首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Neural retina from most species contains 3,4-dihydroxyphenylethylamine (dopamine) receptors coupled to stimulation of adenylate cyclase activity. It has been demonstrated that release of dopamine from its neurons and subsequent occupation of dopamine receptors is increased by light. In this study, we have shown that adenylate cyclase activity in bovine retina is highly responsive to the endogenous Ca2+-binding protein, cal-modulin, and that calmodulin can increase dopamine-sen-sitive adenylate cyclase activity in bovine retina. We further demonstrate that both dopamine- and calmodulin-stimulated adenylate cyclase activities can be regulated by alterations in light. Bovine retinas were dissected from the eye under a low-intensity red safety light, defined as dark conditions, and incubated for 20 min in an oxygenated Krebs Henseleit buffer under either dark or light conditions. The retinas were then homogenized and adenylate cyclase activity measured in a paniculate fraction washed to deplete it of endogenous Ca2+ and calmodulin. Activation of adenylate cyclase activity by calmodulin, dopamine, and the nonhydrolyzable GTP analog, gua-nosine-5′-(β,γ-imido)triphosphate (GppNHp), was significantly (60%) greater in paniculate fractions from retinas that had been incubated under dark conditions as compared to those incubated under light conditions. Basal, Mn2+-, and GTP-stimulated adenylate cyclase activities were not altered by changes in lighting conditions. Calmodulin could increase the maximum stimulation of adenylate cyclase by dopamine in retinas incubated under either dark or light conditions, but the degree of its effect was greater in retinas incubated under light conditions. Activation of adenylate cyclase by calmodulin, dopamine, and GppNHp in paniculate fractions from retinas incubated under light conditions was indistinguishable from the activation obtained when retinas were incubated in the dark in the presence of exogenous dopamine. These results suggest that an increased release of dopamine occurs in light. The decreased response of adenylate cyclase to exogenous dopamine can then be explained by a subsequent down-regulation of dopamine receptor activity. The down-regulation of dopamine receptor activity can also regulate activation of adenylate cyclase by GppNHp and calmodulin. The results suggest that dopamine, calmodulin, and GppNHp are modulators of a common component of adenylate cyclase activity, and this component is regulated by light.  相似文献   

2.
The cardiac β-adrenergic coupled adenylate cyclase system was examined in young and old male Wistar rats. The concentration of binding sites for (?) 3H-DHA in membranes prepared from cardiac ventricles was 21.1 ± 2.78 (SD) fmoles/mg protein in 3–4 month old rats (young rats) and 31.2 ± 2.20 fmoles/mg protein in 24 month old rats (old rats). The dissociation constant, KD was 4.3 ± 1.8 nM and 6.7 ± 1.7 nM for young and old rats, respectively. Various compounds were used to study the characteristics of activation of adenylate cyclase in homogenates from cardiac ventricles. Basal adenylate cyclase was reduced 30% in old animals compared to young (6.1 pmoles/min/mg protein in 24 month vs. 8.6 pmoles/min/mg protein in 3–4 month). (?)Isoproterenol (10?5M) alone stimulated adenylate cyclase greater than two-fold in young rats (10.6 pmoles/min/mg protein above basal) and this stimulation was 34% lower in old animals. GppNHp (100 μM), fluoride (10 mM), and forskolin (100 μM) activation of adenylate cyclase above basal was reduced 38, 37, and 34%, respectively, in the old animals. No significant changes between the two groups were noted in the apparent affinity of GppNHp either alone or in the presence of (?)isoproterenol nor in the affinities of catecholamine agonists for activation of cyclase. These results suggest a reduction in the amount of functional regulatory protein or possibly cyclase in 24 month old rat ventricular tissue compared to 3–4 month old tissue. However, this data does not rule out the possibility of altered molecular interactions of a full complement of regulatory protein (s) with β-adrenergic receptor and/or catalytic adenylate cyclase.  相似文献   

3.
The mechanism by which chloride stimulates adenylate cyclase was investigated. Depletion of GDP increased basal adenylate cyclase activity and reduced the stimulation by isoprenaline. Restoration of bound GDP partially reversed these effects. Chloride stimulated cyclase activity by the same proportion in control, GDP-depleted and GDP-restored preparations, as did Gpp(NH)p. Fluoride increased adenylate cyclase activity to the same final level in both GDP-depleted and GDP-restored membranes; addition of Gpp(NH)p as well as fluoride had no further effect. Solubilisation of adenylate cyclase reduced the stimulatory effect of Gpp(NH)p only slightly, but greatly attenuated the activation by chloride. We conclude that chloride does not stimulate cyclase activity by an action on GDP exchange. Activation by chloride may be due to a disrupting or chaotropic effect on membrane/protein interactions.  相似文献   

4.
Incubation of slices of rat cerebral cortical grey matter in Krebs-Ringer bicarbonate-glucose buffer induced a rapid decline in the responsiveness of the adenylate cyclase in subsequently prepared membrane preparations to stimulation by various activators of the enzyme. The loss of responsiveness was time- and temperature-dependent, showed an absolute dependence on extracellular calcium ions, and was mimicked by the presence of serine proteases in the incubation medium. The resultant adenylate cyclase preparation was partially responsive to activation by fluoride and guanylylimidodiphosphate but had become virtually unresponsive to activation by ganglioside, trypsin, or beta-adrenergic agonists. The loss of responsiveness of adenylate cyclase was not altered if slices were incubated with depolarizing agents, putative neurotransmitters, receptor blockers, serine protease inhibitors, or adenosine deaminase. The nature of the calcium-dependent mechanism involved in the loss responsiveness of membranal adenylate cyclase is unknown. A suggested mechanism for the loss of sensitivity is the action of a membrane-bound, calcium-dependent protease.  相似文献   

5.
C A Nelson  K B Seamon 《Life sciences》1988,42(14):1375-1383
The binding of [3H]forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating [3H]forskolin bound to protein from free [3H]forskolin by rapid filtration. The Kd for [3H]forskolin binding to solubilized proteins was 14 nM which was similar to that for [3H]forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for [3H]forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. [3H]forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmol/mg protein which increased to 94 fmol/mg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on [3H]forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmol/mg/min which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmol/mg/min which was not stimulated by GppNHp or forskolin. Thus, the number of high affinity binding sites for [3H]forskolin in solubilized preparations correlated with the activation of adenylate cyclase by GppNHp via the guanine nucleotide binding protein (GS).  相似文献   

6.
Summary n-Alkanols (from methanol to decanol) have a biphasic effect on rat cardiac adenylate cyclase either basal or stimulated by GTP, GppNHp, NaF or hormones (isoproterenol, glucagon, secretin) in the presence of GTP. At high concentration, all the enzyme activities are inhibited. At low concentration, adenylate cyclase activity is either unchanged or potentiated depending on both the stimulus and the alkanols involved. Potentiation is due to an increase of maximum velocity with no change in the activation constant of the enzyme. Basal activity is unchanged as well as the isoproterenol-and glucagon-stimulated enzyme. The secretin-stimulated enzyme is potentiated. It is the guanyl nucleotide regulatory protein-mediated stimulation of adenylate cyclase which is mainly affected. An attempt was made to relate these effects on adenylate cyclase with physical parameters of the alkanols (partition coefficient). From the data obtained as a function of the alkanol chain-length and of temperature on the adenylate cyclase stimulated by GTP, GppNHp, NaF and permanently activated, it is concluded that the increase in efficacy observed in the presence of alkanol is due to an interaction with the protein moeity particularly with the guanyl nucleotide regulatory protein.  相似文献   

7.
1. Preincubation of luteal membranes with human choriogonadotropin results in the formation of an activated state of adenylate cyclase which is not reversed by washing and which is limited only by the absence of guanine nucleotides, whereas preincubation with GTP yields only a partially activated adenylate cyclase which requires the presence of both GTP and human choriogonadotropin during assay to demonstrate maximal activity. 2. Preincubation of luteal membranes with GTP and human choriogonadotropin does not lead to a synergistic increase in wash-resistant activity. 3. Luteal membranes that had been preincubated with GTP and hormone exhibited a decreasing rate of cyclic AMP synthesis during the adenylate cyclase assay incubation; addition of GTP during the assay incubation reversed the decrease. 4. Membranes that had been preincubated in the absence of guanine nucleotide and hormone showed a `burst' phase of cyclic AMP synthesis when GTP was present in the assay incubation and a `lag' phase with p[NH]ppG (guanosine 5′-[β,γ-imido]triphosphate) present in the assay. The presence of human choriogonadotropin with either nucleotide in the assay incubation eliminated the curvatures in plots observed with guanine nucleotides alone. 5. Luteal adenylate cyclase was persistently activated by preincubation with p[NH]ppG alone or in combination with human choriogonadotropin; the activation caused by p[NH]ppG alone was still increasing after 70min of preincubation, whereas that caused by p[NH]ppG in the presence of hormone was essentially complete within 10min of preincubation. 6. Luteal adenylate cyclase that had been partially preactivated by preincubation with p[NH]ppG was slightly increased in activity by the inclusion of further p[NH]ppG in the adenylate cyclase assay incubation, but more so with p[NH]ppG and hormone. Human choriogonadotropin alone caused no further increase in the activity of the partially stimulated preparation unless p[NH]ppG was also added to the assay incubation. 7. GTP decreased the activity of adenylate cyclase in membranes that had been partially preactivated in the presence of p[NH]ppG; the decrease in activity was greater when GTP and hormone were present simultaneously in the assay. 8. The results indicate that stable activation states of adenylate cyclase can be induced by preincubation of luteal membranes in vitro with human choriogonadotropin or p[NH]ppG, and that in the presence of p[NH]ppG the hormone may accelerate events subsequent to guanine nucleotide binding. Stable activation of luteal adenylate cyclase by prior exposure to GTP is not achieved. The involvement of GTPase activity and of hormone-promoted guanine nucleotide exchange in the modulation of luteal adenylate cyclase activity is discussed.  相似文献   

8.
In particular preparations from guinea-pig ventricle, histamine in the concentration range 10?6–10?3 M caused a 3–5-fold stimulation of adenylate cyclase activity which was dependent on the presence of GTP. The effects of fourteen analogs of histamine were examined on this cyclase preparation. Five of the compounds studied proved to be partial agonists relative to histamine while nine others had essentially the same intrinsic activity as histamine. The intrinsic activities of the partial agonists were increased by GppNHP to the extent that dimaprit, which was a partial agonist in the presence of GTP, became a full agonist in the presence of GppNHp. The relative potencies of the full agonists as activators of the cyclase were found to correlate with the relative potencies on physiologically defined H2 receptor systems. Activation of the cyclase by histamine, as well as by several of the agonist analogs, including dimaprit and tolazoline, was completely blocked by the H2 antagonist cimetidine, but was not affected by pharmacologically relevant concentrations of the H1 antagonist mepyramine, the β-blocker alprenolol, or the α-blocker phentolamine. The results suggest that all the agonists studied probably interact with a common H2 receptor site on the cardiac muscle cell leading to activation of adenylate cyclase. The accompanying increase in cyclic AMP is presumably responsible for the chronotropic and inotropic effects of histamine and related compounds on cardiac muscle.  相似文献   

9.
Heparin inhibited the adenylate cyclase activity of semipurified rat pancreatic plasma membranes stimulated by hormones and by Gpp(NH)p but not by fluoride or when in the persistently active state. When observed, the inhibition was rapid and sustained. It was of a noncompetitive type and never exceeded 20% for secretin. The inhibition of Gpp(NH)p-stimulated activity was more pronounced (48% inhibition at a heparin concentration of 50 μg/ml). For the C-terminal octapeptide of pancreozymin (CCK-8)-stimulated adenylate cyclase, the inhibition amounted to 93% at 50 μg/ml. This inhibition was competitive at low heparin concentration and of a mixed type above 10 μg/ml. Besides, heparin inhibited (I50 = 6 μg/ml) the binding of peptides of the CCK family to their specific receptors without affecting the apparent Kd value of binding. Taken together, these relatively specific effects of heparin gave evidence in favor of the existence of CCK spare receptors. Dextran sulfate was more potent than heparin as an inhibitor of adenylate cyclase activation while chondroitin-4-sulfate and chondroitin-6-sulfate were ineffective. Dansylated pancreatic plasma membranes exhibited characteristics of adenylate cyclase activation by CCK-8 which were similar to those found for untreated membranes exposed to heparin.  相似文献   

10.
Molybdate activation of rat liver plasma membrane adenylate cyclase has been examined and compared with the effect of glucagon, Gpp(NG)p and fluoride. Glucagon does not stimulate the detergent solubilized enzyme, though molybdate, fluoride, and Gpp(NH)p are effective in this regard. The stimulatory effects of either fluoride or molybdate are additive with those of GTP and do not require guanyl nucleotide to evoke their activation. Neither fluoride nor molybdate can substitute for GTP when glucagon is the activator of rat liver adenylate cyclase. The stimulatory effects of either ion on adenylate cyclase are additive with that produced by glucagon. Activation of adenylate cyclase by either molybdate or fluoride occurs by a mechanism distinct from that of glucagon or guanyl nucleotide. The data presented here suggest that fluoride and molybdate may act via a similar mechanism of action. Neither ion displays a lag in activation of adenylate cyclase. The pH profiles of fluoride and molybdate-stimulated adenylate cyclase activity are similar, and distinct from guanyl nucleotide-stimulated activity. Cholera toxin treatment of adenylate cyclase blocks fluoride and molybdate stimulation of the enzyme to the same extent, while enhancing the activation obtained with GTP and hormones.  相似文献   

11.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

12.
A fluorescent GTP analog 2',3'-O-(2,4,6-trinitrocyclohexadienylidine) guanosine 5'-triphosphate (TNP-GTP) has been prepared and some of its physical properties characterized. TNP-GTP was found to be a potent inhibitor of chick embryo heart adenylate cyclase as activated by guanyl 5'-(beta,gamma-imido)triphosphate (GppNHp), F-, and forskolin with Ki values in the 8-15 microM range. It also appeared to inhibit substantially basal adenylate cyclase in this system. TNP-GTP demonstrated an effective competition with [3H]GppNHp, binding to membranes equivalently to GppNHp and about three times better than GTP. 8-Azidoguanosine 5'-triphosphate (8N3GTP) mimics GTP activation of chick embryo heart adenylate cyclase and [gamma-32P]8N3GTP is effectively photoincorporated into a 42,000- to 44,000-Mr doublet when proteins are separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. TNP-GTP effectively prevents this photoincorporation, as does GTP, at concentrations that agree with their respective apparent inhibition and activation binding constants. The data suggest that TNP-GTP could prove to be a valuable tool for studying the mechanisms of GTP regulation of adenylate cyclase and other GTP-regulated systems.  相似文献   

13.
Adenylate cyclase activity has been found in purified secretory vesicle membranes from the adrenal medulla. Activity was detected both by formation of radioactive cAMP from [alpha-32P]ATP and by the competitive protein binding assay for cAMP. Activity was highest at pH 8.0 to 8.5, and was stimulated by sodium fluoride and GppNHp, a GTP analogue known to stimulate adenylate cyclase activity in plasma membrane preparations. The reaction rate was strongly dependent on the molar ratio of Mg2+:ATP in the system. This is the first demonstration of adenylate cyclase in a secretory vesicle membrane.  相似文献   

14.
The adenylate cyclase of rat adipocyte plasma membrane is stimulated by sodium azide with a half maximal activation of 100–150% occuring at 50 mM NaN3. Studies of the effects of azide and fluoride indicate different mechanisms of stimulation of the enzyme by these ions. Comparable stimulation of the activity is obtained by 100 mM NaN3 or 10 mM NaF but unlike azide, higher concentrations of fluoride cause inhibition of the enzyme. Fluoride activated adenylate cyclase is further stimulated by azide. Epinephrine stimulation of the enzyme is absent in the presence of fluoride but the hormone enhances the activity in the presence of azide. Reversal of the inhibitory action of GTP on adenylate cyclase by epinephrine is demonstrated even in the presence of azide but not in the presence of fluoride.  相似文献   

15.
Abstract: The adenylate cyclase activity of rat hippocampal plasma membranes can be stimulated by vaso-active intestinal polypeptide (VIP). Low concentrations (10−9 to 10−7M) of 5'-guanylyl-imido diphosphate (GppNHp) evoke a transient inhibition of the enzyme, which is followed by stimulation with increasing GppNHp concentrations (10−6 to 10−4M). Inclusion of ethyleneglycol - bis - (β - aminoethylether) - N,N' - tetraacetic acid (EGTA) during incubation abolishes the GppNHp inhibition while preserving GppNHp activation. The stimulation induced by GppNHp is amplified by VIP, but the inhibition is unaffected. Adenosine analogs and opiates are inhibitory ligands in the presence of GTP, and their effects can be reversed by the appropiate receptor antagonists, 3-isobutyl-1-methylxanthine and naloxone. Treatment of membranes with trypsin abolishes the GppNHp-induced inhibition without affecting the GppNHp stimulation. The inhibition induced by GppNHp is also abolished by EGTA treatment followed by washing, which coincides wtih a reduction in the adenosine- and opiate-mediated, GTP-dependent inhibition. The GppNHp inhibition can be restored in EGTA-treated but not in trypsin-treated membranes by addition of calcium-calmodulin but not by Ca2+ or Mg2+. Calcium-calmodulindepleted membranes lack calcium stimulation as well as GppNHp-induced inhibition, whereas untreated membranes and calcium-calmodulin-depleted membranes plus exogenous calcium-calmodulin showed calcium stimulation and GppNHp inhibition. These results suggest that calmodulin is involved in both Ca2+ stimulation and guanine nucleotide-mediated inhibition of rat hippocampal adenylate cyclase.  相似文献   

16.
T Arima  T Segawa  Y Nomura 《Life sciences》1986,39(25):2429-2434
The influence of pertussis toxin on the effects of guanine nucleotide on adenylate cyclase activity were investigated in rat striatal membranes. GTP promoted and inhibited the activity at 1 and 100 microM, respectively. The inhibitory effects of GTP were abolished by pretreatment of the membranes with pertussis toxin. GppNHp (guanyl-5'-y1-beta,gamma-imidodiphosphate) exerted only stimulatory effects and pertussis toxin did not affect the effects of GppNHp. GDP at 10 and 100 microM caused significant inhibition which was completely suppressed by pertussis toxin. It is suggested that guanine nucleotide regulates the affinity of as in stimulatory GTP-binding regulatory protein to either beta gamma or catalytic units of adenylate cyclase in a flip-flop manner. Inhibitory GTP-binding regulatory protein seems to play a regulatory role in inhibiting alpha s activity supplying the beta gamma heterodimer.  相似文献   

17.
Inhibition of basal adenylate cyclase by GTP or guanyl-5'-yl imidodiphosphate was abolished in membranes isolated from rat adipocytes previously incubated with pertussis toxin. Forskolin (0.1 microM) stimulated adenylate cyclase about 4-fold and inhibition of cyclase by GTP or guanyl-5'-yl imidodiphosphate was also abolished by pertussis toxin treatment of rat adipocytes. Forskolin (1 microM) increased adenylate cyclase activity at least ten-fold and the inhibitory effect of GppNHp was reduced but not abolished by pertussis toxin. In rabbit adipocytes, pertussis toxin reversed the inhibition of adenylate cyclase activity by GppNHp to the same extent as that by GTP in the presence of 1 microM forskolin. The present results indicate that pertussis toxin can reverse the inhibition of adipocyte adenylate cyclase by nonhydrolyzable GTP analogs as well as that by GTP.  相似文献   

18.
An oxidase activity utilizing reduced nicotinamide adenine dinucleotide phosphate (NADPH) and producing H2O2 was observed in intact adipocytes of rat, as well as in the isolated plasma membranes of these cells. A stoichiometry of 1 mol of H2O2 production per mole of NADPH disappearance was found with isolated plasma membranes. Activation of this enzyme (R) was produced by pretreatment of cells with insulin, dithiothreitol, or sulfhydryl inhibitors, e.g., p-chloromercuribenzoate or tosyl-l-lysine chloromethyl ketone. All of these agents also stimulated glucose oxidation via the hexose monophosphate shunt. Activation of R was also observed with biologically active derivatives of insulin, e.g., proinsulin or desalanine insulin, but not with an inactive derivative, desoctapeptide insulin. The enzyme could not be activated by exposing the cells to membrane perturbants, e.g., hypotonic conditions or Triton X-100 (0.01–0.1%). The enzyme activity in the plasma membrane had a pH optimum at 6.0 and, from the Lineweaver-Burke plot, V was determined at 230 nmol and Km for NADPH was at 5.8 × 10?5, m. The activity remained unaltered in the presence of sodium azide or cyanide. Preincubation of adipocytes with insulin or SH reagents or direct addition of oxidants, e.g., H2O2, potassium ferricyanide, or phenazine methosulfate, to the membranes also caused inhibition of adenylate cyclase (AC). This enzyme activity could be restored in these preparations by adding thiols. It is suggested that inhibition of AC in whole cells in response to insulin may be caused by oxidation of its SH groups by the H2O2 generated from the activated NADPH oxidase. Reversal of this inhibition may involve cellular reducing equivalents. The evidence suggests that the plasma membrane enzymes, i.e., NADPH oxidase and adenylate cyclase, are controlled, in part, by the intracellular redox potential.  相似文献   

19.
20.
K.B. Seamon  J.W. Daly 《Life sciences》1982,30(17):1457-1464
Calcium stimulates adenylate cyclase activity in rat cerebral cortical membranes with either ATP or AppNHp as substrate. In contrast, isoproterenol stimulates the cerebral cortical enzyme with ATP as substrate but not with AppNHp as substrate unless exogenous GTP is added. In rat striatal membranes, calcium or dopamine stimulate adenylate cyclase activity with ATP as substrate, but not with AppNHp as substrate. GTP restores the dopamine but not the calcium response. The inhibitory guanine nucleotide GDP-βS antagonizes dopamine and GppNHp stimulation of the brain adenylate cyclases, but not stimulation by calcium of either rat cerebral cortical or striatal enzymes. Results indicate that GTP is not requisite to calcium-calmodulin activation of adenylate cyclases in brain membranes. In addition, calcium-calmodulin cannot activate striatal adenylate cyclases with a nonphosphorylating nucleotide, AppNHp, as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号