. Nanomolar concentrations of native AII elicited a rapid, reversible, contractile response, in a variable proportion of cells, that was inhibited by pretreatment with the competitive antagonist Sar1,Ile8-AII. Transmission electron microscopy showed an apparent loss of thick (12-18 nm Diam) myofilaments and increased synthetic activity, but these manifestations of phenotypic modulation were not correlated with loss of 125I-AII binding sites or hormonal responsiveness. Primary cultures of enzymatically dissociated rat mesenteric artery VSMC thus may provide a useful in vitro system to study cellular mechanisms involved in receptor activation-response coupling, receptor regulation, and the maintenance of differentiation in vascular smooth muscle.  相似文献   

16.
The effect of lignocaine on tone and contractility of intestinal smooth muscle, and on contractures produced by ACh or TEA, was studied in isolated ileum of the rat. Lignocaine (0.1-100 microM) produced concentration-dependent contractures in the rat ileum. In low concentrations, lignocaine increased the amplitude of spontaneous contractions and contractions produced by transmural stimulation. High concentrations of lignocaine abolished all contractile responses and produced a marked contracture in rat ileum. Lignocaine (10 microM) also reduced the contractures produced by ACh (0.01-10 microM). In contrast, the contractures produced by TEA (0.1-10 mM) were markedly increased by lignocaine. Furthermore, the contracture produced by lignocaine was reduced by lowering the external calcium from 2.5 mM to 1.5 mM. It was concluded that lignocaine in moderate and high concentrations produces a contracture in rat intestinal smooth muscle. Whereas lignocaine reduces the ACh-induced contracture, it increases that produced by TEA in the same preparation. The results further suggest that lignocaine modifies cholinergic responses and affects excitation-contraction coupling in rat intestinal smooth muscle.  相似文献   

17.
The effects of MnCl2 on vascular smooth muscle contraction induced by noradrenaline (NA) and KCl were investigated. Rings segments from rat aorta were isolated and changes in isometric tension recorded. MnCl2 (10 microM and 1 mM) significantly attenuated the contractile responses to NA and KCI. There were also reductions in the contractile responses to CaCl2 in NA- and KCl-stimulated rings, after pretreatment with MnCl2. The magnitude of the phasic contraction to NA was significantly reduced in presence of MnCl2. The results suggest that MnCl2 inhibits vascular smooth muscle contraction by influencing a Ca2+-mediated mechanism.  相似文献   

18.
Geographutoxin II (GTX II), a peptide toxin isolated from Conus geographus, inhibited [3H]saxitoxin binding to receptor sites associated with voltage-sensitive Na channels in rat skeletal muscle homogenates and rabbit T-tubular membranes with K0.5 values of 60 nM for homogenates and 35 nM for T-tubular membranes in close agreement with concentrations that block muscle contraction. Scatchard analysis of [3H]saxitoxin binding to T-tubular membranes gave values of KD = 9.3 nM and Bmax = 300 fmol/mg of protein and revealed a primarily competitive mode of inhibition of saxitoxin binding by GTX II. The calculated KD values for GTX II were 24 nM for T-tubules and 35 nM for homogenates, respectively. In rat brain synaptosomes, GTX II caused a similar inhibitory effect on [3H]saxitoxin binding at substantially higher concentrations (K0.5 = 2 microM). In contrast, binding of [3H]batrachotoxin A 20-alpha-benzoate and 125I-labeled scorpion toxin to receptor sites associated with Na channels in synaptosomes was not affected by GTX II at concentrations up to 10 microM. Furthermore, [3H]saxitoxin binding to membranes of rat superior cervical ganglion was only blocked 10% by GTX II at 10 microM. These results indicate that GTX II interacts competitively with saxitoxin in binding at neurotoxin receptor site 1 on the sodium channel in a highly tissue-specific manner. GTX II is the first polypeptide ligand for this receptor site and the first to discriminate between this site on nerve and adult muscle sodium channels.  相似文献   

19.
Smooth muscle cells of the rabbit aorta, when grown in vitro, express distinguishable forms of phenotypes (contractile and synthetic). On contractile cells, ET-1 specifically bound to a single class of high affinity (KD = 128 pM) and high capacity (Bmax = 66,000 sites/cell) binding sites. But, whereas affinity of [125I]-ET-1 was not significantly affected by phenotypic modulation, synthetic cells displayed a 10-fold lower [125I]-ET-1 binding capacity than contractile smooth muscle cells. Similarly, the mitogenic effect of ET-1 on smooth muscle cells was considerably lower for synthetic than for contractile cells. The ET-1 receptor on primary cells was recognized by sarafotoxin S6b and the different ET-related peptides with an order of potency [ET-1 greater than S6b greater than ET-3 greater than Big ET-1 much greater than ET(16-21)] identical to that inducing smooth muscle cell growth. Therefore, these data indicate that the binding and the mitogenic effects of ET-1 on smooth muscle cells might be of different magnitudes depending on the phenotypic state of these cells.  相似文献   

20.
The binding of monoiodo 125I-Trp11-neurotensin to purified rat gastric fundus smooth muscle plasma membranes was characterized. Specific binding of ligand in subcellular fractions from rat fundus smooth muscle showed a distribution that paralleled that of several plasma membrane marker enzymes. 125I-Trp11-neurotensin binding to smooth muscle plasma membranes at 25 degrees C was maximal at 30 min, reversible and saturable. Scatchard analysis of equilibrium data indicated the existence of two classes of binding sites with dissociation constants (Kd) of 56 pmol and 1.92 nM, and corresponding binding capacities (Bmax) of 6.6 fmol/mg and 11.4 fmol/mg of membrane protein. Analogues and fragments of neurotensin competed for 125I-Trp11-neurotensin binding with a rank order of potency similar to that previously reported for their contracting effect in rat fundus strips. Na+ decreased in a concentration dependent manner the binding of labelled ligand to the high affinity site. At 100 mM, Na+ induced a 6-fold increase in the IC50 of neurotensin for inhibition of 125I-Trp11-neurotensin binding. At this concentration of Na+, the IC50 for neurotensin was 1 nM, a value close to the Kd of the low affinity site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号