首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Secnik  Q Wang  C M Chang  J E Jentoft 《Biochemistry》1990,29(34):7991-7997
The structural and functional properties of the nucleocapsid (NC) protein of the avian myeloblastosis virus were examined by steady-state fluorescence and fluorescence anisotropy measurements of the complex between the NC and the extrinsic fluorophore 4,4'-bis(phenylamino)(1,1'-binaphthalene)-5,5'-disulfonic acid (bis-ANS). The intrinsic fluorescence of bis-ANS is enhanced many fold upon forming a complex with the NC. Between 2 and 10 molecules of bis-ANS bind strongly to the NC, with an overall Kd of less than 10(-6) M. The emission of bis-ANS in the complex can also be induced by excitation at 298 nm, indicating that energy is transferred from Trp 80, the sole tryptophan in the NC protein, to bis-ANS. The energy transferred between the Trp 80 and bis-ANS was analyzed to yield a calculated distance of separation between these fluorophores of 28 +/- 3 A; thus, Trp 80 is well removed from the nearest bound bis-ANS. The fluorescence emission of bis-ANS in the NC.bis-ANS complex is efficiently quenched by added salts and by poly(A), suggesting that salt (presumably anions), nucleic acid, and bis-ANS bind to the same, positively charged region on the NC protein. A site size of six nucleotides was determined for nucleic acid binding to the NC protein, with an estimated Kd of less than 10(-6) M. Salt (anion) binding is strong, but nonspecific, with a Kapp of 4 mM, raising the possibility that anion binding to the NC protein might regulate the interaction of the NC with viral RNA inside the host cell.  相似文献   

2.
The Gag polyprotein of HIV-1 is essential for retroviral replication and packaging. The nucleocapsid (NC) protein is the primary region for the interaction of Gag with nucleic acids. In this study, we examine the interactions of Gag and its NC cleavage products (NCp15, NCp9 and NCp7) with nucleic acids using solution and single molecule experiments. The NC cleavage products bound DNA with comparable affinity and strongly destabilized the DNA duplex. In contrast, the binding constant of Gag to DNA was found to be ~10-fold higher than that of the NC proteins, and its destabilizing effect on dsDNA was negligible. These findings are consistent with the primary function of Gag as a nucleic acid binding and packaging protein and the primary function of the NC proteins as nucleic acid chaperones. Also, our results suggest that NCp7's capability for fast sequence-nonspecific nucleic acid duplex destabilization, as well as its ability to facilitate nucleic acid strand annealing by inducing electrostatic attraction between strands, likely optimize the fully processed NC protein to facilitate complex nucleic acid secondary structure rearrangements. In contrast, Gag's stronger DNA binding and aggregation capabilities likely make it an effective chaperone for processes that do not require significant duplex destabilization.  相似文献   

3.
4.
Retroviral RNA encapsidation involves a recognition event between genomic RNA (gRNA) and one or more domains in Gag. In HIV-1, the nucleocapsid (NC) domain is involved in gRNA packaging and displays robust nucleic acid (NA) binding and chaperone functions. In comparison, NC of human T-cell leukemia virus type 1 (HTLV-1), a deltaretrovirus, displays weaker NA binding and chaperone activity. Mutation of conserved charged residues in the deltaretrovirus bovine leukemia virus (BLV) matrix (MA) and NC domains affects virus replication and gRNA packaging efficiency. Based on these observations, we hypothesized that the MA domain may generally contribute to NA binding and genome encapsidation in deltaretroviruses. Here, we examined the interaction between HTLV-2 and HIV-1 MA proteins and various NAs in vitro. HTLV-2 MA displays higher NA binding affinity and better chaperone activity than HIV-1 MA. HTLV-2 MA also binds NAs with higher affinity than HTLV-2 NC and displays more robust chaperone function. Mutation of two basic residues in HTLV-2 MA α-helix II, previously implicated in BLV gRNA packaging, reduces NA binding affinity. HTLV-2 MA binds with high affinity and specificity to RNA derived from the putative packaging signal of HTLV-2 relative to nonspecific NA. Furthermore, an HIV-1 MA triple mutant designed to mimic the basic character of HTLV-2 MA α-helix II dramatically improves binding affinity and chaperone activity of HIV-1 MA in vitro and restores RNA packaging to a ΔNC HIV-1 variant in cell-based assays. Taken together, these results are consistent with a role for deltaretrovirus MA proteins in viral RNA packaging.  相似文献   

5.
6.
Yunhui Peng  Emil Alexov 《Proteins》2017,85(2):282-295
Protein–nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein–nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein–nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein–protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH‐optimum of protein–DNA/RNA binding free energy and the pH‐optimum of protein folding free energy. Overall, the pH‐dependence of protein–nucleic acid binding is not predicted to be as significant as that of protein–protein association. Proteins 2017; 85:282–295. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
8.
Galletto R  Rajendran S  Bujalowski W 《Biochemistry》2000,39(42):12959-12969
Quantitative analyses of the interactions of nucleotide cofactors with the Escherichia coli replicative factor DnaC protein have been performed using thermodynamically rigorous fluorescence titration techniques. This approach allowed us to obtain stoichiometries of the formed complexes and interaction parameters, without any assumptions about the relationship between the observed signal and the degree of binding. The stoichiometry of the DnaC-nucleotide complex has been determined in direct binding experiments with fluorescent nucleotide analogues, MANT-ATP and MANT-ADP. The stoichiometry of the DnaC complexes with unmodified ATP and ADP has been determined using the macromolecular competition titration method (MCT). The obtained results established that at saturation the DnaC protein binds a single nucleotide molecule per protein monomer. Analyses of the binding of fluorescent analogues and unmodified nucleotides to the DnaC protein show that ATP and ADP have the same affinities for the nucleotide-binding site, albeit the corresponding complexes have different structures, specifically affected by the presence of magnesium cations in solution. Although the presence of the gamma-phosphate does not affect the affinity, the structure of the triphosphate group is critical. While the affinity of ATP-gamma-S is the same as the affinity of ATP, the affinities of AMP-PNP and AMP-PCP are approximately 2 and approximately 4 orders lower than that of ATP, respectively. Moreover, the ribose plays a significant role in forming a stable complex. The binding constants of dATP and dADP are approximately 2 orders of magnitude lower than those for ribose nucleotides. The nucleotide-binding site of the DnaC protein is highly base specific. The intrinsic affinity of adenosine triphosphates and diphosphates is at least 3-4 orders of magnitude higher than for any of the other examined nucleotides. The obtained data indicate that the recognition mechanism of the nucleotide by the structural elements of the binding site is complex with the base providing the specificity and the ribose, as well as the second phosphate group contributing to the affinity. The significance of the results for the functioning of the DnaC protein is discussed.  相似文献   

9.
10.
11.
12.
The bacteriophage T4 regA protein is a translational repressor of a group of T4 early mRNAs. We have characterized the binding of regA protein to polynucleotides and to specific RNAs. Binding to nucleic acids was monitored by the quenching of the intrinsic tryptophan fluorescence of regA protein. regA protein exhibited differential affinities for the polynucleotides examined, with the order of affinity being poly(rU) greater than poly(dT) greater than poly(dU) = poly(rG) greater than poly(rC) = poly(rA). The binding site size calculated for regA protein binding to poly(rU) was n = 9 +/- 1 nucleotides. Cooperativity was observed in binding to multiple-site oligonucleotides, with a cooperativity parameter (omega) value of 10-22. To study the specific interaction between regA protein and T4 gene 44 mRNA, the affinity of regA protein for synthetic gene 44 RNA fragments was measured. The association constant (Ka) for regA protein binding to gene 44 RNA fragments was 100-fold higher than for binding to nontarget RNA. Study of variant gene 44 RNA fragments indicated that the nucleotides required for specific binding are contained within a 12-nucleotide sequence spanning -12 to -1, relative to the AUG codon. The bases of five nucleotides (indicated in upper case type) are critical for specific regA protein interaction with the gene 44 recognition element, 5'-aaUGAGgAaauu-3'. These studies further showed that formation of a regA protein-RNA complex involves a maximum of 2-3 ionic interactions and is primarily an enthalpy-driven process.  相似文献   

13.
Binding of APOBEC3G to the nucleocapsid (NC) domain of the human immunodeficiency virus (HIV) Gag polyprotein may represent a critical early step in the selective packaging of this antiretroviral factor into HIV virions. Previously, we and others have reported that this interaction is mediated by RNA. Here, we demonstrate that RNA binding by APOBEC3G is key for initiation of APOBEC3G:NC complex formation in vitro. By adding back nucleic acids to purified, RNase-treated APOBEC3G and NC protein preparations in vitro, we demonstrate that complex formation is rescued by short (> or =10 nucleotides) single-stranded RNAs (ssRNAs) containing G residues. In contrast, complex formation is not induced by add-back of short ssRNAs lacking G, by dsRNAs, by ssDNAs, by dsDNAs or by DNA:RNA hybrid molecules. While some highly structured RNA molecules, i.e., tRNAs and rRNAs, failed to rescue APOBEC3G:NC complex formation, other structured RNAs, i.e., human Y RNAs and 7SL RNA, did promote NC binding by APOBEC3G. Together, these results indicate that ternary complex formation requires ssRNA, but suggest this can be presented in the context of an otherwise highly structured RNA molecule. Given previous data arguing that APOBEC3G binds, and edits, ssDNA effectively in vitro, these data may also suggest that APOBEC3G can exist in two different conformational states, with different activities, depending on whether it is bound to ssRNA or ssDNA.  相似文献   

14.
The Gag protein of human foamy virus (HFV) lacks Cys-His boxes present in the nucleocapsid (NC) domains of other retroviruses; instead it contains three glycine-arginine-rich motifs (GR boxes). We have expressed the carboxyl end of HFV Gag containing the GR boxes (the NC domain equivalent) and analyzed its nucleic acid binding properties. Our results show that the NC domain of HFV Gag binds with high affinity to both RNA and DNA, in a sequence-independent manner, as determined by filter binding assays. Analysis of a mutant containing a heterologous sequence in place of GR box I indicates that this motif is required for nucleic acid binding and for viral replication. A mutant in GR box II still binds to RNA and DNA in vitro, but virus containing this mutation does not replicate and no nuclear staining of the Gag protein is found in transfected cells. Surprisingly, a revertant from this mutant that completely lacks GR box II and exhibits very little nuclear transport of Gag can readily replicate in tissue culture. This finding thus provides a direct evidence that although the sequences in GR box II can serve as a nuclear transport signal, they are not required for HFV replication and it is unlikely that nuclear localization of Gag protein plays any critical role during viral infection. Taken together, our results suggest that the Gag protein of HFV may be more analogous to the core protein of the hepatitis B virus family than to conventional retroviral Gag protein.  相似文献   

15.
We screened two independent RNA libraries consisting of molecules of 50 nucleotides of random sequence, one of which had additional viral psi-sequences to isolate RNA aptamers that bound to the mature form of the nucleocapsid (NC) protein of Human Immunodeficiency Virus Type-1 (HIV-1). Surface Plasmon Resonance measurements and gel shift assays showed that the RNA aptamers bound with high affinity and specificity. We employed RNase footprinting to characterize the RNA structures and to map their protein binding sites. Most of the selected RNA aptamers contained a plausible pseudoknot in addition to the characteristic stem-loop structure. Moreover, the pseudoknots were part of the NC binding sites. We propose that higher order structures such as pseudoknots may constitute binding motifs for nucleic acid binding proteins, especially for NC protein, which is a nucleic acid chaperone.  相似文献   

16.
The affinities and location of oligonucleotides bound to intact and truncated bacteriophage T4 gene 32 protein have been elucidated by two independent and sensitive methods. The nucleic acid binding site is located within the core domain of 32 protein, residues 22-253. Oligonucleotides protect the core domain against proteolysis catalyzed by mammalian endoproteinase Arg-C. Of the three cleavage sites, Arg111, within the internal "LAST" ((Lys/Arg)3(Ser/Thr)2) motif, is selectively protected. We have previously suggested that these LAST residues, Lys-Arg-Lys-Thr-Ser, residues 110-114, are involved in nucleic acid binding, and our results are also consistent with crystallographic studies. The inhibitory effects of oligonucleotides on the kinetics of core domain proteolysis were used to quantify binding affinities. In addition, affinities of oligonucleotides for both core domain and intact protein were obtained from their effect on the Tm-depressing activities of these proteins. For both core and intact protein, the degree of affinity increases with oligonucleotide length. The presence of a 5' terminal phosphate increases the affinity two- to fourfold. Placement of methylphosphonodiester (uncharged) linkages at alternating linkages vastly lowers binding affinity for the intact protein and core domain. We conclude that at least two and likely three adjacent phosphodiester linkages are a minimal requirement for binding, further defining the electrostatic component of the interaction. The length-dependence of binding affinity suggests that additional interactions, both ionic and non-ionic, likely occur with longer oligonucleotides.  相似文献   

17.
18.
Fundamental aspects of interactions of the Dengue virus type 3 full-length polymerase with the single-stranded and double-stranded RNA and DNA have been quantitatively addressed. The polymerase exists as a monomer with an elongated shape in solution. In the absence of magnesium, the total site size of the polymerase-ssRNA complex is 26 ± 2 nucleotides. In the presence of Mg(2+), the site size increases to 29 ± 2 nucleotides, indicating that magnesium affects the enzyme global conformation. The enzyme shows a preference for the homopyrimidine ssRNAs. Positive cooperativity in the binding to homopurine ssRNAs indicates that the type of nucleic acid base dramatically affects the enzyme orientation in the complex. Both the intrinsic affinity and the cooperative interactions are accompanied by a net ion release. The polymerase binds the dsDNA with an affinity comparable with the ssRNAs affinity, indicating that the binding site has an open conformation in solution. The lack of detectable dsRNA or dsRNA-DNA hybrid affinities indicates that the entry to the binding site is specific for the sugar-phosphate backbone and/or conformation of the duplex.  相似文献   

19.
Hagan N  Fabris D 《Biochemistry》2003,42(36):10736-10745
The formation of noncovalent complexes between the HIV-1 nucleocapsid protein p7 (NC) and RNA hairpins SL2-SL4 of the Psi-recognition element was investigated by direct infusion electrospray ionization-Fourier transform mass spectrometry (ESI-FTMS). The high resolution afforded by this method provided the unambiguous characterization of the stoichiometry and composition of complexes formed by multiple equilibria in solution. For each hairpin, the formation of a 1:1 complex was found to be the primary binding mode in solutions of intermediate salt content (150 mM ammonium acetate). Binding of multiple units of NC was observed with lower affinity and a maximum stoichiometry matching the limit calculated from the number of nucleotides in the construct and the size of the footprint of NC onto single-stranded nucleic acids, thus implying the defolding of the hairpin three-dimensional (3D) structure. Dissociation constants of 62 +/- 22 nM, 178 +/- 64 nM, and 1.3 +/- 0.5 microM were determined for SL2, SL3-2, and SL4, respectively, which are similar to values obtained by spectroscopic and calorimetric methods with the additional confidence offered by a direct, rather than inferred, knowledge of the binding stoichiometry. Competitive binding experiments carried out in solutions of intermediate ionic strength, which has the effect of weakening the electrostatic interactions in solution, provided a direct way of evaluating the stabilizing contributions of H-bonding and hydrophobic interactions that are more sensitive to the sequence and structural context of the different hairpins. The relative scale of binding affinity obtained in this environment reflects the combination of contributions provided by the different structures of both the tetraloop and the double-stranded stem. The importance of the stem 3D structure in modulating the binding activity was tested by a competitive binding experiment that included the SL3-2 RNA construct, a DNA analogue of SL3 (SL3(DNA)), and a DNA analogue in which all four loop bases were replaced with abasic nucleotides (SL3(abasic)). NC was found to bind the A-type double-stranded stem of SL3-2 RNA at least 30 times more tightly than the B-type helical structure of SL3(DNA). Eliminating the stabilization provided by the interactions with the tetraloop bases made the binding of SL3(abasic) approximately 50 times weaker than that of SL3(DNA).  相似文献   

20.
We sought to create new cellulose-binding RNA aptamers for use as modular components in the engineering of complex functional nucleic acids. We designed our in vitro selection strategy to incorporate self-sustained sequence replication (3SR), which is an isothermal nucleic acid amplification protocol that allows for the rapid amplification of RNAs with little manipulation. The best performing aptamer representative was chosen for reselection and further optimization. The aptamer exhibits robust binding of cellulose in both the powdered and paper form, but did not show any significant binding of closely related polysaccharides. The minimal cellulose-binding RNA aptamer also can be grafted onto other RNAs to permit the isolation of RNAs from complex biochemical mixtures via cellulose affinity chromatography. This was demonstrated by fusing the aptamer to a glmS ribozyme sequence, and selectively eluting ribozyme cleavage products from cellulose using glucosamine 6-phosphate to activate glmS ribozyme function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号