首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leg muscle was biopsied and frozen for storage at -70 degrees C. from 5 wild-type mice, two knocked out acid alpha-glucosidase (GAA) gene mice, and seven glycogen synthase plus glucose muscle transporter transgenic mice. All of the wild-type mice had very little muscle glycogen (3.58 +/- 1.67 micromols glucosyl subunits per g muscle), and 52% or more of its glycogen phosphorylase activity without AMP (69% +/- 17% glycogen phosphorylase a). In contrast the GAA knockout and transgenic mice had glycogen ranging from 63 to 297 micromols glucosyl subunits per g muscle, and very little or no glycogen phosphorylase activity without 1.00 mM AMP (4.8% and less glycogen phosphorylase a). This suggests that there is an inverse relationship between mouse muscle phosphorylase a and the muscle's glycogen content.  相似文献   

2.
The purpose of the present study was to determine the rates of muscle glycogenolysis and glycogenesis during and after exercise in GLUT-1 transgenic mice and their age-matched littermates. Male transgenic mice (TG) expressing a high level of human GLUT-1 and their nontransgenic (NT) littermates underwent 3 h of swimming. Glycogen concentration was determined in gastrocnemius and extensor digitorum longus (EDL) muscles before exercise and at 0, 5, and 24 h postexercise, during which food (chow) and 10% glucose solution (as drinking water) were provided. Exercise resulted in approximately 90% reduction in muscle glycogen in both NT (from 11.2 +/- 1.4 to 2. 1 +/- 1.3 micromol/g) and TG (from 99.3 +/- 4.7 to 11.8 +/- 4.3 micromol/g) in gastrocnemius muscle. During recovery from exercise, the glycogen concentration increased to 38.2 +/- 7.3 (5 h postexercise) and 40.5 +/- 2.8 micromol/g (24 h postexercise) in NT mice. In TG mice, however, the increase in muscle glycogen concentration during recovery was greater (to 57.5 +/- 7.4 and 152.1 +/- 15.7 micromol/g at 5 and 24 h postexercise, respectively). Similar results were obtained from EDL muscle. The rate of 2-deoxyglucose uptake measured in isolated EDL muscles was 7- to 10-fold higher in TG mice at rest and at 0 and 5 h postexercise. There was no difference in muscle glycogen synthase activation measured in gastrocnemius muscles between NT and TG mice immediately after exercise. These results demonstrate that the rate of muscle glycogen accumulation postexercise exhibits two phases in TG: 1) an early phase (0-5 h), with rapid glycogen accumulation similar to that of NT mice, and 2) a progressive increase in muscle glycogen concentration, which differs from that of NT mice, during the second phase (5-24 h). Our data suggest that the high level of steady-state muscle glycogen in TG mice is due to the increase in muscle glucose transport activity.  相似文献   

3.
Insulin action is decreased by high muscle glycogen concentrations in skeletal muscle. Patients with McArdle's disease have chronic high muscle glycogen levels and might therefore be at risk of developing insulin resistance. In this study, six patients with McArdle's disease and six matched control subjects were subjected to an oral glucose tolerance test and a euglycemic-hyperinsulinemic clamp. The muscle glycogen concentration was 103 +/- 45% higher in McArdle patients than in controls. Four of six McArdle patients, but none of the controls, had impaired glucose tolerance. The insulin-stimulated glucose utilization and the insulin-stimulated increase in glycogen synthase activity during the clamp were significantly lower in the patients than in controls (51.3 +/- 6.0 vs. 72.6 +/- 13.1 micromol x min(-1) x kg lean body mass(-1), P < 0.05, and 53 +/- 15 vs. 79 +/- 9%, P < 0.05, n = 6, respectively). The difference in insulin-stimulated glycogen synthase activity between the pairs was significantly correlated (r = 0.96, P < 0.002) with the difference in muscle glycogen level. The insulin-stimulated increase in Akt phosphorylation was smaller in the McArdle patients than in controls (45 +/- 13 vs. 76 +/- 13%, P < 0.05, respectively), whereas basal and insulin-stimulated glycogen synthase kinase 3alpha and protein phosphatase-1 activities were similar in the two groups. Furthermore, the ability of insulin to decrease and increase fat and carbohydrate oxidation, respectively, was blunted in the patients. In conclusion, these data show that patients with McArdle's glycogen storage disease are insulin resistant in terms of glucose uptake, glycogen synthase activation, and alterations in fuel oxidation. The data further suggest that skeletal muscle glycogen levels play an important role in the regulation of insulin-stimulated glycogen synthase activity.  相似文献   

4.
Glut1 transgenic mice were bred with transgenic mice that overexpress hexokinase II in skeletal muscle in order to determine whether whole-body glucose disposal could be further augmented in mice overexpressing glucose transporters. Overexpression of hexokinase alone in skeletal muscle had no effect on glucose transport or metabolism in isolated muscles, nor did it alter blood glucose levels or the rate of whole-body glucose disposal. Expression of the hexokinase transgene in the context of the Glut1 transgenic background did not alter glucose transport in isolated muscles but did cause additional increases in steady-state glucose 6-phosphate (3.2-fold) and glycogen (7.5-fold) levels compared with muscles that overexpress the Glut1 transporter alone. Surprisingly, however, these increases were not accompanied by a change in basal or insulin-stimulated whole-body glucose disposal in the doubly transgenic mice compared with Glut1 transgenic mice, probably due to an inhibition of de novo glycogen synthesis as a result of the high levels of steady-state glycogen in the muscles of doubly transgenic mice (430 micromol/g versus 10 micromol/g in wild-type mice). We conclude that the hexokinase gene may not be a good target for therapies designed to counteract insulin resistance or hyperglycemia.  相似文献   

5.
Glucocorticoids cause insulin resistance in skeletal muscle. The aims of the present study were to investigate the effects of contraction on glucose uptake, insulin signaling, and regulation of glycogen synthesis in skeletal muscles from rats treated with the glucocorticoid analog dexamethasone (1 mg x kg(-1) x day(-1) ip for 12 days). Insulin resistance in dexamethasone-treated rats was confirmed by reduced insulin-stimulated glucose uptake (approximately 35%), glycogen synthesis (approximately 70%), glycogen synthase activation (approximately 80%), and PKB Ser(473) phosphorylation (approximately 40%). Chronic dexamethasone treatment did not impair glucose uptake during contraction in soleus or epitrochlearis muscles. In epitrochlearis (but not in soleus), the presence of insulin during contraction enhanced glucose uptake to similar levels in control and dexamethasone-treated rats. Contraction also increased glycogen synthase fractional activity and dephosphorylated glycogen synthase at Ser(645), Ser(649), Ser(653), and Ser(657) normally in muscles from dexamethasone-treated rats. After contraction, insulin-stimulated glycogen synthesis was completely restored in epitrochlearis and improved in soleus from dexamethasone-treated rats. Contraction did not increase insulin-stimulated PKB Ser(473) or glycogen synthase kinase-3 (GSK-3) phosphorylation. Instead, contraction increased GSK-3beta Ser(9) phosphorylation in epitrochlearis (but not in soleus) in muscles from control and dexamethasone-treated rats. In conclusion, contraction stimulates glucose uptake normally in dexamethasone-induced insulin resistant muscles. After contraction, insulin's ability to stimulate glycogen synthesis was completely restored in epitrochlearis and improved in soleus from dexamethasone-treated rats.  相似文献   

6.
Rictor is an essential component of mTOR (mammalian target of rapamycin) complex 2 (mTORC2), a kinase complex that phosphorylates Akt at Ser473 upon activation of phosphatidylinositol 3-kinase (PI-3 kinase). Since little is known about the role of either rictor or mTORC2 in PI-3 kinase-mediated physiological processes in adult animals, we generated muscle-specific rictor knockout mice. Muscle from male rictor knockout mice exhibited decreased insulin-stimulated glucose uptake, and the mice showed glucose intolerance. In muscle lacking rictor, the phosphorylation of Akt at Ser473 was reduced dramatically in response to insulin. Furthermore, insulin-stimulated phosphorylation of the Akt substrate AS160 at Thr642 was reduced in rictor knockout muscle, indicating a defect in insulin signaling to stimulate glucose transport. However, the phosphorylation of Akt at Thr308 was normal and sufficient to mediate the phosphorylation of glycogen synthase kinase 3 (GSK-3). Basal glycogen synthase activity in muscle lacking rictor was increased to that of insulin-stimulated controls. Consistent with this, we observed a decrease in basal levels of phosphorylated glycogen synthase at a GSK-3/protein phosphatase 1 (PP1)-regulated site in rictor knockout muscle. This change in glycogen synthase phosphorylation was associated with an increase in the catalytic activity of glycogen-associated PP1 but not increased GSK-3 inactivation. Thus, rictor in muscle tissue contributes to glucose homeostasis by positively regulating insulin-stimulated glucose uptake and negatively regulating basal glycogen synthase activity.  相似文献   

7.
To examine the mechanism by which muscle glycogen limits its own synthesis, muscle glycogen and glucose 6-phosphate (G-6-P) concentrations were measured in seven healthy volunteers during a euglycemic ( approximately 5.5 mM)-hyperinsulinemic ( approximately 450 pM) clamp using (13)C/(31)P nuclear magnetic resonance spectroscopy before and after a muscle glycogen loading protocol. Rates of glycogen synthase (V(syn)) and phosphorylase (V(phos)) flux were estimated during a [1-(13)C]glucose (pulse)-unlabeled glucose (chase) infusion. The muscle glycogen loading protocol resulted in a 65% increase in muscle glycogen content that was associated with a twofold increase in fasting plasma lactate concentrations (P < 0.05 vs. basal) and an approximately 30% decrease in plasma free fatty acid concentrations (P < 0.001 vs. basal). Muscle glycogen loading resulted in an approximately 30% decrease in the insulin-stimulated rate of net muscle glycogen synthesis (P < 0.05 vs. basal), which was associated with a twofold increase in intramuscular G-6-P concentration (P < 0.05 vs. basal). Muscle glycogen loading also resulted in an approximately 30% increase in whole body glucose oxidation rates (P < 0.05 vs. basal), whereas there was no effect on insulin-stimulated rates of whole body glucose uptake ( approximately 10.5 mg. kg body wt(-1). min(-1) for both clamps) or glycogen turnover (V(syn)/V(phos) was approximately 23% for both clamps). In conclusion, these data are consistent with the hypothesis that glycogen limits its own synthesis through feedback inhibition of glycogen synthase activity, as reflected by an accumulation of intramuscular G-6-P, which is then shunted into aerobic and anaerobic glycolysis.  相似文献   

8.
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with [3H]-2-deoxyglucose without or with insulin (60 microU/ml) to measure glucose uptake. Insulin-stimulated glucose uptake for paired muscles was calculated by subtracting glucose uptake without insulin from glucose uptake with insulin. Muscles from other mice were assessed for glycogen and AMPK Thr172 phosphorylation. Exercised vs. sedentary mice had decreased glycogen in epitrochlearis (48%, P < 0.001), soleus (51%, P < 0.001), and EDL (41%, P < 0.01) and increased AMPK Thr172 phosphorylation (P < 0.05) in epitrochlearis (1.7-fold), soleus (2.0-fold), and EDL (1.4-fold). Insulin-independent glucose uptake was increased 30 min postexercise vs. sedentary in the epitrochlearis (1.2-fold, P < 0.001), soleus (1.4-fold, P < 0.05), and EDL (1.3-fold, P < 0.01). Insulin-stimulated glucose uptake was increased (P < 0.05) approximately 85 min after exercise in the epitrochlearis (sedentary: 0.266 +/- 0.045 micromol x g(-1) x 15 min(-1); exercised: 0.414 +/- 0.051) and soleus (sedentary: 0.102 +/- 0.049; exercised: 0.347 +/- 0.098) but not in the EDL. Akt Ser473 and Akt Thr308 phosphorylation for insulin-stimulated muscles did not differ in exercised vs. sedentary. These results demonstrate enhanced submaximal insulin-stimulated glucose uptake in the epitrochlearis and soleus of mice 85 min postexercise and suggest that it will be feasible to probe the mechanism of enhanced postexercise insulin sensitivity by using genetically modified mice.  相似文献   

9.
The protein phosphatase calcineurin is a signaling intermediate that induces the transformation of fast-twitch skeletal muscle fibers to a slow-twitch phenotype. This reprogramming of the skeletal muscle gene expression profile may have therapeutic applications for metabolic disease. Insulin-stimulated glucose uptake in skeletal muscle is both impaired in individuals with type II diabetes mellitus and positively correlated with the percentage of slow- versus fast-twitch muscle fibers. Using transgenic mice expressing activated calcineurin in skeletal muscle, we report that skeletal muscle reprogramming by calcineurin activation leads to improved insulin-stimulated 2-deoxyglucose uptake in extensor digitorum longus (EDL) muscles compared with wild-type mice, concomitant with increased protein expression of the insulin receptor, Akt, glucose transporter 4, and peroxisome proliferator-activated receptor-gamma co-activator 1. Transgenic mice exhibited elevated glycogen deposition, enhanced amino acid uptake, and increased fatty acid oxidation in EDL muscle. When fed a high-fat diet, transgenic mice maintained superior rates of insulin-stimulated glucose uptake in EDL muscle and were protected against diet-induced glucose intolerance. These results validate calcineurin as a target for enhancing insulin action in skeletal muscle.  相似文献   

10.
The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents and humans. In this study, we used Akt2 knockout mice to explore the role of Akt2 in exercise-stimulated glucose uptake and glycogen synthesis as well as intracellular signaling pathways that regulate glycogen metabolism in skeletal muscle. We found that Akt2 deficiency does not affect basal or exercise-stimulated glucose uptake or intracellular glycogen content in the soleus muscle. In addition, lack of Akt2 did not result in alterations in basal Akt Thr(308) or basal and contraction-stimulated glycogen synthase kinase-3beta (GSK-3beta) Ser(9) phosphorylation, glycogen synthase phosphorylation, or glycogen synthase activity. In contrast, in situ contraction failed to elicit normal increases in Akt T-loop Thr(308) phosphorylation and GSK-3alpha Ser(21) phosphorylation in tibialis anterior muscles from Akt2-deficient animals. Our data establish a key role for Akt2 in the regulation of GSK-3alpha Ser(21) phosphorylation with contraction and add genetic evidence to support the separation of the intracellular pathways regulated by insulin and exercise that converge on glucose uptake and glycogen synthesis in skeletal muscle.  相似文献   

11.
Skeletal muscle glycogen is considered to be an important source of energy for contraction and increasing the level of the glucose polymer is generally thought to improve exercise performance in humans. A genetically modified mouse model (GSL30), which overaccumulates glycogen due to overexpression of a hyperactive form of glycogen synthase, was used to examine whether increasing the level of the polysaccharide enhances the ability of mice to run on a treadmill. The skeletal muscle of the GSL30 mice had large deposits of glycogen. There were no significant increases in the work performed by GSL30 mice as compared to their respective wild type littermates when exercised to exhaustion. The amount of muscle glycogen utilized by GSL30 mice, however, was greater, while the amount of liver glycogen consumed during exhaustive exercise was less than wild type animals. This result suggests that increased muscle glycogen stores do not necessarily improve exercise performance in mice.  相似文献   

12.
Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6-P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3 alpha and -beta genes are replaced with mutant forms (GSK3 alpha/beta S21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3 alpha/beta S21A/S21A/S9A/S9A mice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6-P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6-P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.  相似文献   

13.
The purpose of this study was to determine the influence of insulin receptor substrate-1 (IRS-1) expression on GLUT1 and GLUT4 glucose transporter protein abundance, contraction-stimulated glucose uptake, and contraction-induced glycogen depletion by skeletal muscle. Mice (6 months old) from three genotypes were studied: wild-type (IRS-1(+/+)), heterozygous (IRS-1(+/-)) for the null allele, and IRS-1 knockouts (IRS-1(-/-)) lacking a functional IRS-1 gene. In situ muscle contraction was induced (electrical stimulation of sciatic nerve) in one hindlimb using contralateral muscles as controls. Soleus and extensor digitorum longus were dissected and 2-deoxyglucose uptake was measured in vitro. 2-Deoxyglucose uptake was higher in basal muscles (no contractions) from IRS-1(-/-) vs. both other genotypes. Contraction-stimulated 2-deoxyglucose uptake and glycogen depletion did not differ among genotypes. Muscle IRS-1 protein was undetectable for IRS-1(-/-) mice, and values were approximately 40 % lower in IRS-1(+/-) than in IRS-1(+/+) mice. No difference was found in IRS-1(+/+) compared to IRS-1(-/-) groups regarding muscle abundance of GLUT1 and GLUT4. Substantial reduction or elimination of IRS-1 did not alter the hallmark effects of contractions on muscle carbohydrate metabolism--activation of glucose uptake and glycogen depletion.  相似文献   

14.
People living at high altitude appear to have lower blood glucose levels and decreased incidence of diabetes. Faster glucose uptake and increased insulin sensitivity are likely explanations for these findings: skeletal muscle is the largest glucose sink in the body, and its adaptation to the hypoxia of altitude may influence glucose uptake and insulin sensitivity. This study tested the hypothesis that chronic normobaric hypoxia increases insulin-stimulated glucose uptake in soleus muscles and decreases plasma glucose levels. Adult male C57BL/6J mice were kept in normoxia [fraction of inspired O? = 21% (Control)] or normobaric hypoxia [fraction of inspired O? = 10% (Hypoxia)] for 4 wk. Then blood glucose and insulin levels, in vitro muscle glucose uptake, and indexes of insulin signaling were measured. Chronic hypoxia lowered blood glucose and plasma insulin [glucose: 14.3 ± 0.65 mM in Control vs. 9.9 ± 0.83 mM in Hypoxia (P < 0.001); insulin: 1.2 ± 0.2 ng/ml in Control vs. 0.7 ± 0.1 ng/ml in Hypoxia (P < 0.05)] and increased insulin sensitivity determined by homeostatic model assessment 2 [21.5 ± 3.8 in Control vs. 39.3 ± 5.7 in Hypoxia (P < 0.03)]. There was no significant difference in basal glucose uptake in vitro in soleus muscle (1.59 ± 0.24 and 1.71 ± 0.15 μmol·g?1·h?1 in Control and Hypoxia, respectively). However, insulin-stimulated glucose uptake was 30% higher in the soleus after 4 wk of hypoxia than Control (6.24 ± 0.23 vs. 4.87 ± 0.37 μmol·g?1·h?1, P < 0.02). Muscle glycogen content was not significantly different between the two groups. Levels of glucose transporters 4 and 1, phosphoinositide 3-kinase, glycogen synthase kinase 3, protein kinase B/Akt, and AMP-activated protein kinase were not affected by chronic hypoxia. Akt phosphorylation following insulin stimulation in soleus muscle was significantly (25%) higher in Hypoxia than Control (P < 0.05). Neither glycogen synthase kinase 3 nor AMP-activated protein kinase phosphorylation changed after 4 wk of hypoxia. These results demonstrate that the adaptation of skeletal muscles to chronic hypoxia includes increased insulin-stimulated glucose uptake.  相似文献   

15.
This study examined the effects of preexercise glucose administration, with and without epinephrine infusion, on carbohydrate metabolism in horses during exercise. Six horses completed 60 min of treadmill exercise at 55 +/- 1% maximum O(2) uptake 1) 1 h after oral administration of glucose (2 g/kg; G trial); 2) 1 h after oral glucose and with an intravenous infusion of epinephrine (0.2 micromol. kg(-1). min(-1); GE trial) during exercise, and 3) 1 h after water only (F trial). Glucose administration (G and GE) caused hyperinsulinemia and hyperglycemia ( approximately 8 mM). In GE, plasma epinephrine concentrations were three- to fourfold higher than in the other trials. Compared with F, the glucose rate of appearance was approximately 50% and approximately 33% higher in G and GE, respectively, during exercise. The glucose rate of disappearance was approximately 100% higher in G than in F, but epinephrine infusion completely inhibited the increase in glucose uptake associated with glucose administration. Muscle glycogen utilization was higher in GE [349 +/- 44 mmol/kg dry muscle (dm)] than in F (218 +/- 28 mmol/kg dm) and G (201 +/- 35 mmol/kg dm). We conclude that 1) preexercise glucose augments utilization of plasma glucose in horses during moderate-intensity exercise but does not alter muscle glycogen usage and 2) increased circulating epinephrine inhibits the increase in glucose rate of disappearance associated with preexercise glucose administration and increases reliance on muscle glycogen for energy transduction.  相似文献   

16.
The effect of carbohydrate supplementation on skeletal muscle glucose transporter GLUT-4 protein expression was studied in fast-twitch red and white gastrocnemius muscle of Sprague-Dawley rats before and after glycogen depletion by swimming. Exercise significantly reduced fast-twitch red muscle glycogen by 50%. During a 16-h exercise recovery period, muscle glycogen returned to control levels (25.0 +/- 1.4 micromol/g) in exercise-fasted rats (24.2 +/- 0. 3 micro). However, when carbohydrate supplementation was provided during and immediately postexercise by intubation, muscle glycogen increased 77% above control (44.4 +/- 2.1 micromol/g). Exercise-fasting resulted in an 80% increase in fast-twitch red muscle GLUT-4 mRNA but only a 43% increase in GLUT-4 protein concentration. Conversely, exercise plus carbohydrate supplementation elevated fast-twitch red muscle GLUT-4 protein concentration by 88% above control, whereas GLUT-4 mRNA was increased by only 40%. Neither a 16-h fast nor carbohydrate supplementation had an effect on fast-twitch red muscle GLUT-4 protein concentration or on GLUT-4 mRNA in sedentary rats, although carbohydrate supplementation increased muscle glycogen concentration by 40% (35.0 +/- 0.9 micromol/g). GLUT-4 protein in fast-twitch white muscle followed a pattern similar to fast-twitch red muscle. These results indicate that carbohydrate supplementation, provided with exercise, will enhance GLUT-4 protein expression by increasing translational efficiency. Conversely, postexercise fasting appears to upregulate GLUT-4 mRNA, possibly to amplify GLUT-4 protein expression on an increase in glucose availability. These regulatory mechanisms may help control muscle glucose uptake in accordance with glucose availability and protect against postexercise hypoglycemia.  相似文献   

17.
Jiao Y  Shashkin P  Katz A 《Life sciences》2001,69(8):891-900
It was recently reported that MnSO4 stimulates glycogen synthase-dependent glucose transfer from UDPglucose into trichloroacetic acid precipitable endogenous glycoproteins (GSMn(T)) in human muscle extracts. To determine the physiologic significance of this reaction, we compared a new GS activity ratio, GSMn(T)/GSH(E) (where GSH(E) represents the usual glucose transfer to ethanol precipitable exogenous glycogen by GS at 7.2 mM glucose 6-phosphate), with the generally used GSL(E)/GSH(E) ratio (where GSL(E) represents glucose transfer at 0.17 mM glucose 6-P concentration). Biopsies were obtained from the quadriceps femoris muscle of healthy subjects at rest, after 40 min of bicycle exercise at approximately 65% of maximal oxygen uptake and after isometric contraction at 2/3 maximal force to fatigue (approximately 1 min). GSMn(T)/GSH(E) increased from 0.012+/-0.002 at rest to 0.054+/-0.008 (P<0.01) after 40 min of bicycle exercise and the increase in GSMn(T) activity was strongly related to the decrease in endogenous glycogen (i.e.. increase in short-chain endogenous glycoproteins) (r=0.90; P<0.05). On the other hand, GSL(E)/GSH(E) did not change significantly after bicycle exercise (rest = 0.49+/-0.04; exercise = 0.58+/-0.08, P>0.05). GSMn(T)/GSH(E) increased from 0.010+/-0.001 at rest to 0.016+/-0.002 (P<0.05) after isometric exercise, whereas GSL(E)/GSH(E) decreased from 0.27+/-0.04 to 0.20+/-0.02 (P<0.05) under corresponding conditions. Last, insulin, which stimulates glycogen synthesis, also increased GSMn(T)/GSH(E) (1.8-fold, P<0.05), as well as GSL(E)/GSH(E) (1.4-fold, P<0.05), in isolated rat soleus muscle. These data indicate that GSMn(T)/GSH(E) is influenced by endogenous substrate availability and covalent modification. Therefore, GSMn(T)/GSH(E) ratio may prove to be a useful alternative to other GS activity ratios that only reflect changes in the phosphorylation state of GS.  相似文献   

18.
To evaluate the relationship between enhanced insulin action and level of exercise training, in vivo glucose uptake was assessed in the absence of added insulin and during insulin-stimulated conditions for three activity levels of voluntarily trained rats (low 2-5 km/day, medium 6-9 km/day, high 11-16 km/day). After rats rested for 24 h and fasted overnight, glucose uptake was estimated by comparing steady-state serum glucose (SSSG) levels at low insulin (SSSI) concentrations achieved during an insulin suppression test. In the absence of added insulin, SSSI averaged approximately 20 microU/ml and glucose uptake was similar for high runners and younger weight-matched controls. However, with insulin added to sustain SSSI at approximately 35 microU/ml, SSSG was significantly reduced in all runners (P less than 0.02), with the lowest value attained in high runners. Fasting serum triglycerides were also reduced in all runners (P less than 0.05), with the lowest values seen in medium and high runners. The concentration of glycogen in liver and select skeletal muscles at the start of the study was not different between trained and control rats, suggesting that enhanced insulin-stimulated glucose uptake was not the result of lower glycogen levels. In addition, glycogen synthase and succinate dehydrogenase activities in biceps femoris muscle were only elevated for high runners, but glycogen synthase activity was not enhanced in plantaris muscle and was decreased in soleus muscle. These findings indicate that enhanced insulin-stimulated glucose uptake and reduced serum triglyceride concentrations induced in exercise-trained rats at varying activity levels are dissociated from changes in glycogen synthase and oxidative enzyme activity for skeletal muscle.  相似文献   

19.
This investigation determined whether ingestion of a tolerable amount of medium-chain triglycerides (MCT; approximately 25 g) reduces the rate of muscle glycogen use during high-intensity exercise. On two occasions, seven well-trained men cycled for 30 min at 84% maximal O(2) uptake. Exactly 1 h before exercise, they ingested either 1) carbohydrate (CHO; 0.72 g sucrose/kg) or 2) MCT+CHO [0.36 g tricaprin (C10:0)/kg plus 0.72 g sucrose/kg]. The change in glycogen concentration was measured in biopsies taken from the vastus lateralis before and after exercise. Additionally, glycogen oxidation was calculated as the difference between total carbohydrate oxidation and the rate of glucose disappearance from plasma (R(d) glucose), as measured by stable isotope dilution techniques. The change in muscle glycogen concentration was not different during MCT+CHO and CHO (42.0 +/- 4.6 vs. 38.8 +/- 4.0 micromol glucosyl units/g wet wt). Furthermore, calculated glycogen oxidation was also similar (331 +/- 18 vs. 329 +/- 15 micromol. kg(-1). min(-1)). The coingestion of MCT+CHO did increase (P < 0.05) R(d) glucose at rest compared with CHO (26.9 +/- 1.5 vs. 20.7 +/- 0. 7 micromol.kg(-1). min(-1)), yet during exercise R(d) glucose was not different during the two trials. Therefore, the addition of a small amount of MCT to a preexercise CHO meal did not reduce muscle glycogen oxidation during high-intensity exercise, but it did increase glucose uptake at rest.  相似文献   

20.
Muscle glycogen levels in the perfused rat hemicorpus preparation were reduced two-thirds by electrical stimulation plus exposure to epinephrine (10(-7) M) for 30 min. During the contraction period muscle lactate concentrations increased from a control level of 3.6 +/- 0.6 to a final value of 24.1 +/- 1.6 mumol/g muscle. To determine whether the lactate that had accumulated in muscle during contraction could be used to resynthesize glycogen, glycogen levels were determined after 1-3 h of recovery from the contraction period during which time the perfusion medium (flow-through system) contained low (1.3 mmol/l) or high (10.5 or 18 mmol/l) lactate concentrations but no glucose. With the low perfusate lactate concentration, muscle lactate levels declined to 7.2 +/- 0.8 mumol/g muscle by 3 h after the contraction period and muscle glycogen levels did not increase (1.28 +/- 0.07 at 3 h vs. 1.35 +/- 0.09 mg glucosyl U/g at end of exercise). Lactate disappearance from muscle was accounted for entirely by output into the venous effluent. With the high perfusate lactate concentrations, muscle lactate levels remained high (13.7 +/- 1.7 and 19.3 +/- 2.0 mumol/g) and glycogen levels increased by 1.11 and 0.86 mg glucosyl U/g, respectively, after 1 h of recovery from exercise. No more glycogen was synthesized when the recovery period was extended. Therefore, it appears that limited resynthesis of glycogen from lactate can occur after the contraction period but only when arterial lactate concentrations are high; otherwise the lactate that builds up in muscle during contraction will diffuse into the bloodstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号