首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are three isoforms of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) mRNA, which promotes mitochondrial biogenesis in skeletal muscles. Compared with PGC-1α-a mRNA, PGC-1α-b or PGC-1α-c mRNA is transcribed by a different exon 1 of the PGC-1α gene. In this study, effects of exercise intensity and 5-aminoimidazole-4-carboxamide-1β-d-ribofuranoside (AICAR) on isoform-specific expressions of PGC-1α were investigated. All isoforms were increased in proportion to exercise intensity of treadmill running (10-30 m/min for 30 min). Preinjection of β?-adrenergic receptor (AR) antagonist (ICI 118551) inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs, but not the increase in PGC-1α-a mRNA, in response to high-intensity exercise. Although high-intensity exercise activated α2-AMP-activated protein kinase (α2-AMPK) in skeletal muscles, inactivation of α2-AMPK activity did not affect high-intensity exercise-induced mRNA expression of all PGC-1α isoforms, suggesting that activation of α2-AMPK is not mandatory for an increase in PGC-1α mRNA by high-intensity exercise. A single injection in mice of AICAR, an AMPK activator, increased mRNAs of all PGC-1α isoforms. AICAR increased blood catecholamine concentrations, and preinjection of β?-AR antagonist inhibited the increase in PGC-1α-b and PGC-1α-c mRNAs but not the increase in PGC-1α-a mRNA. Direct exposure of epitrochlearis muscle to AICAR increased PGC-1α-a but not the -b isoform. These data indicate that exercise-induced PGC-1α expression was dependent on the intensity of exercise. Exercise or AICAR injection increased PGC-1α-b and PGC-1α-c mRNAs via β?-AR activation, whereas high-intensity exercise increased PGC-1α-a expression by a multiple mechanism in which α2-AMPK is one of the signaling pathways.  相似文献   

2.
AMP-activated protein kinase (AMPK) may mediate the stimulatory effect of contraction and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on glucose transport in skeletal muscle. In muscles with different fiber type composition from fasted rats, AICAR increased 2-deoxyglucose transport and total AMPK activity approximately twofold in epitrochlearis (EPI), less in flexor digitorum brevis, and not at all in soleus muscles. Contraction increased both transport and AMPK activity more than AICAR did. In EPI muscles, the effects of AICAR and contractions on glucose transport were partially additive despite a lower AMPK activity with AICAR compared with contraction alone. In EPI from fed rats, glucose transport responses were smaller than what was seen in fasted rats, and AICAR did not increase transport despite an increase in AMPK activity. AICAR and contraction activated both alpha(1)- and alpha(2)-isoforms of AMPK. Expression of both isoforms varied with fiber types, and alpha(2) was highly expressed in nuclei. In conclusion, AICAR-stimulated glucose transport varies with muscle fiber type and nutritional state. AMPK is unlikely to be the sole mediator of contraction-stimulated glucose transport.  相似文献   

3.
We examined whether acute activation of 5'-AMP-activated protein kinase (AMPK) by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) ameliorates insulin resistance in isolated rat skeletal muscle. Insulin resistance was induced in extensor digitorum longus (EDL) muscles by prolonged exposure to 1.6 mM palmitate, which inhibited insulin-stimulated glycogen synthesis to 51% of control after 5 h of incubation. Insulin-stimulated glucose transport was less affected (22% of control). The decrease in glycogen synthesis was accompanied by decreased glycogen synthase (GS) activity and increased GS phosphorylation. When including 2 mM AICAR in the last hour of the 5-h incubation with palmitate, the inhibitory effect of palmitate on insulin-stimulated glycogen synthesis and glucose transport was eliminated. This effect of AICAR was accompanied by activation of AMPK. Importantly, AMPK inhibition was able to prevent this effect. Neither treatment affected total glycogen content. However, glucose 6-phosphate was increased after inclusion of AICAR, indicating increased influx of glucose. No effect of AICAR on the inhibited insulin-stimulated GS activity or increased GS phosphorylation by palmitate could be detected. Thus the mechanism by which AMPK activation ameliorates the lipid-induced insulin resistance probably involves induction of compensatory mechanisms overriding the insulin resistance. Our results emphasize AMPK as a promising molecular target for treatment of insulin resistance.  相似文献   

4.
5.
6.
An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK alpha-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation.  相似文献   

7.
8.
In the present study, we evaluated how a pharmacologically induced phenotype shift in dystrophic skeletal muscle would affect subsequent intracellular signaling in response to a complementary, adaptive physiological stimulus. mdx mice were treated with the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR; 500 mg·kg(-1)·day(-1)) for 30 days, and then one-half of the animals were subjected to a bout of treadmill running to induce acute AMPK and p38 MAPK signaling. The mRNA levels of phenotypic modifiers, including peroxisome proliferator-activated receptor-δ (PPARδ), PPARγ coactivator-1α (PGC-1α), receptor interacting protein 140 (RIP 140), and silent information regulator two ortholog 1 (SIRT1) were assessed in skeletal muscle, as well as the expression of the protein arginine methyltransferase genes PRMT1 and CARM1. We found unique AMPK and p38 phosphorylation and expression signatures between dystrophic and healthy muscle. In dystrophic skeletal muscle, treadmill running induced PPARδ, PGC-1α, and SIRT1 mRNAs, three molecules that promote the slow, oxidative myogenic program. In the mdx animals that received the chronic AICAR treatment, running-elicited AMPK and p38 phosphorylation was attenuated compared with vehicle-treated mice. Similarly, acute stress-evoked expression of PPARδ, PGC-1α, and SIRT1 was also blunted by chronic pharmacological AMPK stimulation. Skeletal muscle PRMT1 and CARM1 protein contents were higher in mdx mice compared with wild-type littermates. The acute running-evoked induction of PRMT1 and CARM1 mRNAs was also attenuated by the AICAR treatment. Our data demonstrate that prior pharmacological conditioning is a salient determinant in how dystrophic muscle adapts to subsequent complementary, acute physiological stress stimuli. These results provide insight into possible therapeutic applications of synthetic agonists in neuromuscular diseases, such as during chronic administration to Duchenne muscular dystrophy patients.  相似文献   

9.
The aim of the present study was to test the hypothesis that peroxisome proliferator activated receptor-gamma coactivator (PGC) 1alpha is required for exercise-induced adaptive gene responses in skeletal muscle. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice performed a single treadmill-running exercise bout. Soleus and white gastrocnemius (WG) were obtained immediately, 2 h, or 6 h after exercise. Another group of PGC-1alpha KO and WT mice performed 5-wk exercise training. Soleus, WG, and quadriceps were obtained approximately 37 h after the last training session. Resting muscles of the PGC-1alpha KO mice had lower ( approximately 20%) cytochrome c (cyt c), cytochrome oxidase (COX) I, and aminolevulinate synthase (ALAS) 1 mRNA and protein levels than WT, but similar levels of AMP-activated protein kinase (AMPK) alpha1, AMPKalpha2, and hexokinase (HK) II compared with WT mice. A single exercise bout increased phosphorylation of AMPK and acetyl-CoA carboxylase-beta and the level of HKII mRNA similarly in WG of KO and WT. In contrast, cyt c mRNA in soleus was upregulated in WT muscles only. Exercise training increased cyt c, COXI, ALAS1, and HKII mRNA and protein levels equally in WT and KO animals, but cyt c, COXI, and ALAS1 expression remained approximately 20% lower in KO animals. In conclusion, lack of PGC-1alpha reduced resting expression of cyt c, COXI, and ALAS1 and exercise-induced cyt c mRNA expression. However, PGC-1alpha is not mandatory for training-induced increases in ALAS1, COXI, and cyt c expression, showing that factors other than PGC-1alpha can exert these adaptations.  相似文献   

10.
We previously reported that the peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) mRNA in rat epitrochlearis muscle was increased after swimming exercise training. In the present study, we demonstrated further that PGC-1 mRNA expression in the epitrochlearis muscle of 4-5-week-old male Sprague-Dawley rats was increased after a 6-h acute bout of low-intensity swimming exercise. With this increase, the expression level was approximately 8-fold of control and immersion group rats that stayed for 6-h in warm water, maintained at the identical temperature of the swimming barrel (35 degrees C) (p<0.01). Second, PGC-1 mRNA expression in the muscle was found to have increased 6-h after 30 10-s tetani contractions were induced by in vitro electrical stimulation. Finally, PGC-1 mRNA expression in the muscle incubated for 18-h with 0.5mM 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR: a 5' AMP-activated protein kinase (AMPK) activator) was elevated to approximately 3-fold of the control muscle (n=6, p<0.001). AMPK activity in epitrochlearis muscle after the swimming was also found to be elevated to approximately 4-fold of the pre-exercise value (p<0.001). These results may suggest that an acute bout of low-intensity prolonged swimming exercise directly enhances the PGC-1 mRNA expression in the activated muscle during exercise, possibly through, at least in part, an AMPK-related mechanism.  相似文献   

11.
5'-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the alpha(1)- and alpha(2)-isoforms of AMPK, with a corresponding increase in the rate of 3-O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3-O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.  相似文献   

12.
The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-beta-D-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPK alpha 1 and AMPK alpha 2 catalytic subunits in a dose-dependent manner and to evaluate the effects of the putative AMPK inhibitors adenine 9-beta-D-arabinofuranoside (ara-A), 8-bromo-AMP, and iodotubercidin on AMPK activity and 3-O-methyl-D-glucose (3-MG) uptake. There were dose-dependent increases in AMPK alpha 2 activity and 3-MG uptake in rat epitrochlearis muscles with treadmill running exercise but no effect of exercise on AMPK alpha1 activity. Tetanic contractions of isolated epitrochlearis muscles in vitro significantly increased the activity of both AMPK isoforms in a dose-dependent manner and at a similar rate compared with increases in 3-MG uptake. In isolated muscles, the putative AMPK inhibitors ara-A, 8-bromo-AMP, and iodotubercidin fully inhibited AICAR-stimulated AMPK alpha 2 activity and 3-MG uptake but had little effect on AMPK alpha 1 activity. In contrast, these compounds had absent or minimal effects on contraction-stimulated AMPK alpha 1 and -alpha 2 activity and 3-MG uptake. Although the AMPK alpha 1 and -alpha 2 isoforms are activated during tetanic muscle contractions in vitro, in fast-glycolytic fibers, the activation of AMPK alpha 2-containing complexes may be more important in regulating exercise-mediated skeletal muscle metabolism in vivo. Development of new compounds will be required to study contraction regulation of AMPK by pharmacological inhibition.  相似文献   

13.
Previous studies have proposed that caffeine-induced activation of glucose transport in skeletal muscle is independent of AMP-activated protein kinase (AMPK) because alpha-AMPK Thr172 phosphorylation was not increased by caffeine. However, our previous studies, as well as the present, show that AMPK phosphorylation measured in whole muscle lysate is not a good indicator of AMPK activation in rodent skeletal muscle. In lysates from incubated rat soleus muscle, a predominant model in previous caffeine-studies, both acetyl-CoA carboxylase-beta (ACCbeta) Ser221 and immunoprecipitated alpha(1)-AMPK activity increased with caffeine incubation, without changes in AMPK phosphorylation or immunoprecipitated alpha(2)-AMPK activity. This pattern was also observed in mouse soleus muscle, where only ACCbeta and alpha(1)-AMPK phosphorylation were increased following caffeine treatment. Preincubation with the selective CaMKK inhibitor STO-609 (5 microM), the CaM-competitive inhibitor KN-93 (10 microM), or the SR Ca(2+) release blocking agent dantrolene (10 microM) all inhibited ACCbeta phosphorylation and alpha(1)-AMPK phosphorylation, suggesting that SR Ca(2+) release may work through a CaMKK-AMPK pathway. Caffeine-stimulated 2-deoxyglucose (2DG) uptake reflected the AMPK activation pattern, being increased with caffeine and inhibited by STO-609, KN-93, or dantrolene. The inhibition of 2DG uptake is likely causally linked to AMPK activation, since muscle-specific expression of a kinase-dead AMPK construct greatly reduced caffeine-stimulated 2DG uptake in mouse soleus. We conclude that a SR Ca(2+)-activated CaMKK may control alpha(1)-AMPK activation and be necessary for caffeine-stimulated glucose uptake in mouse soleus muscle.  相似文献   

14.
We investigated the role of AMPKalpha2in basal, exercise training-, and AICAR-induced protein expression of GLUT4, hexokinase II (HKII), mitochondrial markers, and AMPK subunits. This was conducted in red (RG) and white gastrocnemius (WG) muscle from wild-type (WT) and alpha2-knockout (KO) mice after 28 days of activity wheel running or daily AICAR injection. Additional experiments were conducted to measure acute activation of AMPK by exercise and AICAR. At basal, mitochondrial markers were reduced by approximately 20% in alpha2-KO muscles compared with WT. In both muscle types, AMPKalpha2 activity was increased in response to both stimuli, whereas AMPKalpha1 activity was increased only in response to exercise. Furthermore, AMPK signaling was estimated to be 60-70% lower in alpha2-KO compared with WT muscles. In WG, AICAR treatment increased HKII, GLUT4, cytochrome c, COX-1, and CS, and the alpha2-KO abolished the AICAR-induced increases, whereas no AICAR responses were observed in RG. Exercise training increased GLUT4, HKII, COX-1, CS, and HAD protein in WG, but the alpha2-KO did not affect training-induced increases. Furthermore, AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 subunits were reduced in RG, but not in WG, by 30-60% in response to exercise training. In conclusion, the alpha2-KO was associated with an approximately 20% reduction in mitochondrial markers in both muscle types and abolished AICAR-induced increases in protein expression in WG. However, the alpha2-KO did not reduce training-induced increases in HKII, GLUT4, COX-1, HAD, or CS protein in WG, suggesting that AMPKalpha2 may not be essential for metabolic adaptations of skeletal muscles to exercise training.  相似文献   

15.
We investigated the importance of the two catalytic alpha-isoforms of the 5'-AMP-activated protein kinase (AMPK) in 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) and contraction-induced glucose uptake in skeletal muscle. Incubated soleus and EDL muscle from whole-body alpha2- or alpha1-AMPK knockout (KO) and wild type (WT) mice were incubated with 2.0 mm AICAR or electrically stimulated to contraction. Both AICAR and contraction increased 2DG uptake in WT muscles. KO of alpha2, but not alpha1, abolished AICAR-induced glucose uptake, whereas neither KO affected contraction-induced glucose uptake. AICAR and contraction increased alpha2- and alpha1-AMPK activity in wild type (WT) muscles. During AICAR stimulation, the remaining AMPK activity in KO muscles increased to the same level as in WT. During contraction, the remaining AMPK activity in alpha2-KO muscles was elevated by 100% probably explained by a 2-3-fold increase in alpha1-protein. In alpha1-KO muscles, alpha2-AMPK activity increased to similar levels as in WT. Both interventions increased total AMPK activity, as expressed by AMPK-P and ACCbeta-P, in WT muscles. During AICAR stimulation, this was dramatically reduced in alpha2-KO but not in alpha1-KO, whereas during contraction, both measurements were essentially similar to WT in both KO-muscles. The results show that alpha2-AMPK is the main donor of basal and AICAR-stimulated AMPK activity and is responsible for AICAR-induced glucose uptake. In contrast, during contraction, the two alpha-isoforms seem to substitute for each other in terms of activity, which may explain the normal glucose uptake despite the lack of either alpha2- or alpha1-AMPK. Alternatively, neither alpha-isoform of AMPK is involved in contraction-induced muscle glucose uptake.  相似文献   

16.
AMP-activated protein kinase (AMPK), which was activated by an antihyperglycemic drug metformin, has been hypothesized to mediate metabolic adaptations. The purposes of the present study were 1) to confirm whether acute metformin administration induced AMPK phosphorylation and 2) to determine whether chronic metformin treatment increased the peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) protein expression, glycolytic and oxidative enzyme activities, and cytochrome c and glucose transporter-4 (GLUT4) protein expressions in the rat soleus and red and white gastrocnemius muscles. The single oral administration of metformin (300 mg/kg body wt) enhanced the AMPK phosphorylation at 5 and/or 6 h after treatment. In the chronic study, rats were fed either normal chow or chow containing 1% metformin for 14 days. Metformin treatment resulted in a mean daily metformin intake of 631 mg.kg body wt(-1).day(-1). Metformin increased the PGC-1alpha content in all three muscles. Metformin increased the hexokinase activity in the white gastrocnemius, the citrate synthase activity in all three muscles, and the beta-hydroxyacyl-CoA dehydrogenase activity in the soleus. The cytochrome c protein content in the soleus muscle also increased. The GLUT4 content was unchanged by metformin. These results suggest that metformin enhances the PGC-1alpha expression and mitochondrial biogenesis possibly at least in part via AMPK phosphorylation in the skeletal muscle. Metformin has thus been proposed to possibly ameliorate insulin resistance, at least partially, by means of such metabolic effects.  相似文献   

17.
18.
The genetically obese Zucker rat has a reduced capacity to deposit dietary protein in skeletal muscle. To determine whether amino acid uptake by muscle of obese Zucker rats is impaired, soleus strip (SOL) and epitrochlearis (EPI) muscles from 10-wk-old lean and obese Zucker rats were studied in vitro by use of [14C]alpha-aminoisobutyric acid (AIB). Muscles from fasted rats were incubated under basal conditions at rest or after a 1-h treadmill run at 8% grade. To equate total work completed, lean and obese rats ran at 27 and 20 m/min, respectively. Muscles were pinned at resting length, preincubated for 30 min at 37 degrees C in Krebs-Ringer bicarbonate buffer containing 5 mM glucose under 95% O2-5% CO2, and then incubated up to 3 h in Krebs-Ringer bicarbonate with 0.5 mM AIB, [14C]AIB, and [3H]inulin as a marker of extracellular fluid. Basal AIB uptake in EPI and SOL from obese rats was significantly reduced by 40 and 30% (P less than 0.01), respectively, compared with lean rats. For both lean and obese rats, exercise increased (P less than 0.05) basal AIB uptake in EPI and SOL, but the relative increases were greater in the obese rats (EPI 54% and SOL 71% vs. EPI 32% and SOL 37%). These results demonstrate that genetically obese Zucker rats have reduced basal skeletal muscle amino acid uptake and suggest that physical inactivity may partially contribute to this defect.  相似文献   

19.
AMP-activated protein kinase (AMPK) may regulate a number of metabolic processes including glucose transport. 5-Aminoimidazole-4-carboxamideribonucleoside (AICAR), an AMPK activator, has been used to study the potential role of AMPK in rat skeletal muscle; however, its effects on glucose transport in mouse skeletal muscle are unknown. Incubation with 2 mM AICAR increased 2-deoxyglucose transport in EDL muscle from both rats and mice by 86 and 37%, respectively. In contrast, AICAR did not increase 2-deoxyglucose transport in rat soleus muscle. However, AICAR induced a large (81%) increase in 2-deoxyglucose transport in soleus muscles obtained from mice. It is proposed that nonspecificity of the stimulation of glucose transport in mouse muscle may be due to a greater percentage of fast-twitch muscle fibers within the muscles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号