首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By means of intracellular injection of the dye Lucifer yellow processes were revealed of the snail command neurones of escape behaviour LPa3 and RPa3 in pedal nerves ipsilateral to these neurones. A process of the neurone LPa3 was also found in the contralateral Nervus cutaneus pedalis secundus. Blockade of central chemical synapses by cadmium chloride did not lead to disappearance of motor reactions evoked by electrical stimulation of LPa3 and RPa3 neurones both on ipsi- and contralateral sides of the animal foot; this allowed to suggest a presence in the contralateral muscular pedal nerves of these neurones processes unrevealed by the used dyeing method.  相似文献   

2.
In the suboesophagal complex of Helix pomatia, a neurone (LPa33) was identified as a member of the system of neurones which trigger the defensive behaviour, one of the most responsive components of which is the reaction of the pneumostome closing. Spike activity of the LPa33 unit triggers the pneumostome closing in the form of a coordinated reaction of certain pneumostome muscles, which compose the neurone motor field. It is suggested that neurone LPa33 innervates separate muscles of its motor field directly with its axones.  相似文献   

3.
By means of recording transmembrane ion currents of identified snail neurones PPa3 and LPa3 a reversible weakening was shown of the speed and depth of extinction of neuronal cholinoreceptor membrane reactions to repeated iontophoretic applications of acetylcholine to the soma by a number of calmodulin blockaders: R24571 (20-50 mmol/l), trifluoperazine (50-200 mmol/l), chlorpromazine (20-60 mmol/l) and prenylamine lactate (30-400 mmol/l). The obtained results testify to a positive control by calmodulin of short-term cholinoreceptors plasticity of the studied neurons.  相似文献   

4.
At early stages of aversive conditioning in Helix, a most considerable increase in the acid brain-specific protein Rf 0.58 occurred in LPa3 and PPa3 neurones. Later the content of this protein decreased in the PPa3 but went on increasing in LPa3. In sham learning, the protein content did not increase so obviously. Hence the protein Rf 0.58 metabolism in individual neurones of the snail CNS correlates with the draw step of receptor and effector fields in avoidance conditioning.  相似文献   

5.
Cardioregulating neurones in the right parietal and visceral ganglia of the snail evoke postsynaptic potentials of various duration, amplitude and polarity in the auricular and ventricular myocardium. Inhibitory neurones with a marked background activity (1-2 imp/s) evoke IPSPs with a duration of 150-200 msec and a latent period of 160-220 msec in the auricle, these potentials being blocked by tubocurarine. EPSPs of approximately the same duration may be recorded in the ventricle during stimulation of the commanding neurones of the pneumostome LPa3 and PPa/3, as well as unidentified neurones. Action potentials in some other identified cardiostimulating neurones (PPa7, V1, V6) induce slow and sustained depolarization in the myocardium. Functional specificity of elements within fast and slow regulatory systems is suggested: discrete IPSPs and EPSPs account mainly for coordination of the systolic contractions of the auricle and ventricle, whereas long-lasting PSPs affect the frequency and intensity of the whole heart.  相似文献   

6.
The effect of seven compounds intracellularly applied by spontaneous diffusion were investigated on the EPYLRFamide-induced reduction of acetylcholine-induced inward current (ACh-current) recorded from identified neurones from Helix lucorum. Inward currents were recorded from neurones LPa2, LPa3, RPa3 and RPa2 in isolated ganglia preparations using two-electrode voltage clamp technique. ACh was applied ionophoretically. Heparin, an antagonist of IP(3) receptors (IP(3)Rs), and IP(3), the agonist of IP(3)Rs, decreased the effect of EPYLRFamide. Thio-NADP, a blocker of NAADP-induced Ca(2+) release, beta-NAADP, Ca(2+) releaser, R24571, W-7 (both calmodulin antagonists), and KN-62, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II, did not change the modulatory effect of EPYLRFamide. These data suggest that EPYLRFamide decreases ACh-current through elevation of the basal intracellular level of the putative endogenous agonist of IP(3)Rs which activates release of Ca(2+) from intracellular stores. It is concluded that intracellular free Ca(2+) acts on ACh receptor/ionic channel without activation of calmodulin and Ca(2+)/calmodulin-dependent protein kinase II.  相似文献   

7.
Dopamine application in concentration of 10(-5)-10(-6) M into saline around the snail CNS leads to decrease of excitability of LPa7 neurone which is presynaptic in relation to defensive behaviour command neurones, and to decrease of amplitude of monosynaptic excitatory postsynaptic potential (EPSP) in the command neurones elicited by intracellular stimulation of LPa7 neurone. Besides, the dopamine causes a decrease of summated EPSP amplitude in the studied neurones in response to intestinal nerve stimulation (70% in average), a change of rest potential towards hyperpolarization for 6-8 mV, a reduction of the command neurones input resistance (20% in average). The described influences can lead to a general increase of the threshold of defensive system reaction to stimulation. Dopamine action on the defensive behaviour command neurones is significantly weakened in serotonine presence. Against the dopamine background, the efficiency of serotonine influence on the value of EPSP in command neurones in response to testing stimulus is reduced. According to the obtained data, a conclusion is made that interrelation of dopamine and serotonine concentrations can be a base for formation of behaviour choice in snail.  相似文献   

8.
On identified Helix neurones RPa3 and LPa3 using the method of double-electrode clamp technique on the membrane the influence was shown of eicosanoids on the dynamics of inward current extinction caused by the repeated ionophoretic applications of acetylcholine to soma. Extracellular influence of arachidonic acid (50-100 microM) increased the extinction. Phospholipase A2 inhibitor quinacrine hydrochloride (100-600 microM) decreasing the content of arachidonic acid in the cell acted differently. Inhibitor of lipoxygenase oxidation of arachidonic acid (nordihydraquiaretic acid) (3-10 microM) weakened the extinction. Blockader of cyclooxygenase oxidation of arachidonic acid--indomethacin (10-50 microM) did not influence the extinction. All the studied composition decreased the amplitude of input current caused by acetylcholine. The obtained results allowed to suppose that arachidonic acid and its acyclic metabolites formed as a result of lipoxygenase oxidation regulated short-term plasticity of snail neurones cholinoreceptors. Cyclic eicosanoids formed at cyclooxygenase oxidation of arachidonic acid had no regulating influence on cholinoreceptors plasticity.  相似文献   

9.
FMRFamide (Phe-Met-Arg-Phe-NH2) micropneumophoresis changed bimodally the activity of LPa2, LPa3, PPa2 and PPa3 neurones in fasting and fed Helix pomatia. In fasting creatures peptide application elicited hyperpolarization and decreased the neuronal membrane excitability and responses to tactile stimulation. In fed snails peptide application caused depolarization, decreased membrane resistance and increased the neuronal membrane excitability and responses to tactile stimulation. Neurophysiological mechanisms underlying FMRFamide effects on feeding and defense behaviour are discussed.  相似文献   

10.
Study of opioid peptides (leucine-enkephalin and methionine-enkephalin) action on plastic properties of the system of monosynaptically connected neurones LPa7--LPa3, PPa3 and LPa8--LPa3, PPa3 was conducted in the snail brain. It has been shown that all three links in the system studied (presynaptic neurone, postsynaptic neurone and synapse) manifest one and the same type of plasticity--habituation to rhythmic stimulation. Enkephalins have a modulating action on plastic properties of the presynaptic neurone and synapse: they retard the habituation of the presynaptic neurone to intracellular stimulation and retard the development of habituation at synaptic level. However, changes in the character of postsynaptic response in the presence of enkephalins are not a direct consequence of their influence on plastic properties of the presynaptic neurone. Besides, enkephalines reduce the effectiveness of synaptic transmission in the given system: they reduce EPSP duration in the postsynaptic neurone.  相似文献   

11.
Summary An electron-microscopical study of locust thoracic ganglia reveals that synapses in the neuropily are morphologically heterogeneous. In addition to the conventional dyadic type described frequently in the literature, there is a second type with a complex arrangement of presynaptic dense material and a non-dyadic postsynaptic configuration. Serial-section analysis of these synapses suggests that the presynaptic structures include irregular or curved bars, and small projections.Although the proportion of non-dyadic synapses in the neuropile as a whole is small, a substantial number have been found on the branches of an identified flight motor neurone, labelled intracellularly with metal ions in conjunction with silver intensification. Samples from the arborization of this neurone give some indications of the distribution of non-dyadic synapses on it.The results are discussed in the context of distribution of synapses on other identified locust neurones, and the functional morphology of synapses in other phyla.  相似文献   

12.
On identified Helix neurones RPa3 and LPa3 with the use of the double-electrode voltage clamp technique on the membrane the influence was studied of three polyacetilenic analogues of natural polyenoic acids which were the inhibitors of their lipoxygenase oxidation on the dynamics of inward current extinction, caused by the repeated iontophoretic applications of acetylcholine to soma. It was found that 5, 8, 11, 14-eicosatetraynoic acid (30-60 microM) and 5, 8, 11, 14, 17-eicosapentaynoic acid (4-5 microM) decreased the amplitude of inward current caused by acetylcholine leading and weakened its extinction at the repeated applications. The third analogue -8, 11, 14-eicosatrynoic acid had no modulating influence on the value of current and on its extinction. The supposition was made that lipoxygenase metabolites of polyenoic acids regulated plasticity of Helix neurones cholinoreceptors. Considering different inhibiting by the used compounds of various lipoxygenases the most probable was participation in regulation of cholinoreceptors plasticity of those eicosanoids which were formed from arachidonic acid under the influence of 5-lipoxygenase. Regulating role of eicosanoids formed at the action of other lipoxygenases was not excluded.  相似文献   

13.
By a method of electronic microscopy morphological characteristics were studied of various components of neurones synapses in the sensorimotor cortical zone of rats at different variants of combined and noncombined repeated microiontophoretic presentation of glutamate and acetylcholine. Significant dependence was found of the character and rate of reorganizations of postsynaptic thickness (PSTh), width of synaptic cleft and length of synapses active zone on temporal relations in transmitters action: significant changes of PSTh thickness appeared only in conditions of combined presentations of stimuli (neurotransmitters); maximum thickening of PsTh was caused by the combined action of glutamate and acetylcholine with 3 s delay of the latter. The hypothesis is suggested that temporal specificity during integration of associated signals action to neurones is determined by kinetics of interacting biochemical regulating mechanisms.  相似文献   

14.
Dorsal unpaired median (DUM) neurones in the abdominal ganglia of the locust were impaled with microelectrodes and some were injected intracellularly with horseradish peroxidase so that their synapses could be identified in the electron microscope. Simultaneous recordings from DUM neurones in different abdominal ganglia revealed that they received common postsynaptic potentials from descending interneurones. Post-embedding immunocytochemistry using antibodies against GABA and glutamate was carried out on ganglia containing HRP-stained neurones. GABA-like immunoreactivity was found in 39% (n=82) of processes presynaptic to abdominal DUM neurones and glutamate-like immunoreactivity in 21% (n=42) of presynaptic processes. Output synapses from the DUM neurites were rarely observed within the neuropile. Structures resembling presynaptic dense bars but not associated with synaptic vesicles, were seen in some large diameter neurites.  相似文献   

15.
The structure of the receptive field of LPa3 neurone and its connection with the periphery were studied on semi-intact preparations of the snail Helix pomatia. It was found that: 1) The mechano-sensitive receptive field (excitatory) of the LPa3 neurone occupies nearly the whole surface of the snail's skin and internal organs. But latencies of LPa3 reactions to mechanical stimulation, the whole field may be divided into four zones: 50 to 60 ms, 100 ms, 130 to 140 ms and 200 to 250 ms. 2) Blockade of synaptic transmission with magnesium or cobalt has shown that relaying of the signal from the mantle receptors to the LPa3 neurone takes place in the peripheral nervous system. 3) Cobalt ionophoresis showed that the LPa3 neurone gives off processes to the right and left pallial nerves, the anal nerve and, occasionally, to the cutaneous nerve. During simultaneous intracellular recording from the LPa3 neurone and extracellular from the above nerves, action potentials are in every case recorded at first in the neurone body, and then, with a 20 to 30 ms delay, in the nerves. This means that the LPa3 neurone processes joining the nerves are axons. It is suggested that the sensory inputs and wide branching structures output of the LPa3 neurone axons make it an integrating polyfunctional system.  相似文献   

16.
Pharmacological influences, changing intracellular content of Ca2+, reversibly change the speed and depth of extinction of the input current of the Helix RPa3 and LPa3 neurones, elicited by a repeated iontophoretic application of acetylcholine to the soma. Suppression by extracellular medium, devoid of Ca2+ and by verapamyl (100-150 mumol/l) of Ca2+ input to the cell, induced by cholinoreceptors activation, reversibly weakens the extinction. Raise of intracellular Ca2+ level by blockade with ruthenium red (5-10 mumol/l) of specific Ca2+ transport by mitochondria and by mobilization with caffeine (1-4 mmol/l) of Ca2+, deposited by endoplasmic reticulum, accelerates and intensifies the extinction. The obtained results testify that the short-term cholinoreceptors plasticity of the above neurones is positively controlled by Ca2+ entering the cell by chemically controlled ion channels and mobilized from intracellular Ca-depot.  相似文献   

17.
Possible role of cGMP is studied in control of extinction of snail neurones RPa4, RPa3 and LPa3 reactions to acetylcholine (ACh), applied rhythmically to neurone soma by means of microiontophoresis. It is shown that guanylate cyclase activators which raise the cGMP level in the cell--Na nitroprusside and Na azide (5,10(-4)-10(-3) mol/l)--intensify at extracellular application the extinction of inward transmembrane current and membrane depolarization in response to ACh. Suggestion is made about participation of cGMP-dependent phosphorylation of membrane proteins in control of the development rate, depth and duration of neurone cholinoreceptors short-term plasticity.  相似文献   

18.
By methods of neuronal interaction modelling--biomathematical (computer controlled experiment on molluscs neurones) and mathematical--in wide physiological ranges of parameters values, characterizing properties and conditions of neurones and synapses functioning, the forms were studied of auto- and cross-correlation histograms of impulse flows of neurones at forward and backward monosynaptic connections between them. Specific form is established of cross-correlation histogram of impulse flows of interconnected neurones in conditions typical of CNS of mammals, when the neurones are subjected to intensive random afferent synaptic bombardment and do not reveal any pace-maker properties. It is also shown that random afferent synaptic bombardment prevents the appearance of excitation reverberation in closed neuronal circuits.  相似文献   

19.
Morphological studies have shown that excitatory synapses from the cortex constitute the major source of synapses in the thalamus. However, the effect of these corticothalamic synapses on the function of the thalamus is not well understood because thalamic neurones have complex intrinsic firing properties and interact through multiple types of synaptic receptors. Here we investigate these complex interactions using computational models. We show first, using models of reconstructed thalamic relay neurones, that the effect of corticothalamic synapses on relay cells can be similar to that of afferent synapses, in amplitude, kinetics and timing, although these synapses are located in different regions of the dendrites. This suggests that cortical EPSPs may complement (or predict) the afferent information. Second, using models of reconstructed thalamic reticular neurones, we show that high densities of the low-threshold Ca2+ current in dendrites can give these cells an exquisite sensitivity to cortical EPSPs, but only if their dendrites are hyperpolarized. This property has consequences at the level of thalamic circuits, where corticothalamic EPSPs evoke bursts in reticular neurones and recruit relay cells predominantly through feedforward inhibition. On the other hand, with depolarized dendrites, thalamic reticular neurones do not generate bursts and the cortical influence on relay cells is mostly excitatory. Models therefore suggest that the cortical influence can either promote or antagonize the relay of information, depending on the state of the dendrites of reticular neurones. The control of these dendrites may therefore be a determinant of attentional mechanisms. We also review the effect of corticothalamic feedback at the network level, and show how the cortical control over the thalamus is essential in co-ordinating widespread, coherent oscillations. We suggest mechanisms by which different modes of corticothalamic interaction would allow oscillations of very different spatiotemporal coherence to coexist in the thalamocortical system.  相似文献   

20.
The effects of several modulators of ryanodine receptors (RYRs) on the reduction of acetylcholine induced inward current (ACh-current) evoked by EPYLRFamide (5 microM, bath application), the potent N-terminally modified analogue of the endogenous Helix heptapeptide SEPYLRFamide, were investigated. These modulators were applied intracellularly. Inward currents were recorded from identified Helix lucorum LPa2, LPa3, RPa3, RPa2 neurones in ganglia preparations using the two-electrode voltage clamp technique. ACh was applied ionophoretically. BAPTA (0.1 mM), chelator of intracellular Ca(2+), ryanodine (0.1 mM), agonist/antagonist of RYRs and dantrolene (0.1 mM), antagonist of RYRs decrease the effect of EPYLRFamide. Adenosine (1 mM), alpha,beta-methylene ATP (0.1 mM), the nonhydrolisable ATP analogue and cyclic adenosine diphosphate ribose (0.1 mM) (agonists of RYRs) potentiate the modulatory effect of EPYLRFamide. Ruthenium red (1 mM), antagonist of RYRs and caffeine (1 mM), agonist of RYRs do not change the modulatory effect of EPYLRFamide. These data suggest that intracellular Ca(2+) and RYRs are involved in the modulatory effect of EPYLRFamide on ACh-currents. It was concluded that EPYLRFamide decreases ACh-current through elevation of basal intracellular level of a putative endogenous agonist of RYRs which activates RYR-dependent mobilization of Ca(2+) by binding to the adenine nucleotide site of the ryanodine receptor-channel complex and does not bind the site activated by caffeine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号