首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of nutrient addition on the in situ biodegradation of polycyclic aromatic hydrocarbons in creosote contaminated soil were studied in soil columns taken from various soil strata at a wood preserving plant in Norway. Three samples were used: one from the topsoil (0–0.5 m), one from an organic rich layer (2–2.5 m) and one from the sandy aquifer (4.5–5 m). The addition of inorganic nitrogen and phosphorous stimulated the degradation of polycyclic aromatic hydrocarbons (PAHs) in the top soil and the aquifer sand. These two soils, which differed strongly in contamination levels, responded similarly to nutrient addition with the corresponding degradation of 4-ring PAHs. The ratio between available nitrogen (N) and phosphorous (P) might explain the degree of degradation observed for the 4-ring PAHs. However, the degree of degradation of 3-ring PAHs did not significantly increase after nutrient addition. An increase in the respiration rate, after nutrient addition, could only be observed in the topsoil. In the aquifer sand, 4-ring PAH degradation was not accompanied by an increase in the respiration rate or the number of heterotrophic micro-organisms. PAH degradation in the organic layer did not respond to nutrient addition. This was probably due to the low availability of the contaminants for micro-organisms, as a result of sorption to the soil organic matter. Our data illustrate the need for a better understanding of the role of nutrients in the degradation of high molecular weight hydrocarbons for the successful application of bioremediation at PAH contaminated sites.  相似文献   

2.
The present paper questions the adequacy of using length–weight regressions and growth rates calculated in the laboratory under constant physico-chemical and food conditions for the estimation of biomass and secondary production of animals living in a variable environment from the physico-chemistry and food availability point of view. Length–weight regressions (LWR) and growth rate of Daphnia magna were determined in situat five key periods of the year. In parallel, LWR and growth rate were determined in laboratory incubators at temperature adjusted to the mean temperature measured during the in situexperiments. LWR estimated from pond daphnids collected during the in situ experiments were, on the whole, not significantly different from LWR established during laboratory experiments, indicating that the food availability was globally similar in the laboratory and in situexperiments, even though food items were substantially different between the experiments. In situ algal biomass was indeed low compared to the algal biomass in laboratory experiments, but high biomasses of bacteria, protozoa and detritus were available for daphnid feeding in the tubes incubated in situ. Growth rate of D. magnawas monitored in situusing 50-ml tubes closed with Nylon net (mesh size = 80 m) and in the laboratory using 50-ml glass flasks. The physico-chemical, bacteriological and algological variables were checked to be similar in the tubes and in the pond. Growth rates varied according to the size of the animal and according to the water temperature. The maximum growth rates were observed for juveniles at 20.2 °C. Growth rates were also determined in the laboratory at temperature corresponding to the mean temperature recorded in the pond during the in situ growth experiments. Differences between in situ and laboratory body length–growth rate regressions (LgR) were observed for the experiments conducted at 15.6 °C and 23.6 °C. Due to differences in LWR and LgR between in situ and laboratory experiments, biomass and daily production estimated from laboratory cultures were found to be significantly, but not severely, higher than biomass and daily production estimated on the basis of in situ experiments. It has been, therefore, concluded that, when the constraints linked to the realization of in situ growth experiments are too strong, the laboratory approach is fully justified.  相似文献   

3.
Summary The degradation rate of hydrocarbons in oily sludge obtained from a flotation unit by free and immobilized cells in shaking flasks and in a stirred tank reactor was investigated. For the biodegration of 3.3% hydrocarbons free cells and cells immobilized on granular clay were used. Free cells needed 7–8 weeks to use 30% of the 3.3% hydrocarbons, whereas with immobilized cells the same result was obtained after 3–4 weeks only. In shaken flasks with high hydrocarbon concentrations (8%), immobilized Candida parapsilosis degraded 90% of the hydrocarbons in the oily sludge within 3 weeks, while free cells degraded only 27.5% in the same period. In degradation experiments with a bioreactor, free and immobilized cells of the isolate ISO-OS BÜ 20 showed better results compared to cultures in shaken flasks due to better aeration and mixing. Free cells degraded 50% of the 5% hydrocarbon-containing oily sludge in 7 weeks, whereas immobilized cells gave the same result after only 4 weeks.Offprint requests to: H.-J. Rehm  相似文献   

4.
Effects of high density adult millipede populations on soil ecosystem properties were investigated using laboratory and field microcosm methods in a deciduous broad-leaved forest in western Japan. The density of Parafontaria tonominea adults was 25.6–72.0 individuals m–2 on 15 September 1996, then the density declined to 0–5.4 m–2 on 22 October 1996. Addition of millipedes to the laboratory microcosm enhanced soil respiration and decreased soil microbial biomass. Soil microcosms with and without millipedes (one and two pairs of adults) were set on a forest floor, and soil respiration, dissolved ion concentration in leacheate water were observed for 8 weeks. The millipedes ingested both leaf litter and soil, which increased soil respiration, leaching of Ca2+, Mg2+, and nitrate from the soil, whereas the soil microbial biomass was not changed at 8 weeks after introduction of the animals. Millipede feeding on soil enhanced microbial activity and nutrient leaching from the forest soil.  相似文献   

5.
Screening cultures are usually non-monitored and non-controlled due to a lack of appropriate measuring techniques. A new device for online measurement of oxygen transfer rate (OTR) in shaking-flask cultures was used for monitoring the screening of Hansenula polymorpha. A shaking frequency of 300 rpm and a filling volume of 20 ml in 250-ml flasks ensured a sufficient oxygen transfer capacity of 0.032 mol (l h)–1 and thus a respiration not limited by oxygen. Medium buffered with 0.01 mol phosphate l–1 (pH 6.0) resulted in pH-inhibited respiration, whereas buffering with 0.12 mol phosphate l–1 (pH 4.1) resulted in respiration that was not inhibited by pH. The ammonium demand was balanced by establishing fixed relations between oxygen, ammonium, and glycerol consumption with 0.245±0.015 mol ammonium per mol glycerol. Plate precultures with complex glucose medium reduced the specific growth rate coefficient to 0.18 h–1 in subsequent cultures with minimal glycerol medium. The specific growth rate coefficient increased to 0.26 h–1 when exponentially growing precultures with minimal glycerol medium were used for inoculation. Changes in biomass, glycerol, ammonium, and pH over time were simulated on the basis of oxygen consumption.  相似文献   

6.
Summary Field disinfestation in autumn with normal or increased dosages of 1,3-dichloropropene, metham-sodium or chloroform, and in spring with ethoprophos, did not, or hardly, affect the degradationin situ of some herbicides applied in spring. However, during laboratory incubation of samples from the disinfested plots, sometimes decreased herbicide degradation rates or increased lag phases were found.The top few centimetres of the field soil, on which the herbicides were sprayed, apparently largely escaped fumigation. Accordingly, effects of fumigation on herbicide degradation, organic matter and N metabolism were stronger in samples from the 10–20 cm layer than in samples from 0–10 cm.In the laboratory fumigation of soil samples with CHCl3 was much more drastic in inhibiting herbicide degradation, N mineralisation and nitrification; inoculation with 10% fresh soil, however, greatly accelerated the recovery of these processes. Therefore, in practice prolonged or drastic effects of chemical soil disinfestation on metabolic integrity of the soil are not to be expected.  相似文献   

7.
B. Kos  D. Leštan 《Plant and Soil》2004,263(1):43-51
The feasibility of combined phytoextraction and in situ washing of soil contaminated with Pb (1750 mg kg–1), Zn (1300 mg kg–1), and Cd (7.2 mg kg–1), induced by the addition of biodegradable chelator, [S,S] stereoisomere of ethylenediamine discuccinate ([S,S]-EDDS), was tested in soil columns with hemp (Cannabis sativa) as the phytoextracting plant. The addition of [S,S]-EDDS (10 mmol kg–1 dry soil) yielded concentrations of 1026±442, 330.3±114.7 and 3.84±1.55 mg kg–1 of Pb, Zn and Cd in the dry above-ground plant biomass, respectively. These concentrations were 1926, 7.5, and 11 times higher, respectively, compared to treatments with no chelator addition. Horizontal permeable barriers, composed of a 3 cm high layer of nutrient enriched sawdust and vermiculite mixture, and a 3 cm layer of soil, vermiculite and apatite mixture, were positioned 20, 30 and 40 cm deep in the soil. In chelator treatments, barriers placed 30 cm deep reduced leaching of Pb, Zn and Cd by 435, 4 and 53 times, respectively, compared to columns with no barrier, where 3.0, 4.3 and 3.3% of total initial Pb, Zn and Cd, respectively, was leached during 6-weeks water irrigation after chelator addition. Lower positioned barriers were almost equally effective in preventing leaching of Pb than barriers positioned closer to the soil surface, less effective for Cd, and did not prevent leaching of Zn. 2.53% of total initial Pb and 2.83% of Cd was washed from the contaminated soil and accumulated into the barrier. Combined method was less effective than simulated ex situ soil washing, where 14.2, 5.5 and 24.5% of Pb, Zn and Cd, respectively, were removed after 1-h extraction, but comparable effective to 48-h extraction. Abbreviations: BCF – bioconcentration factor; EDTA – ethylene diaminetetraacetate; HM – heavy metal; PP – phytoextraction potential; [S,S]-EDDS – [S,S]-ethylenediamine disuccinate.  相似文献   

8.
The ecophysiological characteristics of fine roots of mature forest plants are poorly understood because of difficulties of measurement. We explored a root in-growth approach to measure respiration and nitrate uptake of woody plant roots in situ. Roots of seven species were grown into sand-filled chambers. Root-associated respiration was measured as CO 2 emission on four dates and nitrate uptake was quantified using 15N. All the roots were younger than 3 months at the time of measurement. Fine root respiration measured over the temperature range of 14.5–15.5 °C averaged 18.9–36.5 nmol gDM –1 s –1 across species. Nitrate uptake rates by these fine roots (1.3–6.8 nmol gDM –1 s –1) were comparable to other studies of forest trees. The root respiration rates were several times higher than measurements on detached roots of mature trees, concurring with literature observations that young roots respire much more rapidly than older roots. The root in-growth approach appears promising for providing information on the metabolic activity of fine roots of mature forest trees growing in soil.  相似文献   

9.
A field investigation (April–November) in Nigeria showed that biodegradation of obeche (Triplochiton scleroxylon) wood blocks was initially retarded in crude oil-contaminated soil but later became enhanced as indicated by loss of compression resistance. Further indication of this pattern was the detection of soft-rot cavities and basidiomycete fungi after 2–3 months exposure when compared to control blocks in uncontaminated soil. Laboratory tests with Pleurotus sp., Trametes sp., Gloeophyllum sp. (basidiomycetes) and Chaetomium sp. (soft-rot fungus) confirmed that degradation of crude oil-coated obeche blocks was markedly retarded without the presence of hydrocarbon-degrading bacteria. The filtrate of hydrocarbon-degrading Pseudomonas sp. grown in mineral salt/crude oil medium for 3–4 weeks supported growth of the test fungi better than in carboxymethyl cellulose medium but less than in potato dextrose broth. Similarly, wood blocks immersed in the filtrate became significantly more susceptible to fungal degradation. Pseudomonas sp. from stationary phase growth in crude oil medium depleted residual sugar in basidiomycete-degraded sawdust with a concomitant marked increase in its population. It may be concluded that readily metabolizable products of crude oil degradation by soil organisms and the removal of residual sugar which may have prevented catabolite repression of cellulases, culminated in increased attack on the wood by soil-borne wood-decomposing organisms.  相似文献   

10.
In the soil remediation process, the hydrophobic characteristics of pollutants and their affinity for soil matrix may be responsible for mass transfer limitations. The degradation of hexachlorocyclohexane (HCH) isomers present in a spiked soil by the white-rot Bjerkandera adusta was evaluated in a slurry system. Experiments in shaken flasks were performed to evaluate the action of the endogenous microflora, the adsorption of HCH on the fungal biomass and the potential synergic or antagonic actions between the microflora and the fungal biomass. The fungus significantly degraded the HCH isomers from the soil slurry in the following order: αγ>δ>β-HCH. The degradation process was further scaled in a 5-l reactor, where the solid load and concentration of the pollutant in the soil were evaluated. At optimal conditions, 100 g soil l−1 and 100 mg total HCH l−1, maximal degradations of 94.5%, 78.5% and 66.1% were attained after 30 d for γ-, α- and δ-HCH isomers, respectively, representing between 1.7 and 3.1-fold the values obtained at small scale. These results indicate that minimising mass transfer resistances is a key factor for HCH degradation from soil.  相似文献   

11.
Net nitrogen (N) mineralization in situ and N mineralization potential (N0) over one complete year (1986–1987) were examined for a conventionally managed silage cornfield that received at least 235 kg fertilizer N ha-1. Net N mineralization at the site, measured by sequential in situ polyethylene-bag incubations, totaled –54 kg N ha-1 yr-1, and –31 kg N ha-1 over the May-to-August growing season. Nitrogen mineralization potential of the soil organic matter (SOM), measured by laboratory anaerobic incubations, was positive uniformly and varied with month of sample collection. The soil gained 72 kg inorganic N ha-1 from April to October, principally because of a fall manuring, only 7 kg N ha-1 from April to September. The in situ incubations, likely more representative of the balance between N mineralization and immobilization under N-fertilized conditions, suggest that SOM at the site is accumulating N.Contribution from the Department of Forestry and Wildlife Management, University of Massachusetts, Amherst, MA 01003, USA.Contribution from the Department of Forestry and Wildlife Management, University of Massachusetts, Amherst, MA 01003, USA.  相似文献   

12.
The vertical variation in soil microbial respiratory activity and its relationship to organic carbon pools is critical for modeling soil C stock and predicting impacts of climate change, but is not well understood. Mineral soil samples, taken from four Scottish soils at different depths (0–8, 8–16, 16–24, 24–32 cm), were analyzed and incubated in the laboratory under constant temperature and environmental conditions. The vegetation type/plant species showed significant effects on the absolute concentration of C components and microbial activity, but the relative distribution of C and respiration rate with soil depth are similar across sites. Soil C pools and microbial respiratory activity declined rapidly with soil depth, with about 30% of total organic carbon (TOC) and dissolved organic carbon (DOC), and about half microbial carbon (Cmic) and respired CO2 observed in the top 8 cm. The ratio of CO2:TOC generally decreased with soil depth, but CO2:DOC was significantly higher in the top 8 cm of soil than in the subsoil (8–32 cm). No general pattern between qCO2 (CO2:Cmic) and soil depth was found. The vertical distributions of soil C pools and microbial respiratory activity were best fitted with a single exponential equation. Compared with TOC and DOC, Cmic appears to be an adequate predictor for the variation in microbial respiration rate with soil depth, with 95% of variation in normalized respiration rate accounted for by a linear relationship.  相似文献   

13.
Studies were conducted on the production of Bacillus thuringiensis (Bt)-based biopesticides to ascertain the performance of the process in shake flasks, and in two geometrically similar fermentors (15 and 150 l) utilizing wastewater sludge as a raw material. The results showed that it was possible to achieve better oxygen transfer in the larger capacity fermentor. Viable cell counts increased by 38–55% in the bioreactor compared to shake flasks. As for spore counts, an increase of 25% was observed when changing from shake flask to fermentor experiments. Spore counts were unchanged in bench (15 l) and pilot scale (5.3–5.5 e+08 cfu/ml; 150 l). An improvement of 30% in the entomotoxicity potential was obtained at pilot scale. Protease activity increased by two to four times at bench and pilot scale, respectively, compared to the maximum activity obtained in shake flasks. The maximum protease activity (4.1 IU/ml) was obtained in pilot scale due to better oxygen transfer. The Bt fermentation process using sludge as raw material was successfully scaled up and resulted in high productivity for toxin protein yield and a high protease activity.  相似文献   

14.
A trenching method was used to determine the contribution of root respiration to soil respiration. Soil respiration rates in a trenched plot (R trench) and in a control plot (R control) were measured from May 2000 to September 2001 by using an open-flow gas exchange system with an infrared gas analyser. The decomposition rate of dead roots (R D) was estimated by using a root-bag method to correct the soil respiration measured from the trenched plots for the additional decaying root biomass. The soil respiration rates in the control plot increased from May (240–320 mg CO2 m–2 h–1) to August (840–1150 mg CO2 m–2 h–1) and then decreased during autumn (200–650 mg CO2 m–2 h–1). The soil respiration rates in the trenched plot showed a similar pattern of seasonal change, but the rates were lower than in the control plot except during the 2 months following the trenching. Root respiration rate (R r) and heterotrophic respiration rate (R h) were estimated from R control, R trench, and R D. We estimated that the contribution of R r to total soil respiration in the growing season ranged from 27 to 71%. There was a significant relationship between R h and soil temperature, whereas R r had no significant correlation with soil temperature. The results suggest that the factors controlling the seasonal change of respiration differ between the two components of soil respiration, R r and R h.  相似文献   

15.
Soil respiration within riparian buffers and adjacent crop fields   总被引:13,自引:1,他引:12  
Tufekcioglu  A.  Raich  J.W.  Isenhart  T.M.  Schultz  R.C. 《Plant and Soil》2001,229(1):117-124
We quantified rates of soil respiration among sites within an agricultural landscape in central Iowa, USA. The study was conducted in riparian cool-season grass buffers, in re-established multispecies (switchgrass + poplar) riparian buffers and in adjacent crop (maize and soybean) fields. The objectives were to determine the variability in soil respiration among buffer types and crop fields within a riparian landscape, and to identify those factors correlating with the observed differences. Soil respiration was measured approximately monthly over a two-year period using the soda-lime technique. Mean daily soil respiration across all treatments ranged from 0.14 to 8.3 g C m–2 d–1. There were no significant differences between cool-season grass buffers and re-established forest buffers, but respiration rates beneath switchgrass were significantly lower than those beneath cool-season grass. Soil respiration was significantly greater in both buffer systems than in the cropped fields. Seasonal changes in soil respiration were strongly related to temperature changes. Over all sites, soil temperature and soil moisture together accounted for 69% of the seasonal variability in soil respiration. Annual soil respiration rates correlated strongly with soil organic carbon (R = 0.75, P < 0.001) and fine root (<2 mm) biomass (R = 0.85, P < 0.001). Annual soil respiration rates averaged 1140 g C m–2 for poplar, 1185 g C m–2 for cool-season grass, 1020 g C m–2 for switchgrass, 750 g C m–2 for soybean and 740 g C m–2 for corn. Overall, vegetated buffers had significantly higher soil respiration rates than did adjacent crop fields, indicating greater soil biological activity within the buffers.  相似文献   

16.
Toxic dinoflagellates are important in natural ecosystems and are ofglobal economic significance because of the impact of toxic blooms onaquaculture and human health. Both the organisms and the toxins they producehave potential for biotechnology applications. We investigated autotrophicgrowth of a toxic dinoflagellate, Alexandrium minutum, inthree different high biomass culture systems, assessing growth, productivityandtoxin production. The systems used were: aerated and non-aerated2-L Erlenmeyer flasks; 0.5-L glass aerated tubes; anda 4-L laboratory scale alveolar panel photobioreactor. A range ofindicators was used to assess growth in these systems. Alexandriumminutum grew well in all culture conditions investigated, with amarked increase in both biomass and productivity in response to aeration. Thehighest cell concentration (4.9 × 105 cellsmL–1) and productivity (2.6 ×104cells mL–1d–1) was achieved inthe aerated glass culture tubes. Stable growth of A.minutum in the laboratory scale alveolar panel photobioreactor wasmaintained over a period of five months, with a maximum cell concentration of3.3 × 105 cells mL–1, a meanproductivity of 1.4 × 104 cells mL–1d–1, and toxin production of approximately 20g L–1 d–1 with weeklyharvesting.  相似文献   

17.
Various ecophysiological investigations on carnivorous plants in wet soils are presented. Radial oxygen loss from roots of Droseraceae to an anoxic medium was relatively low 0.02 – 0.07 mol(O2) m– 2 s–1 in the apical zone, while values of about one order of magnitude greater were found in both Sarracenia rubra roots and Genlisea violacea traps. Aerobic respiration rates were in the range of 1.6 – 5.6 mol kg–1 (f.m.) s–1 for apical root segments of seven carnivorous plant species and 0.4 – 1.1 mol kg–1 (f.m.) s–1 for Genlisea traps. The rate of anaerobic fermentation in roots of two Drosera species was only 5 – 14 % of the aerobic respiration. Neither 0.2 mM NaN3 nor 0.5 mM KCN influenced respiration rate of roots and traps. In all species, the proportion of cyanide-resistant respiration was high and amounted to 65 – 89 % of the total value. Mean rates of water exudation from excised roots of 12 species ranged between 0.4 – 336 mm 3 kg–1 (f.m.) s–1 with the highest values being found in the Droseraceae. Exudation from roots was insensitive to respiration inhibitors. No significant difference was found between exudation rates from roots growing in situ in anoxic soil and those kept in an aerated aquatic medium. Carnivorous plant roots appear to be physiologically very active and well adapted to endure permanent soil anoxia.  相似文献   

18.
Crowley  D. E.  Wu  C. L.  Gries  D.  Brünn  S.  Parker  D. R. 《Plant and Soil》2002,241(1):57-65
A laboratory method was developed that allows determination of in situ net nitrification with high sensitivity and at high temporal resolution. Nitrate in soils is quantitatively converted into nitrous oxide under strictly anaerobic conditions in the presence of 10 kPa acetylene by the soil endogenous denitrifier population, with the N2O detected by a gas chromatograph equipped with a 63Ni electron capture detector. Thus, even low net nitrification rates, i.e. small net increases in soil nitrate concentrations can easily be detected. Comparison of results using this method with results obtained using the classical in situ incubation method (buried bag soil incubation) revealed excellent agreement. Application of the new method allowed both determination of the seasonal pattern of net nitrification as well as correlation analysis between in situ NO and N2O flux rates and in situ net nitrification rates of the forest soils studied. Regardless of the forest site studied (spruce, spruce limed, beech), and during each year of a 3 years period (1995–1997), net nitrification varied strongly with season and was least during winter and greatest during summer. The long-term annual, mean rate of net nitrification for the untreated spruce site, the limed spruce site and the beech site were 1.54 ± 0.27 mg N kg–1 sdw d–1, 1.92 ± 0.23 mg N kg–1 sdw d–1 and 1.31 ± 0.23 mg N kg–1 sdw d–1, respectively. In situ rates of nitrification and NO and N2O emission were strongly correlated for all sites suggesting that nitrification was the dominate source of NO as well as N2O.  相似文献   

19.
The effects of bioventing, nutrient addition and inoculation with an oil-degrading bacterium on biodegradation of diesel oil in unsaturated soil were investigated. A mesocosm system was constructed consisting of six soil compartments each containing 6 m3 of naturally contaminated soil mixed 11 with silica sand, resulting in a diesel oil content of approximately 2000 mg kg–1. Biodegradation was monitored over 112 days by determining the actual diesel oil content of the soil and by respirometric tests. The best agreement between calculations of degradation rates based upon the two methods was in July, when venting in combination with nutrient addition resulted in degradation rates of 23 mg kg–1 day–1 based on actual oil concentration in the soil and 33 mg kg–1 day–1 calculated from respirometric data. In September, these rates decreased to 9 and 1.4 mg kg–1 day–1, and in October the degradation rates were 5 and 0.7 mg kg–1 day–1 based upon the two methods. The average ambient temperature during the respirometric tests was 14,10 and 2°C in July, September and October, respectively. The combination of venting and nutrient addition resulted in an average residual oil content of the soil of 380 mg kg–1. Neither venting alone nor inoculation enhanced oil degradation. The respiratory quotient averaged 0.40. The oil composition changed following degradation resulting in the unresolved complex mixture constituting up to 96% of the total oil content at the end of the experimental period.  相似文献   

20.
Ekblad A  Boström B  Holm A  Comstedt D 《Oecologia》2005,143(1):136-142
Soil respiration, a key component of the global carbon cycle, is a major source of uncertainty when estimating terrestrial carbon budgets at ecosystem and higher levels. Rates of soil and root respiration are assumed to be dependent on soil temperature and soil moisture yet these factors often barely explain half the seasonal variation in soil respiration. We here found that soil moisture (range 16.5–27.6% of dry weight) and soil temperature (range 8–17.5°C) together explained 55% of the variance (cross-validated explained variance; Q2) in soil respiration rate (range 1.0–3.4 mol C m–2 s–1) in a Norway spruce (Picea abies) forest. We hypothesised that this was due to that the two components of soil respiration, root respiration and decomposition, are governed by different factors. We therefore applied PLS (partial least squares regression) multivariate modelling in which we, together with below ground temperature and soil moisture, used the recent above ground air temperature and air humidity (vapour pressure deficit, VPD) conditions as x-variables. We found that air temperature and VPD data collected 1–4 days before respiration measurements explained 86% of the seasonal variation in the rate of soil respiration. The addition of soil moisture and soil temperature to the PLS-models increased the Q2 to 93%. 13C analysis of soil respiration supported the hypotheses that there was a fast flux of photosynthates to root respiration and a dependence on recent above ground weather conditions. Taken together, our results suggest that shoot activities the preceding 1–6 days influence, to a large degree, the rate of root and soil respiration. We propose this above ground influence on soil respiration to be proportionally largest in the middle of the growing season and in situations when there is large day-to-day shifts in the above ground weather conditions. During such conditions soil temperature may not exert the major control on root respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号