共查询到20条相似文献,搜索用时 0 毫秒
1.
Miick SM Jalali S Dwyer BP Havens J Thomas D Jimenez MA Simpson MT Zile B Huss KL Campbell RM 《Journal of biomolecular screening》2005,10(4):329-338
A microplate-based electrophoretic assay has been developed for the serine/threonine kinase protein kinase A (PKA). The ElectroCapture PKA assay developed uses a positively charged, lissamine-rhodamine-labeled kemptide peptide substrate for the kinase reaction and Nanogen's ElectroCapture HTS Workstation and 384-well laminated membrane plates to electrophoretically separate the negatively charged phosphorylated peptide product from the kinase reaction mix. After the electrophoretic separation, the amount of rhodamine-labeled phosphopeptide product was quantified using a Tecan Ultra384 fluorescence reader. The ElectroCapture PKA assay was validated with both known PKA inhibitors and library compounds. The pK(iapp) results obtained in the ElectroCapture PKA assay were comparable to those generated with current radioactive filter-binding assay and antibody-based competitive fluorescence polarization PKA assay formats. 相似文献
2.
N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. 相似文献
3.
Asialoglycoprotein receptor (ASGP-R) has been actively investigated for targeted delivery of therapeutic agents into hepatocytes because this receptor is selectively and highly expressed in liver and has a high internalization rate. Synthetic cluster glycopeptides (e.g., triGalNAc) bind with high affinity to ASGP-R and, when conjugated to a therapeutic agent, can drive receptor-mediated uptake in liver. We developed a novel fluorescent polarization (FP) ASGP-R binding assay to determine the binding affinities of ASGP-R-targeted molecules. The assay was performed in 96-well microplates using membrane preparations from rat liver as a source of ASGP-R and Cy5 fluorophore-labeled triGalNAc synthetic ligand as a tracer. This high-throughput homogeneous assay demonstrates advantages over existing multistep methods in that it minimizes both time and resources spent in determining binding affinities to ASGP-R. At the optimized conditions, a Z' factor of 0.73 was achieved in a 96-well format. 相似文献
4.
Howes R Barril X Dymock BW Grant K Northfield CJ Robertson AG Surgenor A Wayne J Wright L James K Matthews T Cheung KM McDonald E Workman P Drysdale MJ 《Analytical biochemistry》2006,350(2):202-213
Hsp90 encodes a ubiquitous molecular chaperone protein conserved among species which acts on multiple substrates, many of which are important cell-signaling proteins. Inhibition of Hsp90 function has been promoted as a mechanism to degrade client proteins involved in tumorigenesis and disease progression. Several assays to monitor inhibition of Hsp90 function currently exist but are limited in their use for a drug discovery campaign. Using data from the crystal structure of an initial hit compound, we have developed a fluorescence polarization assay to monitor binding of compounds to the ATP-binding site of Hsp90. This assay is very robust (Z' > 0.9) and can detect affinity of compounds with IC50s to 40 nM. We have used this assay in conjunction with cocrystal structures of small molecules to drive a structure-based design program aimed at the discovery and optimization of a novel class of potent Hsp90 inhibitors. 相似文献
5.
Glaser BT Malerich JP Duellman SJ Fong J Hutson C Fine RM Keblansky B Tang MJ Madrid PB 《Journal of biomolecular screening》2011,16(2):230-238
DNA gyrase, a type II topoisomerase that introduces negative supercoils into DNA, is a validated antibacterial drug target. The holoenzyme is composed of 2 subunits, gyrase A (GyrA) and gyrase B (GyrB), which form a functional A(2)B(2) heterotetramer required for bacterial viability. A novel fluorescence polarization (FP) assay has been developed and optimized to detect inhibitors that bind to the adenosine triphosphate (ATP) binding domain of GyrB. Guided by the crystal structure of the natural product novobiocin bound to GyrB, a novel novobiocin-Texas Red probe (Novo-TRX) was designed and synthesized for use in a high-throughput FP assay. The binding kinetics of the interaction of Novo-TRX with GyrB from Francisella tularensis has been characterized, as well as the effect of common buffer additives on the interaction. The assay was developed into a 21-μL, 384-well assay format and has been validated for use in high-throughput screening against a collection of Food and Drug Administration-approved compounds. The assay performed with an average Z' factor of 0.80 and was able to identify GyrB inhibitors from a screening library. 相似文献
6.
Nosjean O Souchaud S Deniau C Geneste O Cauquil N Boutin JA 《Journal of biomolecular screening》2006,11(8):949-958
Fluorescence polarization is a screening technology that is radioactivity free, homogeneous, and ratiometric. The signal measured with this technology is a weighted value of free and bound ligand. As a consequence, saturation curves are accessible only after calculation of the corresponding concentrations of free and bound ligand. To make this technology more accessible to assay development, the authors propose a simple mathematical model that predicts fluorescence polarization values from ligand and receptor total concentrations, depending on the corresponding dissociation constant. This model was validated using data of Bodipy-NDP-alphaMSH binding to MC(5), obtained after either ligand saturation of a receptor preparation or, conversely, receptor saturation of a ligand solution. These experimental data were also used to calculate the actual concentration of free and bound ligand and receptor and to obtain pharmacological constants by Scatchard analysis. A general method is proposed, which facilitates the design of fluorescence polarization binding assays by relying on the representation of theoretical polarization values. This approach is illustrated by the application to 2 systems of very different affinities. 相似文献
7.
High-throughput screening (HTS), a major component of lead identification, often utilizes fluorescence-based assay technologies. For example, HTS kinase assays are formatted using a variety of fluorescence-based assay technologies including, but not limited to, dissociation enhanced lanthanide fluoroimmunoassay (DELFIA), time-resolved fluorescence resonance energy transfer (TR-FRET), and fluorescence polarization (FP). These assays offer tremendous advantages such as a nonradioactive format, ease of automation, and excellent reproducibility. Fluorescence-based assays frequently used for lead identification can also be useful for structure activity relationship (SAR) studies during lead optimization. An important issue when assessing an assay to be used for SAR is the ability of the assay to discriminate high-affinity small molecule inhibitors (pM-nM) from low-affinity inhibitors (microM-mM). The purpose of this study was to utilize HTS-friendly assay formats for SAR by developing TR-FRET, FP, and DELFIAassays measuring Src kinase activity and to define the theoretical lower limit of small molecule inhibitor detection achievable with these assay formats. The authors show that 2 homogeneous assay formats, TR-FRET and FP, allowed for the development of Src kinase assays with a lower limit of detection of K(i) = 0.01 nM. This study indicates that assay technologies typically used for HTS can be used during lead optimization by providing quantitative measurements of compound activity critical to driving SAR studies. 相似文献
8.
Traditional methods that follow receptor ligand interactions are competitive assays in which the test compound displaces a radiolabeled molecule. These assays require either a time-consuming step for separation of free ligands from bound ligands or immobilization of receptors and the scintillant on a solid-phase support. In this report, we describe the development of a homogeneous binding assay for a G protein-coupled receptor in the fluorescence polarization format. This homogeneous fluorescence polarization binding assay format is superior to the traditional binding methods because no radioisotope, separation step, or solid-phase support is required. The elimination of the separation step enhances detection of low-affinity ligands and enables a real-time, continuous readout of the binding activity in a high throughput 384-well microplate format. 相似文献
9.
Nikolovska-Coleska Z Wang R Fang X Pan H Tomita Y Li P Roller PP Krajewski K Saito NG Stuckey JA Wang S 《Analytical biochemistry》2004,332(2):261-273
The X-linked inhibitor of apoptosis protein (XIAP) is a potent cellular inhibitor of apoptosis. Designing small-molecule inhibitors that target the BIR3 domain of XIAP, where Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI) and caspase-9 bind, is a promising strategy for inhibiting the antiapoptotic activity of XIAP and for overcoming apoptosis resistance of cancer cells mediated by XIAP. Herein, we report the development of a homogeneous high-throughput assay based on fluorescence polarization for measuring the binding affinities of small-molecule inhibitors to the BIR3 domain of XIAP. Among four fluorescent probes tested, a mutated N-terminal Smac peptide (AbuRPFK-(5-Fam)-NH(2)) showed the highest affinity (Kd =17.92 nM) and a large dynamic range (deltamP = 231 +/- 0.9), and was selected as the most suitable probe for the binding assay. The binding conditions (DMSO tolerance and stability) have been investigated. Under optimized conditions, a Z' factor of 0.88 was achieved in a 96-well format for high-throughput screening. It was found that the popular Cheng-Prusoff equation is invalid for the calculation of the competitive inhibition constants (Ki values) for inhibitors in the FP-based competitive binding assay conditions, and accordingly, a new mathematical equation was developed, validated, and used to compute the Ki values. An associated Web-based computer program was also developed for this task. Several known Smac peptides with high and low affinities have been evaluated under the assay conditions and the results obtained indicated that the FP-based competitive binding assay performs correctly as designed: it can quantitatively and accurately determine the binding affinities of Smac-based peptide inhibitors with a wide range of affinities, and is suitable for high-throughput screening of inhibitors binding to the XIAP BIR3 domain. 相似文献
10.
Peptidyl-tRNA hydrolase (Pth) activity ensures the rapid recycling of peptidyl-tRNAs that result from premature termination of translation. Historically, the hydrolyzing activity of Pth has been assayed with radiolabeled N-blocked aminoacyl-tRNAs in assay systems that require the separation of radiolabeled amino acid from the N-blocked aminoacyl-tRNA complex. In the present study, we describe the development of a kinetic fluorescence polarization (FP) assay that enables measurements of Pth activity without the need to separate bound and free tracer. The hydrolyzing activity of Pth was determined by measuring the change in polarization values that resulted from the cleavage of a fluorescently labeled substrate (BODIPY-Lys-tRNA(Lys)). The data were analyzed using an equation describing first-order dissociation and the results showed that the experimental data correlated well with the theoretical curve. A runs test of the residuals showed that the experimental data did not significantly differ from the first-order model. The assay is adaptable to a multiwell format and is sensitive enough to detect Pth-like activity in bacterial cell lysate. The Pth FP assay provides a homogeneous and kinetic format for measuring Pth activity in vitro. 相似文献
11.
Kenny CH Ding W Kelleher K Benard S Dushin EG Sutherland AG Mosyak L Kriz R Ellestad G 《Analytical biochemistry》2003,323(2):224-233
A fluorescence polarization competition assay has been developed to screen for inhibitors of the Escherichia coli FtsZ/ZipA protein-protein interaction. A previously published X-ray costructure demonstrated that a 17-amino-acid peptide, corresponding to FtsZ C-terminal residues 367-383 (FtsZ(367-383)), interacts with the C-terminal FtsZ binding domain of ZipA (ZipA(185-328)). Phage display was employed to identify a unique but related peptide which when further modified and labeled was shown to have a higher affinity to ZipA(185-328) than the FtsZ(367-383) peptide and binds to the same site. This peptide had a six fold increase in fluorescence polarization upon binding to ZipA(185-328) compared to a two fold increase for the FtsZ(367-383) fluorophore. As a result, assay parameters using the phage display peptide were further optimized and adapted for the high-throughput screen. A high-throughput screen of 250,000 compounds identified 29 hits with inhibition equal to or greater than 30% at 50 microg/ml. An X-ray costructure of a promising small molecule in this library complexed with ZipA(185-328) (KI=12 microM) revealed that the compound binds to the same hydrophobic pocket as the FtsZ(367-383) peptide. 相似文献
12.
Ribonuclease P (RNase P) is an essential endonuclease that catalyzes the 5′ end maturation of precursor tRNA (pre-tRNA). Bacterial RNase P is an attractive potential antibacterial target because it is essential for cell survival and has a distinct subunit composition compared to the eukaryal counterparts. To accelerate both structure-function studies and discovery of inhibitors of RNase P, we developed the first real-time RNase P activity assay using fluorescence polarization/anisotropy (FP/FA) with a 5′ end fluorescein-labeled pre-tRNAAsp substrate. This FP/FA assay also detects binding of small molecules to pre-tRNA. Neomycin B and kanamycin B bind to pre-tRNAAsp with a Kd value that is comparable to their IC50 value for inhibition of RNase P, suggesting that binding of these antibiotics to the pre-tRNA substrate contributes to the inhibitory activity. This assay was optimized for high-throughput screening (HTS) to identify specific inhibitors of RNase P from a 2880 compound library. A natural product derivative, iriginol hexaacetate, was identified as a new inhibitor of Bacillus subtilis RNase P. The FP/FA methodology and inhibitors reported here will further our understanding of RNase P molecular recognition and facilitate discovery of antibacterial compounds that target RNase P. 相似文献
13.
Hedgehog (Hh) signaling plays an important role in embryonic patterning and adult stem cell renewal but has recently been found also to be involved in certain stem cell cancers. One of the first steps in Hh signaling is the autoprocessing of Hh protein, in which the C-terminal domain (Hh-C) catalyzes a cholesterol-dependent autocleavage reaction that leads to the production of the cholesterol ester of the N-terminal Hh domain (Hh-N), thereby yielding a signaling molecule that activates the Hh pathway by binding to the Patched receptor. This article describes an in vitro, homogeneous assay system that measures changes in fluorescence polarization that accompany the cholesterol-dependent autocleavage of Hh protein. The assay system makes use of a modified Hh protein in which Hh-N, which is not essential for autocleavage, is replaced by a 25-residue peptide containing a tetracysteine motif, complexed with a bisarsenical fluorophore. The assay is quite robust and easily adapted to high-throughput screening in 384-well plates with Z' factors above 0.8. It has been used to screen the National Institutes of Health Clinical Collection, which has led to the identification of 2 compounds that inhibit the cholesterol-dependent autocleavage of Hh protein at micromolar concentrations. 相似文献
14.
新型冠状病毒主蛋白酶(main protease, Mpro)通过水解多聚蛋白质体(polyprotein)调控病毒基因组RNA复制,且人体不存在其同源蛋白酶,这使Mpro成为抗新型冠状病毒药物开发的理想靶标之一。本研究基于荧光偏振技术(fluorescence polarization,FP)和生物素-亲和素反应(biotin-avidin system, BAS)原理,成功地建立了三明治样荧光偏振筛选模型用于Mpro小分子抑制剂的快速筛选。通过对天然产物化合物库进行高通量筛选,发现了漆树酸(anacardic acid,AA)是Mpro的竞争型抑制剂,1,2,3,4,6-O-五没食子酰葡萄糖(1,2,3,4,6-O-pentagalloylglucose,PGG)是Mpro的混合型抑制剂,且已报道的部分抑制剂是非特异性Mpro小分子抑制剂。文中建立的三明治样荧光偏振筛选模型具有良好的简便性、灵敏性和稳定性,初步证实了漆树酸和PGG是一类新型苗头化合物,建立科学严谨的活性评价体系对于抗新型冠状病毒药物的筛选与发现是至关重要的。 相似文献
15.
A high-throughput screen for identification of molecular mimics of Smac/DIABLO utilizing a fluorescence polarization assay 总被引:2,自引:0,他引:2
Glover CJ Hite K DeLosh R Scudiero DA Fivash MJ Smith LR Fisher RJ Wu JW Shi Y Kipp RA McLendon GL Sausville EA Shoemaker RH 《Analytical biochemistry》2003,320(2):157-169
Resistance to apoptosis is afforded by inhibitor of apoptosis proteins (IAPs) which bind to and inhibit the caspases responsible for cleavage of substrates leading to apoptotic cell death. Smac (or DIABLO), a proapoptotic protein released from the mitochondrial intermembrane space into the cytosol, promotes apoptosis by binding to IAPs, thus reversing their inhibitory effects on caspases. We have developed a high-throughput fluorescence polarization assay utilizing a fluorescein-labeled peptide similar to the "IAP binding" domain of Smac N terminus complexed with the BIR3 domain of X-linked IAP (XIAP) to identify small-molecule mimics of the action of Smac. The IC(50)s of peptides and a tetrapeptidomimetic homologous to the N terminus of Smac demonstrated the specificity and utility of this assay. We have screened the National Cancer Institute "Training Set" of 230 compounds, with well-defined biological actions, and the "Diversity Set" of 2000 chemically diverse structures for compounds which significantly reduced fluorescence polarization. Highly fluorescing or fluorescence-quenching compounds (false positives) were distinguished from those which interfered with Smac peptide binding to the XIAP-BIR3 in a dose-dependent manner (true positives). This robust assay offers potential for high-throughput screening discovery of novel compounds simulating the action of Smac/DIABLO. 相似文献
16.
Fluoresceinated FKBP12 ligands for a high-throughput fluorescence polarization assay 总被引:1,自引:0,他引:1
Dubowchik GM Ditta JL Herbst JJ Bollini S Vinitsky A 《Bioorganic & medicinal chemistry letters》2000,10(6):559-562
Several fluoresceinated FKBP12 ligands have been prepared for a high-throughput fluorescence polarization assay. K(i)s for FKBP12 rotamase inhibition by these ligands range from 1.3 microM to 32 nM, and their design is based on X-ray crystal structures of FKBP12 complexed with known immunophilin ligands. 相似文献
17.
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone required for the stability and function of a number of client proteins, many of which are involved in cancer development. The natural products geldanamycin (GM) and radicicol (RD) are known inhibitors of Hsp90, and their derivatives are being developed for the treatment of various cancers. To identify novel Hsp90 inhibitors, a highly robust time-resolved fluorescence resonance energy transfer (TR-FRET)-based HTS assay that measures the binding of biotinylated geldanamycin (biotin-GM) to the His-tagged human Hsp90 N-terminal ATP-binding domain (Hsp90N) was developed. This assay was optimized in 1536-well plates and was used as the primary assay to screen 10(6) compounds. Identified "hits" were then confirmed in a scintillation proximity assay (SPA) and a DEAE membrane-based assay for [(3)H]AAG binding to Hsp90. In addition, a surface plasmon resonance (SPR) assay that measures the direct interaction of Hsp90 with its inhibitors was developed and used to further characterize the identified inhibitors. Several potent and reversible inhibitors of human Hsp90 with K(d) values measured in the high nanomolar range were identified. 相似文献
18.
Antiapoptotic protein Bcl-x(L) has been demonstrated to play a very important role in a variety of diseases such as cancer. Its biological function can be inhibited by proapoptotic proteins such Bak, Bad, and Bax by forming complexes mediated primarily by the Bcl-2 homology 3 (BH3) domain. To facilitate drug discovery for Bcl-x(L) inhibitors, we have developed and optimized a fluorescence polarization assay based on the interaction between Bcl-x(L) and BH3 domain peptides. We observed that the fluorescein-labeled Bad BH3 peptide [NLWAAQRYGRELRRMSDK(fluorescein)FVD or fluorescent Bad peptide] generates best overall results. Fluorescent Bad peptide interacts strongly with Bcl-x(L) with a K(d) of 21.48nM. The assay is stable over a 24-h period and can tolerate the presence of dimethyl sulfoxide up to 8%. By using a competition assay, several peptides derived from the BH3 region of Bak, Bad, Bax, and Bcl-2 were investigated. Bad and Bak BH3 peptides compete efficiently with IC(50) values of 0.048 and 1.14 microM, respectively, while the peptides from the BH3 region of Bcl-2 and Bax compete weakly. A mutated Bak peptide, which has been shown to be inactive for binding to Bcl-x(L), did not compete. The relative binding order of the peptides (Bad>Bak>Bcl-2>Bax>mutated Bak) correlates well with previously published results. When tested in high-throughput formats, the assay has a signal-to-noise ratio of 15.37 and a Z(') factor of at least 0.73. The plate-to-plate variability for free peptide control and bound peptide control is minimal. This validates the assay not only for investigating the nature of Bcl-x(L)-peptide interaction, but also for high-throughput screening of Bcl-x(L) inhibitors. 相似文献
19.
Mazitschek R Patel V Wirth DF Clardy J 《Bioorganic & medicinal chemistry letters》2008,18(9):2809-2812
Histone deacetylases (HDACs) regulate many important physiological processes and the discovery of small molecules that modulate HDAC activity has both academic and clinical relevance. HDAC inhibitors, most notably SAHA, have been pursued as cancer chemotherapeutics but may be useful in treating psychiatric disorders, malaria, and other diseases. Herein, we describe an inexpensive and robust assay, based on fluorescence polarization, for HDAC ligand discovery. The assay is well suited for high-throughput screening and enzyme kinetic studies. 相似文献
20.
Kim J Felts S Llauger L He H Huezo H Rosen N Chiosis G 《Journal of biomolecular screening》2004,9(5):375-381
Heat shock protein 90 (Hsp90) is a molecular chaperone with essential functions in maintaining transformation, and there is increasing interest in developing Hsp90 inhibitors as cancer therapeutics. In this study, the authors describe the development and optimization of a novel assay for the identification of Hsp90 inhibitors using fluorescence polarization. The assay is based on the competition of fluorescently (BODIPY) labeled geldanamycin (GM) for binding to purified recombinant Hsp90alpha (GM is a natural product that binds to the ATP/ADP pocket in the amino terminal of Hsp90). The authors show that GM-BODIPY binds Hsp90alpha with high affinity. Even at low Hsp90alpha concentrations (30 nM), the measured polarization value is close to the maximum assay range of 160 mP, making measurements very sensitive. Its performance, as judged by signal-to-noise ratios (> 10) and Z and Z' values (> 0.5), suggests that this is a robust and reliable assay. GM, PU24FCl, ADP, and ATP, all known to bind to the Hsp90 pocket, compete with GM-BODIPY for binding to Hsp90alpha with EC(50)s in agreement with reported values. These data demonstrate that the Hsp90-FP-based assay can be used for high-throughput screening in aiding the identification of novel Hsp90 inhibitors. 相似文献