首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To provide a gene-based comparative map and to examine a porcine genome assembly using bacterial artificial chromosome-based sequence, we have attempted to assign 128 genes localized on human chromosome 14q (HSA14q) to a porcine 7000-rad radiation hybrid (IMpRH) map. This study, together with earlier studies, has demonstrated the following. (i) 126 genes were incorporated into two SSC7 RH linkage groups by C artha G ene analysis. (ii) In the remaining two genes, TOX4 linked to TCRA located in SSC7 by two-point analysis, whereas SIP1 showed no significant linkage with any gene/marker registered in the IMpRH Web Server. (iii) In the two groups, the gene clusters located from 19.9 to 36.5 Mb on HSA14q11.2-q13.3 and from 64.0 to 104.3 Mb on HSA14q23-q32.33 respectively were assigned to SSC7q21-q26. (iv) Comparison of the gene order between the present RH map and the latest porcine sequence assembly revealed some inconsistencies, and a redundant arrangement of 16 genes in the sequence assembly.  相似文献   

2.
Because porcine chromosome (SSC) 8 has become the focal point of many efforts aimed at identifying quantitative trait loci affecting ovulation rate, genes distributed across human chromosome (HSA) 4 were physically mapped in the pig. A more refined comparative map of this region for these two species was produced. In this study, four genes were selected based on their location in the human genome, the availability of nucleotide sequence and their genomic organization. The genes selected were fibroblast growth factor basic (FGF2; HSA 4q25-27), gonadotropin releasing hormone receptor (GNRHR; HSA 4q13), phosphodiesterase 6 B (PDE6B; HSA 4p16.3) and aminopeptidase S (PEPS; HSA 4p11-q12). Genomic libraries were screened via PCR and clones were physically assigned using fluorescence in situ hybridization (FISH). These four genes from HSA 4 were physically mapped to SSC 8p2.3 (PDE6B), 8p1.1 (PEPS), 8q1.1-1.2 (GNRHR) and 8q2.2-2.4 (FGF2). These assignments provide additional benchmarks for the comparative map and help define the level of gene order conserved between HSA 4 and SSC 8.  相似文献   

3.
Construction of a comprehensive comparative map between swine and human chromosomes is a prerequisite, in order to select candidate swine genes for traits from the human genome database as well as to understand the evolutionary process of the two species. The present study attempted to use 910 sequence-tagged sites (STSs) localized in human chromosome (HSA) 1p36-->p35 (35 Mbp) for radiation hybrid (RH) mapping to swine chromosomes (SSCs). Out of the 910 STSs subjected to amplification of swine orthologues, primer pairs for 13 STSs were found to amplify the respective orthologues and the STSs were assigned to SSCs. Eleven STSs were assigned to SSC6 in the same order as that in HSA1: SSC6cen-(SHGC-150)-(A006H31)-(X82877)-(A007E03)-(IB404)-(stGDB:371372)-(stSG31658)-(A009Q18)-(stSG14201/A009C01)-(H08335)-qter. One of the remaining two STSs, WI-20819, was assigned to SSCX, and the other, R91D18R, was not linked to any first-generation markers of the IMpRH map with a lod score greater than 3.  相似文献   

4.
5.
6.
A precise genetic map containing anonymous markers and genes is indispensable for the efficient selection of candidate gene(s) responsible for quantitative trait loci (QTL) traits. For this purpose, a first version of a radiation hybrid cell (RH) map has been constructed by using the INRA-University of Minnesota RH panel for 757 markers (IMpRH) (Hawken et al. 1999, Mamm. Genome 10: 824–830). In this study, 280 swine genomic fragments in BAC clones were assigned to the IMpRH map; 255 BAC clones were successfully linked to first-generation linkage groups (LOD > 4.8). The remaining 25 clones could not be mapped, because their lod-scores to the closest markers in the first generation map were less than 4.8. In addition, 16 BAC clones, mapped to swine Chromosome (Chr) 1 by IMpRH mapping, were subjected to isolation of microsatellites (MSs). Thirty-one MSs were isolated from 15 BAC clones, and 24 of 31 (77%) MSs derived from 14 clones were found to be polymorphic. We also mapped both termini of 12 BAC clones to the IMpRH map, in order to measure resolution of the IMpRH map; the resolution was found to range from 8 kb/centiRay to more than 126 kb/centiRay depending on the region. Received: 21 June 2001 / Accepted: 28 September 2001  相似文献   

7.
8.
9.
Summary We describe a new rare allele for esterase D (EsD) occurring in a Portuguese family with retinoblastoma in two generations.  相似文献   

10.
The human chromosome (HSA)19q region has been shown to correspond to swine chromosome (SSC) 6q11-->q21 by bi-directional chromosomal painting and gene mapping. However, since the precise correspondence has not been determined, 26 genes localized in HSA19q13.3-->q13.4 were assigned to the SSC6 region mainly by radiation hybrid (RH) mapping, and additionally, by somatic cell hybrid panel (SCHP) mapping, and fluorescent in situ hybridization (FISH). Out of the 26 genes, 24 were assigned to a swine RH map with LOD scores greater than 6 (threshold of significance). The most likely order of the 24 genes along SSC6 was calculated by CarthaGene, revealing that the order is essentially the same as that in HSA19q13.3-->q13.4. For AURKC and RPS5 giving LOD scores not greater than 6, SCHP mapping and FISH were additionally performed; SCHP mapping assigned AURKC and RPS5 to SSC6q22-->q23 and SSC6q21, respectively, which is consistent with the observation of FISH. Consequently, all the genes (26 genes) examined in the present study were shown to localize in SSC6q12-->q23, and the order of the genes along the chromosomes was shown to be essentially the same in swine and human, though several intrachromosomal rearrangements were observed between the species.  相似文献   

11.
The identification of disease genes via molecular DNA cloning has revolutionized human genetics and medicine. Both the candidate gene approach and positional cloning have been used successfully. The defects causing Huntington's disease, facioscapulohumeral muscular dystrophy, piebaldism, Hurler/Scheie syndrome, one form of autosomal recessive retinitis pigmentosa, and a second locus for autosomal dominant polycystic kidney disease have recently been localized to chromosome 4. In addition to the rapid progress in the cloning of the 203-megabase chromosome, the presence of more than 60 closely spaced microsatellites on this chromosome will undoubtedly lead to the localization of additional disease genes. In order to consider cloned genes as potential candidates for disorders assigned to chromosome 4, it is important to collect and order all genes with respect to their chromosomal localization. Analysis of cytogenetically visible interstitial and terminal deletions should also be helpful in defining new disease gene loci and in mapping novel genes. These data represent the status quo of the integrated molecular map for chromosome 4.  相似文献   

12.
A 260-kb half-YAC clone derived from human chromosome 1q was mapped at high resolution using cosmid subclone fingerprint analysis and was integrated with overlapping clones from the telomeric end of a separately derived 1q44 BAC contig to create a sequence-ready map extending to the molecular telomere of 1q. Analysis of 100 kb of sample sequences from across the 260-kb region encompassed by the half-YAC revealed the presence of EST sequence matches corresponding to 12 separate Unigene clusters and to 12 separate unclustered EST sequences. Low-copy subtelomeric repeats typical of many human telomere regions are present within the distal-most 30 kb of 1q. The previously isolated and radiation hybrid-mapped markers Bda84F03, 1QTEL019, and WI11861 localized at distances approximately 32, 88, and 99 kb, respectively, from the 1q terminus. This sequence-ready map permits high-resolution integration of genetic maps with the DNA sequences directly adjacent to the tip of human chromosome 1q and will enable telomeric closure of the human chromosome 1q DNA reference sequence by connecting the molecular 1q telomere to an internal BAC contig.  相似文献   

13.
14.
CDKN4/p27Kip1 is a cyclin-dependent kinase (Cdk) inhibitor implicated in G1 phase arrest, which negatively regulates G1 phase progression in response to TGF, and might represent a tumor suppressor gene. We report here the chromosomal assignment of the human CDKN4 gene to chromosome 12p12.3 in close proximity to highly polymorphic microsatellite markers.  相似文献   

15.
Mice homozygous for the Ednrb(s-1Acrg) deletion arrest at embryonic day 8.5 from defects associated with mesoderm development. To determine the molecular basis of this phenotype, we initiated a positional cloning of the Acrg minimal region. This region was predicted to be gene-poor by several criteria. From comparative analysis with the syntenic human locus at 13q22 and gene prediction program analysis, we found a single cluster of four genes within the 1.4-to 2-Mb contig over the Acrg minimal region that is flanked by a gene desert. We also found 130 highly conserved nonexonic sequences that were distributed over the gene cluster and desert. The four genes encode the TBC (Tre-2, BUB2, CDC16) domain-containing protein KIAA0603, the ubiquitin carboxy-terminal hydrolase L3 (UCHL3), the F-box/PDZ/LIM domain protein LMO7,and a novel gene. On the basis of their expression profile during development, all four genes are candidates for the Ednrb(s-1Acrg) embryonic lethality. Because we determined that a mutant of Uchl3 was viable, three candidate genes remain within the region.  相似文献   

16.
A Pilz  H Moseley  J Peters  C Abbott 《Genomics》1992,12(4):715-719
The mapping of human chromosome 9 (HSA9) and mouse chromosome 2 (MMU2) has revealed a conserved syntenic region between the distal end of the long arm of chromosome 9 and proximal mouse chromosome 2. Two genes that map to human chromosome 9q34, gelsolin (GSN) and dopamine beta-hydroxylase (DBH), have not previously been located in the mouse. We have used an interspecific backcross to map each of these genes, by Southern blot analysis, to mouse chromosome 2. Gelsolin (Gsn) is tightly linked to the gene for complement component C5 (Hc), and dopamine beta-hydroxylase (Dbh) is just proximal to the Abelson leukemia virus oncogene (Abl) and alpha-spectrin 2 (Spna-2). The loci for gelsolin and dopamine beta-hydroxylase therefore form part of the conserved synteny between HSA9q and MMU2.  相似文献   

17.
The AKT1 proto-oncogene maps to human chromosome 14, band q32   总被引:2,自引:0,他引:2  
The human AKT1 gene is the proto-oncogene of the viral oncogene v-akt. The AKT1 gene has been localized to human chromosome 14, band q32, proximal to the heavy-chain immunoglobulin locus (IGHM), by analysis of human-hamster somatic cell hybrids and by in situ hybridization. Chromosome rearrangements of this band which occur in T-lymphoid malignancies and Hodgkin's disease may affect the AKT1 gene.  相似文献   

18.
ZOO-FISH mapping shows human chromosomes 1, 9 and 10 share regions of homology with pig chromosome 10 (SSC10). A more refined comparative map of SSC10 has been developed to help identify positional candidate genes for QTL on SSC10 from human genome sequence. Genes from relevant chromosomal regions of the public human genome sequence were used to BLAST porcine EST databases. Primers were designed from the matching porcine ESTs to assign them to porcine chromosomes using the INRA somatic cell hybrid panel (INRA-SCHP) and the INRA-University of Minnesota Radiation Hybrid Panel (IMpRH). Twenty-eight genes from HSA1, 9 and 10 were physically mapped: fifteen to SSC10 (ACO1, ATP5C1, BMI1, CYB5R1, DCTN3, DNAJA1, EPHX1, GALT, GDI2, HSPC177, OPRS1, NUDT2, PHYH, RGS2, VIM), eleven to SSC1 (ADFP, ALDHIB1, CLTA, CMG1, HARC, PLAA, STOML2, RRP40, TESK1, VCP and VLDLR) and two to SSC4 (ALDH9A1 and TNRC4). Two anonymous markers were also physically mapped to SSC10 (SWR1849 and S0070) to better connect the physical and linkage maps. These assignments have further refined the comparative map between SSC1, 4 and 10 and HSA1, 9 and 10.  相似文献   

19.
Conserved segments have been identified by ZOO-FISH between pig chromosome 9 (SSC9) and human chromosomes 1, 7 and 11. To assist in the identification of positional candidate genes for QTL on SSC9, the comparative map was further developed. Primers were designed from porcine EST sequence homologous to genes in regions of human chromosomes 1, 7 and 11. Porcine ESTs were then physically assigned using the INRA somatic cell hybrid panel (INRASCHP) and the high-resolution radiation hybrid panel (IMpRH). Seventeen genes (PEPP3, RAB7L1, FNBP2, MAPKAPK2, GNAI1, ABCB1, STEAP, AKAP9, CYP51A1, SGCE, ROBO4, SIAT4C, GLUL, CACNA1E, PTGS2, C1orf16 and ETS1) were mapped to SSC9, while GUSB, CPSF4 and THG-1 were assigned to SSC3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号