首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In biochemically active sarcoplasmic reticulum vesicles (SR) the physical state of the membrane lipids was studied by high angle x-ray diffraction and proton nuclear magnetic resonance (NMR) at 220 MHz, and related to thermal effects observed in SR functional parameters. It is shown by high angle x-ray diffraction that even at temperatures as low as 1 degree C nearly all the SR lipid hydrocarbon chains are in a disordered conformation and only a very small part (less than 3%) are in rigid crystalline order. Consistent with this observation, the NMR data indicate that the majority of SR phospholipid molecules are in a state of restricted anisotropic motion having no apparent crystalline order at temperatures as low as 5 degrees C. At this temperature most of the resonance signal is contained in a broad feature-less line of 700-Hz half-width. On the other hand, as the temperature is raised, high-resolution NMR signals, representing groups with highly isotropic motion, begin to grow in intensity. It is estimated that by 35 degrees C 90-100% of the phosphatidylcholine N-methyl protons and 35% of the hydrocarbon-chain protons give high-resolution signals. Concurrent studies on functional parameters reveal thermal effects giving rise to nonlinear Arrhenius plots for the rates of calcium transport and calcium activated ATPase. The thermal effects observed on functional parameters and on the character of phospholipid molecular motion exhibit a parallel behavior, suggesting a relationship between enzyme activity and the physical state of the membrane lipids.  相似文献   

2.
The functional role of creatine phosphokinase (CPK) in the process of energy supply for the Ca2+-ATPase reaction and ion transport across the membrane of heart sarcoplasmic reticulum (SR) has been studied. It has been shown that isolated and purified preparations of heart SR contain significant activity of CPK. The localization of CPK on the membrane of SR has been revealed also by an electron microscopic histochemical method. Under conditions of the Ca+-ATPase reaction in the presence of creatine phosphate the release of creatine into the reaction medium is observed, the rate of the latter process being dependent upon the MgATP concentration in accordance with the kinetic parameters of the Ca2+-ATPase reaction. CPK localized on the SR membrane is able to maintain higher rate of calcium uptake by SR vesicles, as compared to that with added ATP-regenerating system. The results obtained demonstrate the close functional coupling between CPK and Ca2+-ATPase in the membrane of SR.  相似文献   

3.
Surface plasmon resonance imaging systems, such as Flexchip from Biacore, are capable of monitoring hundreds of reaction spots simultaneously within a single flow cell. Interpreting the binding kinetics in a large-format flow cell presents a number of potential challenges, including accounting for mass transport effects and spot-to-spot sample depletion. We employed a combination of computer simulations and experimentation to characterize these effects across the spotted array and established that a simple two-compartment model may be used to accurately extract intrinsic rate constants from the array under mass transport-limited conditions. Using antibody systems, we demonstrate that the spot-to-spot variability in the binding kinetics was <9%. We also illustrate the advantage of globally fitting binding data from multiple spots within an array for a system that is mass transport limited.  相似文献   

4.
This paper considers the possibility of stochastic resonance (SR) in tubulin dimers. A formula for the signal-to-noise ratio (SNR) of tubulin as a function of temperature is derived. The effective potential experienced by a delocalized electron in such a dimer is postulated to be a symmetric bimodal well. Inter-well and intra-well motions are described by Kramers rate theory and the Langevin formalism respectively. The frequency-dependent expression for the SNR shows that the response of the electron-tubulin dimer system is enhanced by ambient dipolar oscillations in specific frequency regimes. This is a characteristic of SR. Biophysical implications of this property such as the relevance to 8.085 MHz microtubule resonance and the clocking mechanism are detailed.  相似文献   

5.
A calf pregastric esterase immobilized in a hollow-fiber reactor was employed to hydrolyze milkfat, thereby producing a lipolyzed butteroil. The reaction kinetics can be modeled by a two-parameter model of the general Michaelis-Menten form based on a ping-pong bi-bi mechanism; the rate of enzyme deactivation can be modeled as a first-order reaction. The initial concentration of accessible glyceride bonds, [G](O), was estimated by complete saponification of the substrate butteroil as 2400 mM. An extra sum of squares test indicated that not only the parameters of the kinetic generalized Michaelis-Menten model, but also the deactivation-rate constant varied significantly with pH. The optimum pH, for lypolysis is near 6.0 at a temperature of 40 degrees C because at this pH the rate of deactivation of the esterase is minimized.  相似文献   

6.
In the present paper, human startle reaction (SR) characteristics were estimated by the amplitude of eye-lid reflex and extent of monosynaptic H-reflexes increase. SR depended not only on the parameters of sound stimulation (strength, unexpectedness) but also on the subject's functional state (attention, emotional background). Differences are given of the SR parameters from the orienting reaction. It is supposed that SR is an independent form of emotional-motor reaction of an adaptive character.  相似文献   

7.
A general sensitivity and control analysis of periodically forced reaction networks with respect to small perturbations in arbitrary network parameters is presented. A well-known property of sensitivity coefficients for periodic processes in dynamical systems is that the coefficients generally become unbounded as time tends to infinity. To circumvent this conceptual obstacle, a relative time or phase variable is introduced so that the periodic sensitivity coefficients can be calculated. By employing the Green's function method, the sensitivity coefficients can be defined using integral control operators that relate small perturbations in the network's parameters and forcing frequency to variations in the metabolite concentrations and reaction fluxes. The properties of such operators do not depend on a particular parameter perturbation and are described by the summation and connectivity relationships within a control-matrix operator equation. The aim of this paper is to derive such a general control-matrix operator equation for periodically forced reaction networks, including metabolic pathways. To illustrate the general method, the two limiting cases of high and low forcing frequency are considered. We also discuss a practically important case where enzyme activities and forcing frequency are modulated simultaneously. We demonstrate the developed framework by calculating the sensitivity and control coefficients for a simple two reaction pathway where enzyme activities enter reaction rates linearly and specifically.  相似文献   

8.
In humans, the nocturnal fall in internal temperature is associated with increased endogenous melatonin and with a shift in the thermoregulatory control of skin blood flow (SkBF), suggesting a role for melatonin in the control of SkBF. The purpose of this study was to test whether daytime exogenous melatonin would shift control of SkBF to lower internal temperatures during heat stress, as is seen at night. Healthy male subjects (n = 8) underwent body heating with melatonin administration (Mel) or without (control), in random order at least 1 wk apart. SkBF was monitored at sites pretreated with bretylium to block vasoconstrictor nerve function and at untreated sites. Cutaneous vascular conductance, calculated from SkBF and arterial pressure, sweating rate (SR), and heart rate (HR) were monitored. Skin temperature was elevated to 38 degrees C for 35-50 min. Baseline esophageal temperature (Tes) was lower in Mel than in control (P < 0.01). The Tes threshold for cutaneous vasodilation and the slope of cutaneous vascular conductance with respect to Tes were also lower in Mel at both untreated and bretylium-treated sites (P < 0.05). The Tes threshold for the onset of sweating and the Tes for a standard HR were reduced in Mel. The slope of the relationship of HR, but not SR, to Tes was lower in Mel (P < 0.05). These findings suggest that melatonin affects the thermoregulatory control of SkBF during hyperthermia via the cutaneous active vasodilator system. Because control of SR and HR are also modified, a central action of melatonin is suggested.  相似文献   

9.
A major problem in mathematical modeling of the dynamics of complex biological systems is the frequent lack of knowledge of kinetic parameters. Here, we apply Brownian dynamics simulations, based on protein three-dimensional structures, to estimate a previously undetermined kinetic parameter, which is then used in biochemical network simulations. The peroxidase-oxidase reaction involves many elementary steps and displays oscillatory dynamics important for immune response. Brownian dynamics simulations were performed for three different peroxidases to estimate the rate constant for one of the elementary steps crucial for oscillations in the peroxidase-oxidase reaction, the association of superoxide with peroxidase. Computed second-order rate constants agree well with available experimental data and permit prediction of rate constants at physiological conditions. The simulations show that electrostatic interactions depress the rate of superoxide association with myeloperoxidase, bringing it into the range necessary for oscillatory behavior in activated neutrophils. Such negative electrostatic steering of enzyme-substrate association presents a novel control mechanism and lies in sharp contrast to the electrostatically-steered fast association of superoxide and Cu/Zn superoxide dismutase, which is also simulated here. The results demonstrate the potential of an integrated and concerted application of structure-based simulations and biochemical network simulations in cellular systems biology.  相似文献   

10.
The incubation of eggs is strongly influenced by temperature as observed in all species studied to date. For example, incubation duration, sexual phenotype, growth, and performances in many vertebrate hatchlings are affected by incubation temperature. Yet it is very difficult to predict temperature effect based on the temperature within a field nest, as temperature varies throughout incubation. Previous works used egg incubation at constant temperatures in the laboratory to evaluate the dependency of growtProd. Type: FTPh rate on temperature. However, generating such data is time consuming and not always feasible due to logistical and legislative constraints. This paper therefore presents a methodology to extract the thermal reaction norm for the embryo growth rate directly from a time series of incubation temperatures recorded within natural nests. This methodology was successfully applied to the nests of the marine turtle Caretta caretta incubated on Dalyan Beach in Turkey, although it can also be used for any egg-laying species, with some of its limitations being discussed in the paper. Knowledge about embryo growth patterns is also important when determining the thermosensitive period for species with temperature-dependent sex determination. Indeed, in this case, sexual phenotype is sensitive to temperature only during this window of embryonic development.  相似文献   

11.
Stochastic resonance emergence from a minimalistic behavioral rule   总被引:1,自引:0,他引:1  
Stochastic resonance (SR) is a phenomenon occurring in nonlinear systems by which the ability to process information, for instance the detection of weak signals is statistically enhanced by a non-zero level of noise. SR effects have been observed in a great variety of systems, comprising electronic circuits, optical devices, chemical reactions and neurons. In this paper we report the SR phenomena occurring in the execution of an extremely simple behavioral rule inspired from bacteria chemotaxis. The phenomena are quantitatively analyzed by using Markov chain models and Monte Carlo simulations.  相似文献   

12.
Brown adipose tissue (BAT) thermogenesis occurs episodically in an ultradian manner approximately every 80-100 min during the waking phase of the circadian cycle, together with highly correlated increases in brain and body temperatures, suggesting that BAT thermogenesis contributes to brain and body temperature increases. We investigated this in conscious Sprague-Dawley rats by determining whether inhibition of BAT thermogenesis via blockade of beta-3 adrenoceptors with SR59230A interrupts ultradian episodic increases in brain and body temperatures and whether SR59230A acts on BAT itself or via sympathetic neural control of BAT. Interscapular BAT (iBAT), brain, and body temperatures, tail artery blood flow, and heart rate were measured in unrestrained rats. SR59230A (1, 5, or 10 mg/kg ip), but not vehicle, decreased iBAT, body, and brain temperatures in a dose-dependent fashion (log-linear regression P < 0.01, R(2) = 0.3, 0.4, and 0.4, respectively, n = 10). Ultradian increases in BAT, brain, and body temperature were interrupted by administration of SR59230A (10 mg/kg ip) compared with vehicle, resuming after 162 ± 24 min (means ± SE, n = 10). SR59230A (10 mg/kg ip) caused a transient bradycardia without any increase in tail artery blood flow. In anesthetized rats, SR59230A reduced cooling-induced increases in iBAT temperature without affecting cooling-induced increases in iBAT sympathetic nerve discharge. Inhibition of BAT thermogenesis by SR59230A, thus, reflects direct blockade of beta-3 adrenoceptors in BAT. Interruption of episodic ultradian increases in body and brain temperature by SR59230A suggests that BAT thermogenesis makes a substantial contribution to these increases.  相似文献   

13.
Aubol BE  Adams JA 《Biochemistry》2011,50(32):6888-6900
To investigate how a protein kinase interacts with its protein substrate during extended, multisite phosphorylation, the kinetic mechanism of a protein kinase involved in mRNA splicing control was investigated using rapid quench flow techniques. The protein kinase SRPK1 phosphorylates ~10 serines in the arginine--serine-rich domain (RS domain) of the SR protein SRSF1 in a C- to N-terminal direction, a modification that directs this essential splicing factor from the cytoplasm to the nucleus. Transient-state kinetic experiments illustrate that the first phosphate is added rapidly onto the RS domain of SRSF1 (t(1/2) = 0.1 s) followed by slower, multisite phosphorylation at the remaining serines (t(1/2) = 15 s). Mutagenesis experiments suggest that efficient phosphorylation rates are maintained by an extensive hydrogen bonding and electrostatic network between the RS domain of the SR protein and the active site and docking groove of the kinase. Catalytic trapping and viscosometric experiments demonstrate that while the phosphoryl transfer step is fast, ADP release limits multisite phosphorylation. By studying phosphate incorporation into selectively pre-phosphorylated forms of the enzyme-substrate complex, the kinetic mechanism for site-specific phosphorylation along the reaction coordinate was assessed. The binding affinity of the SR protein, the phosphoryl transfer rate, and ADP exchange rate were found to decline significantly as a function of progressive phosphorylation in the RS domain. These findings indicate that the protein substrate actively modulates initiation, extension, and termination events associated with prolonged, multisite phosphorylation.  相似文献   

14.
A framework is presented for interpreting frequency distributions of volume or fluorescence as measured by a flow cytometer on homogeneous phytoplankton populations. The framework, based on both laboratory experience and theoretical concepts, is illustrated with the use of a simulation model. Asynchronous, synchronous, and phased populations were simulated, with constant and variable growth patterns over the cell cycle. Though simulations produced a wide variety of histogram shapes, including multimodal distributions, the primary difference between asynchronous and synchronous/phased distributions lies in their temporal variation. Histograms that are constant in time indicate asynchronous populations; when populations are not asynchronous, their histogram shapes vary with a periodicity on the same time scale as the cell cycle. A probability density function for the case of asynchronous populations with a constant growth rate is derived. When fitted to simulated histograms this two-parameter density function yields estimates of the two parameters: mean and variance of cell volume (or mass) at age 0.  相似文献   

15.
The purpose of this study was to identify the pattern of change in the density of activated sweat glands (ASG) and sweat output per gland (SGO) during dynamic constant-workload exercise and passive heat stress. Eight male subjects (22.8 +/- 0.9 yr) exercised at a constant workload (117.5 +/- 4.8 W) and were also passively heated by lower-leg immersion into hot water of 42 degrees C under an ambient temperature of 25 degrees C and relative humidity of 50%. Esophageal temperature, mean skin temperature, sweating rate (SR), and heart rate were measured continuously during both trials. The number of ASG was determined every 4 min after the onset of sweating, whereas SGO was calculated by dividing SR by ASG. During both exercise and passive heating, SR increased abruptly during the first 8 min after onset of sweating, followed by a slower increase. Similarly for both protocols, the number of ASG increased rapidly during the first 8 min after the onset of sweating and then ceased to increase further (P > 0.05). Conversely, SGO increased linearly throughout both perturbations. Our results suggest that changes in forearm sweating rate rely on both ASG and SGO during the initial period of exercise and passive heating, whereas further increases in SR are dependent on increases in SGO.  相似文献   

16.
Qi F  Xin H 《Biophysical chemistry》2001,90(2):175-182
We investigated numerically the dynamic behavior of the oil/water liquid membrane, which is a promising model for excitable bio-membrane. When we use noise to modulate the parameters in simulation, noise-induced coherent oscillation is observed. With the increment of the noise intensity, the coherence of noise-induced oscillation can go through a maximum, which indicating the occurrence of stochastic resonance (SR) without input signals. We compared the SR effects under the condition that noise is added to different control parameters. When noise was added to both of the parameters, a complicated SR-like phenomemon was observed. The interaction of coherent SRs induced by two independent noises is discussed. The possibly constructive role of noise in some sensory cells is discussed also.  相似文献   

17.
Aims:  To investigate the effect of extrinsic control parameters for ozone inactivation of E. coli in a bubble column.
Methods and Results:  Ozone inactivation of Escherichia coli ATCC 25922 in Tryptic Soya Broth was examined. The parameters studied included temperature (ambient, 20, 25 and 30°C), exposure time (up to 30 min), gas flow rate (0·03, 0·06, 0·12, 0·25, 0·5 and 0·75 l min−1) and concentration level (five different levels). The efficacy of ozone treatment was a function of the parameters investigated and optimum control parameters of flow rate (0·12 l min−1), temperature (ambient) and ozone concentration (75  μ g ml−1) resulted in a t d5 (time required to achieve 5 log reduction) of 20 min.
Conclusions:  Optimum control parameters of gas flow rate, ozone concentration and temperature are reported for E. coli inactivation within a bubble column.
Significance and Impact of the Study:  In 2001, the FDA approved use of ozone as a direct additive to food and in 2004, issued guidelines for the use of ozone in liquid systems. However, these guidelines highlighted gaps in the literature for ozonation of liquid foods. This study provides useful information regarding optimum extrinsic control parameters for E. coli inactivation in liquid media using a bubble column to ensure microbiological safety.  相似文献   

18.
The BIAcore is a surface plasmon resonance (SPR) device used to measure rate constants, primarily for biochemical reactions. It consists of a flow channel containing one reactant adjoining a dextran gel containing the other. In order to explain anomalous measurements from the device, it has been proposed that some flow penetrates into the dextran layer, thus enhancing transport. A model is presented that accounts for such behavior, and typical velocity fields in the dextran are constructed. The system is analyzed in the limit of the surface reaction model, which corresponds to the limit of thin dextran layers. Asymptotic and singular perturbation techniques are used to analyze association and dissociation kinetics. Linear and nonlinear integral equations result from the analysis; explicit and asymptotic solutions are constructed for physically realizable cases. The results indicate that the effects of such penetration are bound to be small, regardless of the flow model used.  相似文献   

19.
Stochastic resonance (SR) has been shown to enhance the signal-to-noise ratio and detection of low level signals in neurons. It is not yet clear how this effect of SR plays an important role in the information processing of neural networks. The objective of this article is to test the hypothesis that information transmission can be enhanced with SR when sub-threshold signals are applied to distal positions of the dendrites of hippocampal CA1 neuron models. In the computer simulation, random sub-threshold signals were presented repeatedly to a distal position of the main apical branch, while the homogeneous Poisson shot noise was applied as a background noise to the mid-point of a basal dendrite in the CA1 neuron model consisting of the soma with one sodium, one calcium, and five potassium channels. From spike firing times recorded at the soma, the mutual information and information rate of the spike trains were estimated. The simulation results obtained showed a typical resonance curve of SR, and that as the activity (intensity) of sub-threshold signals increased, the maximum value of the information rate tended to increased and eventually SR disappeared. It is concluded that SR can play a key role in enhancing the information transmission of sub-threshold stimuli applied to distal positions on the dendritic trees.  相似文献   

20.
Effect of operating conditions on solid substrate fermentation   总被引:3,自引:0,他引:3  
In this work the effects of environmental parameters on the performance of solid substrate fermentation (SSF) for protein production are studied. These parameters are (i) air flow rate, (ii) inlet air relative humidity, (iii) inlet air temperature, and (iv) the heat transfer coefficient between the outer wall of the fermentor and the air in the incubator. The air flow is supplied to effect cooling of the fermented mass by evaporation of water. A dynamic model is developed, which permits estimation of biomass content, total dry matter, moisture content, and temperature of the fermented matter. The model includes the effects of temperature and moisture content on both the maximum specific growth rate and the maximum attainable biomass content. The results of the simulation are compared with actual experimental data and show good agreement with them. The most important conclusions are that (i) the evaporative cooling of the biomass is very effective for temperature control and (ii) the air flow rate and the heat transfer coefficient have strong effects but they affect the biomass morphology and are not controllable easily. Also, a simple technique for the determination of the optimum temperature and moisture content profile for cell protein production is applied. The simulated biomass production increases considerably employing the optimum temperature and moisture content profiles. The ultimate goal is to implement the determined effects of the environmental parameters on the SSF biomass production and the temperature and moisture variation profiles to effectively control the SSF and optimize the biomass production. (c) 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号