首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in HA22/VGH human hepatoma cells were evaluated using fura-2 as a fluorescent Ca2+ dye. Histamine (0.2-5 microM) increased [Ca2+]i in a concentration-dependent manner with an EC50 value of about 1 microM. The [Ca2+]i response comprised an initial rise, a slow decay, and a sustained phase. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In Ca2+-free medium, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 5 microM histamine failed to increase [Ca2+]i. After pretreatment with 5 microM histamine in Ca2+-free medium for 4 min, addition of 3 mM Ca2+ induced a [Ca2+]i increase of a magnitude 7-fold greater than control. Histamine (5 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 5 microM pyrilamine but was not altered by 50 microM cimetidine. Together, this study shows that histamine induced [Ca2+]i increases in human hepatoma cells by stimulating H1, but not H2, histamine receptors. The [Ca2+]i signal was caused by Ca2+ release from thapsigargin-sensitive endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, accompanied by Ca2+ entry.  相似文献   

2.
Bradykinin (1 microM) and histamine (100 microM) evoked an initial transient increase and a subsequent sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded human gingival fibroblasts, which may be attributed to Ca(2+) release from intracellular stores and Ca(2+) entry from extracellular sites, respectively. In fibroblasts pretreated with tyrosine kinase inhibitors such as herbimycin A (1 microM) and tyrphostin 47 (20 microM), the sustained level of [Ca(2+)](i) induced by bradykinin and histamine increased, but not the initial peak level. In the absence of external Ca(2+), bradykinin and histamine induced only the transient increase in [Ca(2+)](i), but a subsequent addition of Ca(2+) to the medium resulted in a sustained increase in [Ca(2+)](i) caused by Ca(2+)entry. Thapsigargin, an inhibitor of Ca(2+)-ATPase in inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, mimicked the effect of bradykinin and histamine. In the fibroblasts pretreated with tyrosine kinase inhibitors, the bradykinin-, histamine- and thapsigargin-induced Ca(2+) entry was clearly enhanced, but not the transient [Ca(2+)](i) increase. Tyrosine phosphatase inhibitor benzylphosphonic acid (200 microM) had no effect on Ca(2+)entry or transient [Ca(2+)](i) increase. These results suggest that tyrosine phosphorylation is involved in Ca(2+) entry in human gingival fibroblasts.  相似文献   

3.
Thrombin is a serine protease activated during injury and inflammation. Thrombin and other proteases generated by periodontal pathogens affect the behavior of periodontal cells via activation of protease-activated receptors (PARs). We noted that thrombin and PAR-1 agonist peptide stimulated intracellular calcium levels ([Ca2+]i) of gingival fibroblasts (GF). This increase of [Ca2+]i was inhibited by EGTA and verapamil. U73122 and neomycin inhibited thrombin- and PAR-1-induced [Ca2+]i. Furthermore, 2-APB (75-100 microM, inositol triphosphate [IP3] receptor antagonist), thapsigargin (1 microM), SKF-96365 (200 microM) and W7 (50 and 100 microM) also suppressed the PAR-1- and thrombin-induced [Ca2+]i. However, H7 (100, 200 microM) and ryanodine showed little effects. Blocking Ca2+ efflux from mitochondria by CGP37157 (50, 100 microM) inhibited both thrombin- and PAR-1-induced [Ca2+]i. Thrombin induced the IP3 production of GF within 30-seconds of exposure, which was inhibited by U73122. These results indicate that mitochondrial calcium efflux and calcium-calmodulin pathways are related to thrombin and PAR-1 induced [Ca2+]i in GF. Thrombin-induced [Ca2+]i of GF is mainly due to PAR-1 activation, extracellular calcium influx via L-type calcium channel, PLC activation, then IP3 binding to IP3 receptor in sarcoplasmic reticulum, which leads to intracellular calcium release and subsequently alters cell membrane capacitative calcium entry.  相似文献   

4.
The role of Ca2+ in stimulation of H+ gastric secretion by cAMP-dependent and -independent secretagogues was studied in isolated rabbit glands using Ca2+ ionophore, A23187, and an intracellular Ca2+ chelator (BAPTA, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) incorporated as its acetoxymethyl ester (BAPTA-AM). Acetylcholine (ACh), tetragastrin (TG), histamine and forskolin induced a transitory increase of intracellular Ca2+ concentration, [Ca2+]i, measured in gastric glands loaded with Ca2+-sensitive dye fura-2, and provoked an acid secretory response evaluated with aminopyrine accumulation ratio (AP ratio). The Ca2+-ionophore A23187 also induced an increase in [Ca2+]i and in AP ratio. cAMP-dependent secretagogues were more potent stimulants of acid secretion than cAMP-independent secretagogues. cAMP analogue, 8-bromo-adenosine 3',5'-cyclic monophosphate (8-BR-cAMP) induced an increase in AP ratio without modifying [Ca2+]i. BAPTA-AM (5-25 microM) induced a transient decrease of resting [Ca2+]i which returned to basal level due to extracellular Ca2+ entry. Increases in [Ca2+]i produced by ACh and TG were abolished by BAPTA and those produced by Ca2+ ionophore A23187 were partially buffered. BAPTA inhibited in a dose-dependent manner H+ secretion induced by cholinergic and gastrinergic stimulants in the presence of cimetidine. A23187 increased the AP ratio to values similar to those obtained with ACh or TG and was not inhibited by BAPTA. BAPTA partially inhibited (40%) the increase in AP ratio induced by forskolin and histamine inspite of the complete inhibition of the Ca2+ response. BAPTA did not inhibit the response to 8-BR-cAMP. BAPTA inhibition of forskolin stimulation was reversed by A23187 and the response was potentiated. These results indicate that ACh and TG response are completely dependent on an increase of [Ca2+]i. The response to cAMP-dependent agonists histamine and forskolin depend both on Ca2+ and cAMP. For forskolin stimulation the response may be the result of a potentiation between Ca2+ and cAMP.  相似文献   

5.
We recently reported that prostaglandin E2 (PGE2) stimulates phosphoinositide metabolism accompanied by an increase in intracellular free Ca2+ concentration ([Ca2+]i) in cultured bovine adrenal chromaffin cells. In the present study, temporal and spatial changes in [Ca2+]i induced by PGE2 in fura-2-loaded individual cells were investigated by digital image microscopy and were compared with those induced by nicotine and histamine. Image analysis of single cells revealed that responses to PGE2 showed asynchrony with the onset of [Ca2+]i changes. After a lag time of 10-30 s, PGE2-induced [Ca2+]i changes took a similar prolonged time course in almost all cells: a rapid rise followed by a slower decline to the basal level over 5 min. Few cells exhibited oscillations in [Ca2+]i. In contrast, nicotine and histamine induced rapid and transient [Ca2+]i changes, and these [Ca2+]i changes were characteristic of each stimulant. Whereas pretreatment of the cells with pertussis toxin (100 ng/ml, 6 h) did not block the response to any of these stimulants, treatment with 12-O-tetradecanoylphorbol 13-acetate (100 nM, 10 min) completely abolished [Ca2+]i changes elicited by PGE2 and histamine. In a Ca2(+)-free medium containing 3 mM EGTA, or in medium to which La3+ was added, the [Ca2+]i response to nicotine disappeared, but that to histamine was not affected significantly. Under the same conditions, the percentage of the cells that responded to PGE2 was reduced to 37% and the prolonged [Ca2+]i changes induced by PGE2 became transient in responding cells, suggesting that the maintained [Ca2+]i increase seen in normal medium is the result of a PGE2-stimulated entry of extracellular Ca2+. Whereas the organic Ca2(+)-channel blocker nicardipine inhibited [Ca2+]i changes by all stimulants at 10 microM, these [Ca2+]i changes were not affected by any of the organic Ca2(+)-channel blockers, i.e., verapamil, diltiazem, nifedipine, and nicardipine, at 1 microM, a concentration high enough to inhibit voltage-sensitive Ca2+ channels. These results demonstrate that PGE2 may promote Ca2+ entry with concomitant release of Ca2+ from intracellular stores and that the mechanism(s) triggered by PGE2 is apparently different from that by histamine or nicotine.  相似文献   

6.
In order to analyze the complex activities of histamine H2 receptor activation on neutrophils, human HL-60 promyelocytic leukemia cells were differentiated into neutrophils by incubation with dimethyl sufoxide, loaded with the Ca2+-sensitive indicator dyes, indo-1 or fura-2, and the levels of intracellular Ca2+ ([Ca2+]i) measured in a fluorescent-activated cell sorter and fluorimeter, respectively. Histamine increased [Ca2+]i in a dose-dependent manner with a half-maximal concentration (EC50) of approximately 10(-6) to 10(-5) M, which exhibited H2 receptor specificity. Prostaglandin E2 and isoproterenol also induced [Ca2+]i mobilization in HL-60 cells, whereas the cell permeable form of cAMP and forskolin failed to increase [Ca2+]i. Since H2-receptor mediated [Ca2+]i mobilization was not inhibited by reducing the concentration of extracellular Ca2+ nor by the addition of Ca2+ channel antagonists, LaCl3 and nifedipine, [Ca2+]i mobilization is due to the release of Ca2+ from intracellular stores. Furthermore, both 10(-4) M histamine and 10(-6) M fMet-Leu-Phe increased the levels of 1,4,5-inositol trisphosphate. However, histamine-induced mobilization of [Ca2+]i was inhibited by cholera toxin but not by pertussis toxin, whereas the action of fMet-Leu-Phe was inhibited by pertussis toxin but not by cholera toxin. These data suggest that H2 receptors on HL-60 cells are coupled to two different cholera toxin-sensitive G-proteins and activate adenylate cyclase and phospholipase C simultaneously.  相似文献   

7.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in Chang liver cells were investigated by using fura-2 as a Ca2+ dye. Histamine (0.2-50 microM) increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 0.8 microM. The [Ca2+]i response comprised an initial rise, a slow decay, and a sustained phase. Extracellular Ca2+ removal inhibited 50% of the maximum [Ca2+]i signal and abolished the sustained phase. After pretreatment with 5 microM histamine in Ca2+-free medium for 4 min, addition of 3 mM Ca2+ induced a [Ca2+]i increase with a magnitude 7-fold greater than control. In Ca2+-free medium, after treatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 5 microM histamine failed to increase [Ca2+]i. Histamine (5 microM)-induced intracellular Ca2+ release was abolished  相似文献   

8.
The aliphatic alcohol octanol is thought to modulate enzyme secretion from the exocrine pancreas by the inhibition of gap junction permeability. We have now investigated the effects of octanol on salivary secretion and intracellular calcium concentration ([Ca2+]i), measured in isolated perfused rat mandibular glands and in isolated mandibular acinar cells respectively. Stimulation of perfused glands with 10 microM carbachol (CCh) evoked a rapid increase in fluid secretion followed by a decrease to a sustained elevated level. Application of 1 mM octanol during CCh stimulation inhibited fluid secretion reversibly. In isolated acini, the CCh-induced [Ca2+]i increase was reversibly inhibited by the same concentration of octanol. However, octanol also inhibited the increase in [Ca2+]i in single acinar cells where gap junctions were no longer functional, indicating that octanol directly affected the intracellular Ca2+ signalling pathway. The initial increase in [Ca2+]i induced by 0.5-10 microM CCh, which is due to Ca2+ release from IP3-sensitive Ca2+ stores, was not affected by pretreatment with octanol. In contrast, CCh-, phenylephrine- or thapsigargin-induced Ca2+ entry was almost completely and reversibly inhibited by octanol. Octanol also blocked agonist-evoked Ca2+ entry in pancreatic acinar cells, and thapsigargin-evoked Ca2+ entry in fibroblasts. These data strongly suggest that octanol blocks salivary secretion from mandibular gland by the inhibition of capacitative Ca2+ entry, and raise the possibility that octanol may be a useful tool for inhibiting agonist-evoked Ca2+ entry pathways.  相似文献   

9.
Jan CR  Tseng CJ 《Life sciences》1999,65(23):2513-2522
The effect of miconazole on intracellular calcium levels ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was studied using fura-2 as the Ca2+ indicator. Miconazole increased [Ca2+]i dose-dependently at concentrations of 5-100 microM. The [Ca2+]i transient consisted of an initial rise, a gradual decay and an elevated plateau (220 s after addition of the drug). Removal of extracellular Ca2+ partly reduced the miconazole response. Mn2+ quench of fura-2 fluorescence confirmed that miconazole induced Ca2+ influx. The miconazole-sensitive intracellular Ca2+ store overlapped with that sensitive to thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump, because 20 microM miconazole depleted the thapsigargin (1 microM)-sensitive store, and conversely, thapsigargin abolished miconazole-induced internal Ca2+ release. Miconazole (20-50 microM) partly inhibited the capacitative Ca2+ entry induced by 1 microM thapsigargin, measured by depleting intracellular Ca2+ store in Ca(2+)-free medium followed by addition of 10 mM CaCl2. Miconazole induced capacitative Ca2+ entry on its own. Pretreatment with 0.1 mM La3+ partly inhibited 20 microM miconazole-induced Mn2+ quench of fura-2 fluorescence and [Ca2+]i rise, suggesting that miconazole induced Ca2+ influx via two pathways separable by 0.1 mM La3+. Miconazole-induced internal Ca2+ release was not altered when the cytosolic level of inositol 1,4,5-trisphosphate (IP3) was substantially inhibited by the phospholipase C inhibitor U73122.  相似文献   

10.
The change in cytoplasmic free calcium, [Ca2+]i in isolated bovine adrenal medullary cells during stimulation by acetylcholine (ACh) in Ca2+-free incubation medium was measured using the fluorescent Ca2+ indicator quin2. ACh (1-100 microM) caused an increase in [Ca2+]i by mobilization of Ca2+ from the intracellular pool. Nicotine (10 microM) did not increase [Ca2+]i in the absence of extracellular Ca2+. Pretreatment of the cells with atropine (10 microM) completely inhibited ACh-induced increase in [Ca2+]i, whereas pretreatment with hexamethonium (100 microM) did not. The intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), inhibited ACh-induced increase in [Ca2+]i. The activator of protein kinase C 12-O-tetradecanoylphorbol-13-acetate (TPA), but not its 'inactive' analog 4 alpha-phorbol-12,13-didecanoate (PDD), also inhibited ACh-induced increase in [Ca2+]i. These findings suggest that in bovine adrenal medullary cells, stimulation of muscarinic ACh receptor causes an increase in [Ca2+]i by mobilizing Ca2+ from the intracellular pool and that protein kinase C is involved in 'termination' or 'down regulation' of this response.  相似文献   

11.
A Ishihata  M Endoh 《Life sciences》1991,48(6):583-591
Confluent monolayers of human umbilical vein endothelial cells subcultured on glass coverslips were loaded with the fluorescent Ca2+ indicator, fura-2. Changes in fura-2 fluorescence were detected by means of a fluorescence spectrophotometer. Both ATP and ADP (0.3-100 microM) caused a concentration-dependent transient peak response of the intracellular free calcium concentration ([Ca2+]i), followed by a lower sustained response. AMP and adenosine did not induce detectable changes in [Ca2+]i. The sustained response to ATP was abolished by superfusion with the Ca2(+)-free solution (with 1 mM EGTA), while the transient peak response was uninfluenced. The transient peak response to ATP (30 microM) was inhibited by pre-exposure to ATP in a graded manner depending on the concentration of ATP. The response to ATP recovered after washout for 20 min with the solution containing Ca2+, but not with the Ca2(+)-free solution. The transient peak response to ATP was markedly reduced by preceding exposure to histamine, while the response to histamine was not influenced by pre-exposure to ATP. These findings indicate that depletion and refilling of the ATP-sensitive intracellular Ca2+ store may be responsible for the desensitization and recovery of the ATP-induced [Ca2+]i response. The pharmacological characteristics of the ATP-sensitive intracellular Ca2+ store seem different from those of the histamine-sensitive store.  相似文献   

12.
The role of a Ca(2+)-induced Ca2+ release (CICR) mechanism in the generation of agonist-induced increases of intracellular free Ca2+ concentration ([Ca2+]i) was studied in bovine adrenal chromaffin cells. In single cells, repetitive stimulations with caffeine at 200-s intervals evoked reproducible spikes of [Ca2+]i. Ryanodine, an agent that interacts with the CICR channel of muscle, inhibited the caffeine-induced spikes of [Ca2+]i in a "use-dependent" way. High affinity binding sites for [3H]ryanodine (Kd 3.3 nM, Bmax 26 fmol/mg protein) were also detected in membranes from chromaffin cells, supporting the presence of a caffeine- and ryanodine-sensitive CICR channel. Pretreatment of single cells with caffeine + ryanodine to reduce the size of the caffeine-sensitive Ca2+ compartment inhibited a subsequent spike of [Ca2+]i evoked by histamine, a D-myo-inositol 1,4,5-trisphosphate-forming agonist. This demonstrates that a significant portion of the Ca2+ released by histamine comes from a caffeine- and ryanodine-sensitive pool. Ryanodine inhibited by 50% the size of [Ca2+]i spikes evoked by repetitive stimulation with histamine and did so in a use-dependent manner. These data suggest that, in addition to D-myoinositol 1,4,5-trisphosphate, activation of a caffeine- and ryanodine-sensitive CICR channel participates in the generation of histamine-induced release of intracellular Ca2+.  相似文献   

13.
T Kanno  Y Habara 《Cell calcium》1991,12(8):523-531
The spatial dynamics of cytosolic Ca2+ concentration, [Ca2+]c, in guinea pig adrenal chromaffin cells was monitored by a digital image analysing technique using Fura-2. When a freshly isolated cluster of cells was stimulated with lower concentrations of carbachol (CCh; 0.3-1 microM), the [Ca2+]c began to increase in the region beneath the plasma membrane facing the extracellular environment. The [Ca2+]c increase depended on the presence of extracellular Ca2+ ([Ca2+]o). CCh at a higher concentration (100 microM), however, caused [Ca2+]c increase even in the absence of [Ca2+]o. These results are compatible with the view that the receptor activation with a physiological concentration of secretagogue accelerates Ca2+ entry, and that stimulation with a higher concentration of the secretagogue induces small transient Ca2+ release from intracellular stores and predominant continuous Ca2+ entry.  相似文献   

14.
The patterns of agonist-induced elevations of cytosolic free Ca2+ ([Ca2+]i) were characterized and compared by the use of single adrenal chromaffin cells. Initial histamine- or angiotensin II (AII)-induced elevations of [Ca2+]i were equal in magnitude (peaks 329 +/- 20 [SE] and 338 +/- 46 nM, respectively). These initial increases of [Ca2+]i were transient, insensitive to either Gd3+ or removing external Ca2+, and were primarily the result of Ca2+ release from intracellular stores. After the initial peak(s) of [Ca2+]i, a second phase of moderately elevated [Ca2+]i was observed, and this response was sensitive to either Gd3+ or removing external Ca2+, supporting a role for Ca2+ entry. In most cases, the second phase of elevated [Ca2+]i was sustained during histamine stimulation but transient during AII stimulation. Maintenance of the second phase was a property of the agonist rather than of the particular cell being stimulated. Thus, individual cells exposed sequentially to histamine and AII displayed distinct patterns of [Ca2+]i changes to each agonist, regardless of the order of addition. Histamine also stimulated twice as much [3H]catecholamine release as AII, and release was completely dependent on external Ca2+. Therefore, the ability of histamine and AII to sustain (or promote) Ca2+ entry appears to underlie their efficacy as secretagogues. These data provide evidence linking agonist-dependent patterns of [Ca2+]i changes in single cells with agonist-dependent functional responses.  相似文献   

15.
Formation of endothelium-derived relaxing factor (EDRF) strictly correlates with the intracellular free Ca2+ ([Ca2+]i) concentration. We now demonstrate that the histamine-induced rise in [Ca2+]i of human umbilical vein endothelial cells is mostly due to activation of a membrane current which allows Ca2+ entry. This membrane current is sensitive to the novel inhibitor of agonist-induced Ca2+ entry, SK&F 96365, which blocked the histamine-induced sustained rise in [Ca2+]i, as well as 45Ca2+ uptake and membrane currents. Inhibition of the above cellular responses to histamine was accompanied by a considerable reduction of EDRF formation and release. Thus biosynthesis and release of EDRF from human umbilical vein endothelial cells significantly depend on agonist-induced Ca2+ entry involving receptor-operated Ca(2+)-permeable channels which can be blocked by SK&F 96365.  相似文献   

16.
When SK-N-SH human neuroblastoma cells were exposed to nicotine (NIC) or KCl they showed a dose-dependent transient increase (2- to 4-fold) in intracellular Ca2+ concentration ([Ca2+])i as detected by quin-2 fluorescence, with half maximal effects (EC50) observed at 13 microM and 26 mM, respectively. Tubocurarine and 1-isodihydrohistrionicotoxin potently blocked the NIC-evoked (IC50 congruent to 1 microM and 0.3 microM, respectively), but not the high [K+]o-evoked [Ca2+]i accumulation. The KCl-induced response was inhibited by verapamil and diltiazem (IC50 = 1.4 and 10.9 microM, respectively). Tetrodotoxin (3 microM) and tetraethylammonium (10 microM) had no effect on [Ca2+]i accumulation induced by either agent. Increases in [Ca2+]i could be evoked sequentially by NIC and KCl in the same cells suggesting independent mechanisms of Ca2+ entry. In a Ca2+-free medium, no response to either KCl or NIC was observed. However, when Ca2+ ions were restored, [Ca2+]i accumulation was enhanced to the same extent as cells suspended in a Ca2+-containing buffer. Long-term (18 hr) pretreatment of SK-N-SH cells with pertussis (100 ng/ml) or cholera toxins (10 nM) had no effect on NIC or KCl-induced [Ca2+]i accumulation. Together, these data demonstrate the presence of NIC receptors and voltage-sensitive Ca2+ channels on SK-N-SH neuroblastoma cells, through which [Ca2+]i may be modulated.  相似文献   

17.
The protease-activated receptor-2 (PAR-2), a G protein-coupled receptor activated by trypsin, contributes to the pathogenesis of inflammatory disease including asthma. Here, we examined the mechanisms by which stimulation of PAR-2 induces an increase in intracellular Ca2+ concentration ([Ca2+]i) in guinea pig tracheal epithelial cells. Trypsin (0.01-3 units/ml) dose-dependently induced a transient increase in [Ca2+]i, the increase being blocked by soybean trypsin inhibitor (SBTI 1 microM). An increase in [Ca2+]i was also induced by an agonist peptide for PAR-2 (SLIGRL-NH2, 0.001-10 microM) but not by thrombin (3 units/ml, an activator for PAR-1, PAR-3 or PAR-4). Repeated or cross stimulation of trypsin or SLIGRL-NH2 caused marked desensitization of the [Ca2+]i response. These responses of [Ca2+]i to trypsin and SLIGRL-NH2 were attenuated by a phospholipase C inhibitor, U-73122, and a Ca2+-ATPase inhibitor, thapsigargin (100 nM), while removal of Ca2+ and a L-type Ca2+-channel blocker, verapamil, were without significant effects. Further, trypsin was without effect on the rate of fura 2 quenching by Mn2+ entry as an indicator of Ca2+ influx. Thus, stimulation of PAR-2 appears to increase [Ca2+]i through the mobilization of Ca2+ from intracellular stores probably via phospholipase Cbeta-linked generation of a second messenger.  相似文献   

18.
The fluorescent intracellular Ca2+ indicator, fura2/AM, was used to determine the effects of carbachol, cholecystokinin octapeptide (CCK-8), gastrin and histamine on intracellular Ca2+ ([Ca2+]i) in parietal cells from rabbit gastric mucosa enriched to more than 95% purity by a new Nycodenz gradient/centrifugal elutriation technique. Changes in [Ca2+]i in response to the same agonists were also measured in enriched chief cells. Carbachol, histamine, gastrin and CCK-8 increased parietal cell [Ca2+]i with the response to carbachol greater than CCK -8 = histamine = gastrin. Prestimulation with msximal doses of carbachol blocked histamine-induced increases in [Ca2+]i. In chief cells, carbachol increased [Ca2+]i but to a lesser degree than CCK-8, while histamine had no significant effect on [Ca2+]i. Neither removal of extracellular Ca2+ coupled with acute addition of 1 mM EGTA nor addition of the Ca2+-channel blocker nicardipine prevented agonist-induced changes in [Ca2+]i in either cell type. In the presence and absence of 10 mM LiCl2, carbachol and CCK-8 were found to increase inositol trisphosphate (IP3) content in both parietal and chief cells while histamine had no significant effect on this phosphoinositide hydrolysis product. From these results and previous observations with gastric glands (Chew, C.S. (1986) Am. J. Physiol. 13, G814-G823) we conclude that: carbachol, CCK-8, gastrin and histamine increase parietal cell [Ca2+]i initially by release of Ca2+ from the same intracellular store(s); the release of [Ca2+]i in response to carbachol and CCK-8 in both chief and parietal cells appear to be mediated by IP3; however, other mechanisms may be involved in histamine-induced release of parietal cell Ca2+.  相似文献   

19.
Chou KJ  Tseng LL  Cheng JS  Wang JL  Fang HC  Lee KC  Su W  Law YP  Jan CR 《Life sciences》2001,69(13):1541-1548
The effect of CP55,940, a presumed CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in Madin-Darby canine kidney cells was examined by using the fluorescent dye fura-2 as a Ca2+ indicator. CP55,940 (2-50 microM) increased [Ca2+]i concentration-dependently with an EC50 of 8 microM. The [Ca2+]i signal comprised an initial rise and a sustained phase. Extracellular Ca2+ removal decreased the maximum [Ca2+]i signals by 32+/-12%. CP55,940 (20 microM)-induced [Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists, AM-251 and AM-281. CP55,940 (20 microM)-induced [Ca2+]i increase in Ca2+-free medium was inhibited by 86+/-3% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 20 microM CP55,940 in Ca2+-free medium for 6 min abolished thapsigargin-induced [Ca2+]i increases. CP55,940 (20 microM)-induced intracellular Ca2+ release was not inhibited when inositol 1,4,5-trisphosphate formation was abolished by suppressing phospholipase C with 2 microM U73122. Collectively, this study shows that CP,55940 induced significant [Ca2+]i increases in canine renal tubular cells by releasing stored Ca2+ from the thapsigargin-sensitive pools in an inositol 1,4,5-trisphosphate-independent manner, and also by causing extracellular Ca2+ entry. The CP55,940's action appears to be dissociated from stimulation of cannabinoid receptors.  相似文献   

20.
H Sugiya  S Furuyama 《FEBS letters》1991,286(1-2):113-116
In fura-2-loaded parotid acinar cells, 50-200 microM sphingosine induced an increase in cytosolic Ca2+ ([Ca2+]i). When extracellular Ca2+ was chelated by EGTA, 50 microM sphingosine failed to increase [Ca2+]i, but 100 or 200 microM sphingosine induced a slight and transient increase in [Ca2+]i. The addition of LaCl3 to the medium resulted in the same effect as chelation of extracellular Ca2+. When cells were incubated in low Ca2+ medium containing sphingosine, and extracellular Ca2+ was subsequently added, a rapid increase in [Ca2+]i depending on the concentration of sphingosine was shown. In low Ca2+ medium, a slight increase in [Ca2+]i induced by high concentrations of sphingosine was not shown after the transient increase in [Ca2+]i elicited by methacholine. Inhibitors of protein kinase C, H-7 and K252a, did not mimic the effect of sphingosine on [Ca2+]i. These results suggest that sphingosine stimulates Ca(2+)-influx and further stimulates the release of Ca2+ from agonist-sensitive intracellular pools by a mechanism that is independent of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号