首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Wang Z  Shah K  Rana TM 《Biochemistry》2001,40(21):6458-6464
Replication of human immunodeficiency virus type 1 (HIV-1) requires specific interactions of Tat protein with the trans-activation responsive region (TAR) RNA, a 59-base stem-loop structure located at the 5'-end of all HIV mRNAs. We have used a site-specific cross-linking method based on psoralen photochemistry to determine the effect of core residues from the Tat sequence on the protein orientation in the Tat-TAR complex and on the specificity of Tat-TAR binding. We synthesized two Tat fragments, Tat(42-72) and Tat(37-72), and incorporated a psoralen-modified amino acid at position 41 during solid-phase assembly of the peptides. We used these psoralen-Tat conjugates to form specific complexes with TAR RNA. Upon near-ultraviolet irradiation (360 nm), psoralen-Asp41-Tat(37-72) cross-linked to a single site in the TAR RNA sequence. The RNA-protein complex was purified and the cross-link site on TAR RNA was determined by primer extension analysis, which revealed that Asp41 of Tat is close to U42 of the lower stem region of TAR RNA. Specificity of the RNA-peptide cross-linking reactions was determined by competition experiments. Our results show that the addition of only four residues (Cys37-Thr40) from the Tat core region significantly enhanced the specificity of the Tat peptide-TAR interactions without altering the site or chemical nature of the cross-link. These studies provide new insights into RNA-protein recognition that could be useful in designing peptidomimetics for RNA targeting. Such psoralen-peptide conjugates provide a new class of probes for sequence-specific protein-nucleic acid interactions and could be used to selectively control gene expression or to induce site-directed mutations.  相似文献   

3.
Protein-RNA complexes play many important roles in diverse cellular functions. They are involved in a wide variety of different processes in growth and differentiation at the various stages of the cell cycle. As their function and catalytic activity are directly coupled to the structural arrangement of their components--proteins and ribonucleic acids--the investigation of protein-RNA interactions is of great functional and structural importance. Here we discuss the most prominent examples of protein-RNA complexes and describe some frequently used purification strategies. We present various techniques and applications of mass spectrometry to study protein-RNA complexes. We discuss the analysis of intact complexes as well as proteomics-based and crosslinking-based approaches in which proteins are cleaved into smaller peptides. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

4.
5.
This communication reports the generation of an electrostatic probe using chemical modification of methionine side chains. The alkylation of methionine by iodoacetamide was achieved in a set of Saccharomyces cerevisiae iso-1-cytochrome c mutants, introducing the nontitratable, nondelocalized positive charge of a carboxyamidomethylmethionine sulfonium (CAMMS) ion at five surface and one buried site in the protein. Changes in redox potential and its variation with temperature were used to calculate microscopic effective dielectric constants operating between the probe and the heme iron. Dielectric constants (epsilon) derived from deltadeltaG values were not useful due to entropic effects, but epsilon(deltadeltaH) gave results that supported the theory. The effect on biological activity of surface derivatization was interpreted in terms of protein-protein interactions. The introduction of an electrostatic probe in cytochrome c often resulted in marked effects on activity with one of two physiological partners: cytochrome c reductase, especially if introduced at position 65, and cytochrome c oxidase, if at position 28.  相似文献   

6.
7.
Cation-pi interactions have proved to be important in proteins and protein-ligand complexes. Here, cation-pi interactions are analyzed for 282 non-redundant protein-RNA interfaces. The statistical results show that this kind of interactions exists in 65% of the interfaces. The four RNA bases are ranked as Gua > Ade > Ura > Cyt according to their propensity to participate in cation-pi interactions. The corresponding ranking for the involved amino acid residues is: Arg > Lys > Asn > Gln. The same trends are obtained based on the empirical energy calculation. The Arg-Gua pairs have the greatest stability and are also most frequently observed. The number of cation-pi pairs involving unpaired bases is 2.5 times as many as those involving paired bases. Hence, cation-pi interactions show sequence and structural specificities. For the bicyclic bases, Gua and Ade, their 5-atom rings participate in cation-pi interactions somewhat more than the 6-atom rings, with percentages of 54 and 46%, respectively, which is due to the higher cation-pi participation proportion (63%) of 5-atom rings in the paired bases. These results give a general view of cation-pi interactions at protein-RNA interfaces and are helpful in understanding the specific recognition between protein and RNA.  相似文献   

8.
9.
Distinct structural models for the hammerhead ribozyme derived from single-crystal X-ray diffraction and fluorescence resonance energy transfer (FRET) measurements have been compared. Both models predict the same overall geometry, a wishbone shape with helices II and III nearly colinear and helix I positioned close to helix II. However, the relative orientations of helices I and II are different. To establish whether one of the models represents a kinetically active structure, a new crosslinking procedure was developed in which helices I and II of hammerhead ribozymes were disulfide-crosslinked via the 2' positions of specific sugar residues. Crosslinking residues on helices I and II that are close according to the X-ray structure did not appreciably reduce the catalytic efficiency. In contrast, crosslinking residues closely situated according to the FRET model dramatically reduced the cleavage rate by at least three orders of magnitude. These correlations between catalytic efficiencies and spatial proximities are consistent with the X-ray structure.  相似文献   

10.
Faithful genetic code translation requires that each aminoacyl-tRNA synthetase recognise its cognate amino acid ligand specifically. Aspartyl-tRNA synthetase (AspRS) distinguishes between its negatively-charged Asp substrate and two competitors, neutral Asn and di-negative succinate, using a complex network of electrostatic interactions. Here, we used molecular dynamics simulations and site-directed mutagenesis experiments to probe these interactions further. We attempt to decrease the Asp/Asn binding free energy difference via single, double and triple mutations that reduce the net positive charge in the active site of Escherichia coli AspRS. Earlier, Glutamine 199 was changed to a negatively-charged glutamate, giving a computed reduction in Asp affinity in good agreement with experiment. Here, Lysine 198 was changed to a neutral leucine; then, Lys198 and Gln199 were mutated simultaneously. Both mutants are predicted to have reduced Asp binding and improved Asn binding, but the changes are insufficient to overcome the initial, high specificity of the native enzyme, which retains a preference for Asp. Probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments, we found no detectable activity for the mutant enzymes, indicating weaker Asp binding and/or poorer transition state stabilization. The simulations show that the mutations' effect is partly offset by proton uptake by a nearby histidine. Therefore, we performed additional simulations where the nearby Histidines 448 and 449 were mutated to neutral or negative residues: (Lys198Leu, His448Gln, His449Gln), and (Lys198Leu, His448Glu, His449Gln). This led to unexpected conformational changes and loss of active site preorganization, suggesting that the AspRS active site has a limited structural tolerance for electrostatic modifications. The data give insights into the complex electrostatic network in the AspRS active site and illustrate the difficulty in engineering charged-to-neutral changes of the preferred ligand.  相似文献   

11.
Understanding the molecular mechanism of protein-RNA recognition and complex formation is a major challenge in structural biology. Unfortunately, the experimental determination of protein-RNA complexes by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) is tedious and difficult. Alternatively, protein-RNA interactions can be predicted by computational methods. Although less accurate than experimental observations, computational predictions can be sufficiently accurate to prompt functional hypotheses and guide experiments, e.g. to identify individual amino acid or nucleotide residues. In this article we review 10 methods for predicting protein-RNA interactions, seven of which predict RNA-binding sites from protein sequences and three from structures. We also developed a meta-predictor that uses the output of top three sequence-based primary predictors to calculate a consensus prediction, which outperforms all the primary predictors. In order to fully cover the software for predicting protein-RNA interactions, we also describe five methods for protein-RNA docking. The article highlights the strengths and shortcomings of existing methods for the prediction of protein-RNA interactions and provides suggestions for their further development.  相似文献   

12.

Background

We applied crosslinking techniques as a first step in preparation of stable avian sarcoma virus (ASV) integrase (IN)-DNA complexes for crystallographic investigations. These results were then compared with the crystal structures of the prototype foamy virus (PFV) intasome and with published data for other retroviral IN proteins.

Methodology/Results

Photoaffinity crosslinking and site-directed chemical crosslinking were used to localize the sites of contacts with DNA substrates on the surface of ASV IN. Sulfhydryl groups of cysteines engineered into ASV IN and amino-modified nucleotides in DNA substrates were used for attachment of photocrosslinkers. Analysis of photocrosslinking data revealed several specific DNA-protein contacts. To confirm contact sites, thiol-modified nucleotides were introduced into oligo-DNA substrates at suggested points of contact and chemically crosslinked to the cysteines via formation of disulfide bridges. Cysteines incorporated in positions 124 and 146 in the ASV IN core domain were shown to interact directly with host and viral portions of the Y-mer DNA substrate, respectively. Crosslinking of an R244C ASV IN derivative identified contacts at positions 11 and 12 on both strands of viral DNA. The most efficient disulfide crosslinking was observed for complexes of the ASV IN E157C and D64C derivatives with linear viral DNA substrate carrying a thiol-modified scissile phosphate.

Conclusion

Analysis of our crosslinking results as well as published results of retroviral IN protein from other laboratories shows good agreement with the structure of PFV IN and derived ASV, HIV, and MuLV models for the core domain, but only partial agreement for the N- and C-terminal domains. These differences might be explained by structural variations and evolutionary selection for residues at alternate positions to perform analogous functions, and by methodological differences: i.e., a static picture of a particular assembly from crystallography vs. a variety of interactions that might occur during formation of functional IN complexes in solution.  相似文献   

13.
14.
15.
The plant enzyme arbutin synthase isolated from cell suspension cultures of Rauvolfia serpentina and heterologously expressed in Escherichia coli is a member of the NRD1beta family of glycosyltransferases. This enzyme was used to prove, by site-directed mutagenesis, suggested catalytic domains and reaction mechanisms proposed for enzyme-catalyzed glycosylation. Replacement of amino acids far from the NRD domain do not significantly affect arbutin synthase activity. Exchange of amino acids at the NRD site leads to a decrease of enzymatic activity, e.g. substitution of Glu368 by Asp. Glu368, which is a conserved amino acid in glycosyltransferases located at position 2 and is important for enzyme activity, does not serve as the nucleophile in the catalytic centre as proposed. When it is replaced by Ala, the resulting mutant enzyme E368A exhibits comparable activity as found for E368D in respect to vanillin. Enzyme activities of wild-type and E368A towards several substrates were not affected at the same level. His360 at position 1 of NRD1beta glycosyltransferases occupies a more crucial role as expected. When it is exchanged against other basic amino acids such as Lys or Arg the enzyme activity decreases approximately 1000-fold. Replacement of His360 by Glu leads to a mutant enzyme (H360E) with an approximately 4000-fold lower activity compared with the wild-type. This mutein still produces a beta-glucoside, not an alpha-glucoside and therefore indicates that generation of the typical E-E motif of NRD1alpha glycosyltransferases does not convert a NRD1beta enzyme into a NRD1alpha enzyme. The presented data do not support several suggestions made in the literature about catalytic amino acids involved in the glycosyltransfer reaction.  相似文献   

16.
To probe the structure of the quinol oxidation site in loop VI/VII of the Escherichia coli cytochrome bd, we substituted three conserved residues (Gln249, Lys252, and Glu257) in the N-terminal region and three glutamates (Glu278, Glu279, and Glu280) in the first internal repeat. We found that substitutions of Glu257 by Ala or Gln, and Glu279 and Glu280 by Gln, severely reduced the oxidase activity and the expression level of cytochrome bd. In contrast, Lys252 mutations reduced only the oxidase activity. Blue shifts in the 440 and 630 nm peaks of the reduced Lys252 mutants and in the 561 nm peak of the reduced Glu257 mutants indicate the proximity of Lys252 to the heme b(595)-d binuclear center and Glu257 to heme b(558), respectively. Perturbations of reduced heme b(558) upon binding of aurachin D support structural changes in the quinol-binding site of the mutants. Substitutions of Lys252 and Glu257 caused large changes in kinetic parameters for the ubiquinol-1 oxidation. These results indicate that Lys252 and Glu257 in the N-terminal region of the Q-loop are involved in the quinol oxidation by bd-type terminal oxidase.  相似文献   

17.
18.
19.
Protein-RNA interactions are essential for many biological processes. However, the structural mechanisms underlying these interactions are not fully understood. Here, we analyzed the protein surface shape (dented, intermediate or protruded) and the RNA base pairing properties (paired or unpaired nucleotides) at the interfaces of 91 protein-RNA complexes derived from the Protein Data Bank. Dented protein surfaces prefer unpaired nucleotides to paired ones at the interface, and hydrogen bonds frequently occur between the protein backbone and RNA bases. In contrast, protruded protein surfaces do not show such a preference, rather, electrostatic interactions initiate the formation of hydrogen bonds between positively charged amino acids and RNA phosphate groups. Interestingly, in many protein-RNA complexes that interact via an RNA loop, an aspartic acid is favored at the interface. Moreover, in most of these complexes, nucleotide bases in the RNA loop are flipped out and form hydrogen bonds with the protein, which suggests that aspartic acid is important for RNA loop recognition through a base-flipping process. This study provides fundamental insights into the role of the shape of the protein surface and RNA secondary structures in mediating protein-RNA interactions.  相似文献   

20.
Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53 → Glu or Asp, Ser-63 → Lys, Val-97 → Lys, Tyr-104 → Lys or Asp, and Ser-14 → Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41 → Phe, Ala-45 → Tyr or Glu, Val-53 → Tyr, Val-60 → Gly, Ser-68 → Pro, His-70 → Pro, Val-97 → Tyr and Ser-114 → Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54 → Lys or Ala, Tyr-59 → Met, Ser-68 → Lys, Ala-72 → Arg, His or Asp and Arg-192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号