首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J O Nehlin  H Ronne 《The EMBO journal》1990,9(9):2891-2898
We have cloned a yeast gene, MIG1, which encodes a C2H2 zinc finger protein involved in glucose repression. The fingers of MIG1 are very similar to those present in the mammalian Egr finger proteins, which are induced during the early growth response, and also to the finger protein encoded by a human gene that is deleted in Wilms' tumour cells. MIG1 protein binds to two sites in the upstream region of SUC2, a yeast gene that is repressed by glucose. The MIG1 sites closely resemble the sequence recognized by the Egr proteins. Thus, finger proteins that are similar in both amino acid sequence and DNA specificity are involved in the response of yeast to glucose, and in the mammalian early growth response.  相似文献   

2.
Looking into DNA recognition: zinc finger binding specificity   总被引:5,自引:2,他引:3       下载免费PDF全文
We present a quantitative, theoretical analysis of the recognition mechanisms used by two zinc finger proteins: Zif268, which selectively binds to GC-rich sequences, and a Zif268 mutant, which binds to a TATA box site. This analysis is based on a recently developed method (ADAPT), which allows binding specificity to be analyzed via the calculation of complexation energies for all possible DNA target sequences. The results obtained with the zinc finger proteins show that, although both mainly select their targets using direct, pairwise protein–DNA interactions, they also use sequence-dependent DNA deformation to enhance their selectivity. A new extension of our methodology enables us to determine the quantitative contribution of these two components and also to measure the contributions of individual residues to overall specificity. The results show that indirect recognition is particularly important in the case of the TATA box binding mutant, accounting for 30% of the total selectivity. The residue-by-residue analysis of the protein–DNA interaction energy indicates that the existence of amino acid–base contacts does not necessarily imply sequence selectivity, and that side chains without contacts can nevertheless contribute to defining the protein's target sequence.  相似文献   

3.
Site and sequence specificity of the daunomycin-DNA interaction   总被引:8,自引:0,他引:8  
The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.  相似文献   

4.
Nomura W  Sugiura Y 《Biochemistry》2003,42(50):14805-14813
Engineered zinc finger proteins revealed that a linker sequence connecting zinc finger units has a significant effect on the DNA binding property of the protein. The recognition for a noncontiguous DNA target beyond the current recognition code of zinc finger proteins has never been determined because of the limitation of a zinc finger framework. DNA recognition of zinc finger proteins is limited only to a contiguous subset of three base pairs. We propose the recognition for a noncontiguous DNA target by inserting amino acids into the canonical linker between zinc finger units. The sequence selectivity of the new zinc finger peptides was evaluated by gel mobility shift assays. DNase I footprinting analyses clearly showed different DNA binding of various linker-extended zinc finger peptides. The application of a SPR measurement also revealed a DNA sequence selectivity of peptides. Insertion of three amino acids is enough for recognition of a noncontiguous DNA target with sequence selectivity. An extended linker will be useful for expansion of the recognition code of zinc finger proteins and for development of a new role for linker sequences in DNA binding of zinc finger proteins.  相似文献   

5.
The connection of functional modules is effective for the design of DNA binding molecules with the desired sequence specificity. C(2)H(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules and are expected to recognize any DNA sequences by permutation, multi-connection, and the substitution of various sets of zinc fingers. To investigate the effects of the replacement of the terminal finger on the DNA recognition by other fingers, we have constructed the three zinc finger peptides with finger substitution at the N- or C-terminus, Sp1(zf223), Sp1(zf323), and Sp1(zf321). From the results of gel mobility shift assays, each mutant peptide binds preferentially to the target sequence that is predicted if the fingers act in a modular fashion. The methylation interference analyses demonstrate that in the cases of the N-terminal finger substitution mutants, Sp1(zf223) and Sp1(zf323), the N-terminal finger recognizes bases to different extents from that of the wild-type peptide, Sp1(zf123). Of special interest is the fact that the N-terminal finger of the C-terminal finger substitution mutant, Sp1(zf321), shows a distinct base recognition from those of Sp1(zf123) and Sp1(zf323). DNase I footprinting analyses indicate that the C-terminal finger (active finger) induces a conformational change in the DNA in the region for the binding of the N-terminal finger (passive finger). The present results strongly suggest that the extent of base recognition of the N-terminal finger is dominated by the binding of the C-terminal finger. This information provides an important clue for the creation of a zinc finger peptide with the desired specificity, which is applicable to the design of novel drugs and biological tools.  相似文献   

6.
7.
Fruit fly FTZ-F1, silkworm BmFTZ-F1, and mouse embryonal long terminal repeat-binding protein are members of the nuclear hormone receptor superfamily, which recognizes the same sequence, 5'-PyCAAGGPyCPu-3'. Among these proteins, a 30-amino-acid basic region abutting the C-terminal end of the zinc finger motif, designated the FTZ-F1 box, is conserved. Gel mobility shift competition by various mutant peptides of the DNA-binding region revealed that the FTZ-F1 box as well as the zinc finger motif is involved in the high-affinity binding of FTZ-F1 to its target site. Using a gel mobility shift matrix competition assay, we demonstrated that the FTZ-F1 box governs the recognition of the first three bases, while the zinc finger region recognizes the remaining part of the binding sequence. We also showed that the DNA-binding region of FTZ-F1 recognizes and binds to DNA as a monomer. Occurrence of the FTZ-F1 box sequence in other members of the nuclear hormone receptor superfamily raises the possibility that these receptors constitute a unique subfamily which binds to DNA as a monomer.  相似文献   

8.
9.
10.
Speck C  Messer W 《The EMBO journal》2001,20(6):1469-1476
The initiator protein DnaA of Escherichia coli binds to a 9mer consensus sequence, the DnaA box (5'-TT(A/T)TNCACA). If complexed with ATP it adopts a new binding specificity for a 6mer consensus sequence, the ATP-DnaA box (5'-AGatct). Using DNase footprinting and surface plasmon resonance we show that binding to ATP-DnaA boxes in the AT-rich region of oriC of E.coli requires binding to the 9mer DnaA box R1. Cooperative binding of ATP-DnaA to the AT-rich region results in its unwinding. ATP-DnaA subsequently binds to the single-stranded region, thereby stabilizing it. This demonstrates an additional binding specificity of DnaA protein to single-stranded ATP-DnaA boxes. Binding affinities, as judged by the DnaA concentrations required for site protection in footprinting, were approximately 1 nM for DnaA box R1, 400 nM for double-stranded ATP-DnaA boxes and 40 nM for single-stranded ATP-DnaA boxes, respectively. We propose that sequential recognition of high- and low-affinity sites, and binding to single-stranded origin DNA may be general properties of initiator proteins in initiation complexes.  相似文献   

11.
12.
13.
Thompson M  Woodbury NW 《Biochemistry》2000,39(15):4327-4338
A single zinc finger derived from the DNA-binding domain of the glucocorticoid receptor (GR) has been tethered to the intercalating fluorophore thiazole orange, and the DNA recognition characteristics of the conjugate have been examined. DNA sequence specificity for the peptide-dye conjugate, determined by steady-state fluorescence measurements and photoactivated DNA cleavage experiments, reproduce the binding features of response element recognition found in the native GR. The thiazole orange is able to intercalate and fluoresce when the conjugate binds, at concentrations where little fluorescence is observed from either the conjugate alone or the conjugate mixed with DNA lacking the zinc finger target sequence. The conjugate preferentially targets a 5'-TGTTCT-3' sequence (the native glucocorticoid receptor element) with a dissociation constant of about 25 nM. Lower binding affinities (up to 10-fold) are observed for single site variants of this sequence, and much lower affinity (40-50-fold) is observed for binding to the estrogen response element (which differs from the glucocorticoid receptor element at two positions) as well as to nonspecific DNA. Footprinting reactions show a 4-6 base pair region that is protected by the zinc finger moiety. Photocleavage assays reveal a several base pair region flanking the recognition sequence where the tethered thiazole orange moiety is able to intercalate and subsequently cleave DNA upon visible light exposure. Thiazole orange is also shown to oxidize the 5'-G of remote GG sequences, depending on the details of the intervening DNA sequence. Small synthetic protein-dye conjugates such as this one are potentially useful for a variety of purposes including sequence-specific probes that work under physiological conditions (without melting and hybridization of DNA), sequence-specific photocleavage agents, and self-assembling components in electron and energy transfer systems that utilize DNA as a scaffold and/or photochemical medium.  相似文献   

14.
15.
16.
The cDNAs for two DNA binding proteins of BTE, a GC box sequence in the promoter region of the P-450IA1(CYP1A1) gene, have been isolated from a rat liver cDNA library by using the BTE sequence as a binding probe. While one is for the rat equivalent to human Sp1, the other encodes a primary structure of 244 amino acids, a novel DNA binding protein designated BTEB. Both proteins contain a zinc finger domain of Cys-Cys/His-His motif that is repeated three times with sequence similarity of 72% to each other, otherwise they share little or no similarity. The function of BTEB was analysed by transfection of plasmids expressing BTEB and/or Sp1 with appropriate reporter plasmids into a monkey cell line CV-1 and compared with Sp1. BTEB and Sp1 activated the expression of genes with repeated GC box sequences in promoters such as the simian virus 40 early promoter and the human immunodeficiency virus-1 long terminal repeat promoter. In contrast, BTEB repressed the activity of a promoter containing BTE, a single GC box of the CYP1A1 gene that is stimulated by Sp1. When the BTE sequence was repeated five times, however, BTEB turned out to be an activator of the promoter. RNA blot analysis showed that mRNAs for BTEB and Sp1 were expressed in all tissues tested, but their concentrations varied independently in tissues. The former mRNA was rich in the brain, kidney, lung and testis, while the latter was relatively abundant in the thymus and spleen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
19.
The zinc finger domain of the Wilms tumor suppressor protein (WT1) contains four canonical Cys(2)His(2) zinc fingers. WT1 binds preferentially to DNA sequences that are closely related to the EGR-1 consensus site. We report the structure determination by both X-ray crystallography and NMR spectroscopy of the WT1 zinc finger domain in complex with DNA. The X-ray structure was determined for the complex with a cognate 14 base-pair oligonucleotide, and composite X-ray/NMR structures were determined for complexes with both the 14 base-pair and an extended 17 base-pair DNA. This combined approach allowed unambiguous determination of the position of the first zinc finger, which is influenced by lattice contacts in the crystal structure. The crystal structure shows the second, third and fourth zinc finger domains inserted deep into the major groove of the DNA where they make base-specific interactions. The DNA duplex is distorted in the vicinity of the first zinc finger, with a cytidine twisted and tilted out of the base stack to pack against finger 1 and the tip of finger 2. By contrast, the composite X-ray/NMR structures show that finger 1 continues to follow the major groove in the solution complexes. However, the orientation of the helix is non-canonical, and the fingertip and the N terminus of the helix project out of the major groove; as a consequence, the zinc finger side-chains that are commonly involved in base recognition make no contact with the DNA. We conclude that finger 1 helps to anchor WT1 to the DNA by amplifying the binding affinity although it does not contribute significantly to binding specificity. The structures provide molecular level insights into the potential consequences of mutations in zinc fingers 2 and 3 that are associated with Denys-Drash syndrome and nephritic syndrome. The mutations are of two types, and either destabilize the zinc finger structure or replace key base contact residues.  相似文献   

20.
The Wilms' tumor suppressor gene, WT1, encodes a zinc finger polypeptide which plays a key role regulating cell growth and differentiation in the urogenital system. Using the whole-genome PCR approach, we searched murine genomic DNA for high-affinity WT1 binding sites and identified a 10-bp motif 5'GCGTGGGAGT3' which we term WTE). The WTE motif is similar to the consensus binding sequence 5'GCG(G/T)GGGCG3' recognized by EGR-1 and is also suggested to function as a binding site for WT1, setting up a competitive regulatory loop. To evaluate the underlying biochemical basis for such competition, we compared the binding affinities of WT1 and EGR1 for both sequences. WT1 shows a 20- to 30-fold-higher affinity for the WTE sequence compared with that of the EGR-1 binding motif. Mutational analysis of the WTE motif revealed a significant contribution to binding affinity by the adenine nucleotide at the eighth position (5'GCGTGGGAGT3') as well as by the 3'-most thymine (5'GCGTGGGAGT3'), whereas mutations in either flanking nucleotides or other nucleotides in the core sequence did not significantly affect the specific binding affinity. Mutations within WT1 zinc fingers II to IV abolished the sequence-specific binding of WT1 to WTE, whereas alterations within the first WT1 zinc finger reduced the binding affinity approximately 10-fold but did not abolish sequence recognition. We have thus identified a WT1 target, which, although similar in sequence to the EGR-1 motif, shows a 20- to 30-fold-higher affinity for WT1. These results suggest that physiological action of WT1 is mediated by binding sites of significantly higher affinity than the 9-bp EGR-1 binding motif. The role of the thymine base in contributing to binding affinity is discussed in the context of recent structural analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号