首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.  相似文献   

2.
Physiological effects of beta adrenergic receptor (beta2AR) stimulation have been classically shown to result from G(s)-dependent adenylyl cyclase activation. Here we demonstrate a novel signaling mechanism wherein beta-arrestins mediate beta2AR signaling to extracellular-signal regulated kinases 1/2 (ERK 1/2) independent of G protein activation. Activation of ERK1/2 by the beta2AR expressed in HEK-293 cells was resolved into two components dependent, respectively, on G(s)-G(i)/protein kinase A (PKA) or beta-arrestins. G protein-dependent activity was rapid, peaking within 2-5 min, was quite transient, was blocked by pertussis toxin (G(i) inhibitor) and H-89 (PKA inhibitor), and was insensitive to depletion of endogenous beta-arrestins by siRNA. beta-Arrestin-dependent activation was slower in onset (peak 5-10 min), less robust, but more sustained and showed little decrement over 30 min. It was insensitive to pertussis toxin and H-89 and sensitive to depletion of either beta-arrestin1 or -2 by small interfering RNA. In G(s) knock-out mouse embryonic fibroblasts, wild-type beta2AR recruited beta-arrestin2-green fluorescent protein and activated pertussis toxin-insensitive ERK1/2. Furthermore, a novel beta2AR mutant (beta2AR(T68F,Y132G,Y219A) or beta2AR(TYY)), rationally designed based on Evolutionary Trace analysis, was incapable of G protein activation but could recruit beta-arrestins, undergo beta-arrestin-dependent internalization, and activate beta-arrestin-dependent ERK. Interestingly, overexpression of GRK5 or -6 increased mutant receptor phosphorylation and beta-arrestin recruitment, led to the formation of stable receptor-beta-arrestin complexes on endosomes, and increased agonist-stimulated phospho-ERK1/2. In contrast, GRK2, membrane translocation of which requires Gbetagamma release upon G protein activation, was ineffective unless it was constitutively targeted to the plasma membrane by a prenylation signal (CAAX). These findings demonstrate that the beta2AR can signal to ERK via a GRK5/6-beta-arrestin-dependent pathway, which is independent of G protein coupling.  相似文献   

3.
Both beta(2)- and beta(3)-adrenergic receptors (ARs) are able to activate the extracellular signal-regulated kinase (ERK) pathway. We previously showed that c-Src is required for ERK activation by beta(2)AR and that it is recruited to activated beta(2)AR through binding of the Src homology 3 (SH3) domain to proline-rich regions of the adapter protein beta-arrestin1. Despite the absence of sites for phosphorylation and beta-arrestin binding, ERK activation by beta(3)AR still requires c-Src. Agonist activation of beta(2)AR, but not beta(3)AR, led to redistribution of green fluorescent protein-tagged beta-arrestin to the plasma membrane. In beta-arrestin-deficient COS-7 cells, beta-agonist-dependent co-precipitation of c-Src with the beta(2)AR required exogenous beta-arrestin, but activated beta(3)AR co-precipitated c-Src in the absence or presence of beta-arrestin. ERK activation and Src co-precipitation with beta(3)AR also occurred in adipocytes in an agonist-dependent and pertussis toxin-sensitive manner. Protein interaction studies show that the beta(3)AR interacts directly with the SH3 domain of Src through proline-rich motifs (PXXP) in the third intracellular loop and the carboxyl terminus. ERK activation and Src co-precipitation were abolished in cells expressing point mutations in these PXXP motifs. Together, these data describe a novel mechanism of ERK activation by a G protein-coupled receptor in which the intracellular domains directly recruit c-Src.  相似文献   

4.
Shiina T  Nagao T  Kurose H 《Life sciences》2001,68(19-20):2251-2257
It has been reported that beta-arrestin is essential for the internalization of many G protein-coupled receptors. Since beta1-adrenergic receptor (beta1AR) shows the resistance to agonist-induced internalization, we examine the interaction of beta-arrestin with beta1AR with three different approaches: translocation of beta-arrestin to the plasma membrane, direct binding of in vitro translated beta-arrestin to intracellular domains of beta1- and beta2ARs, inhibition of beta1- and beta2AR-stimulated adenylyl cyclase activities by beta-arrestin. The enhanced green fluorescent protein (EGFP)-tagged beta-arrestin 2 (beta-arrestin 2-GFP) translocates to and stays at the plasma membrane by beta2AR stimulation. Beta-arrestin 2-GFP also translocates to the plasma membrane upon beta1AR stimulation. However, it returns to the cytoplasm 10 - 30 min after agonist stimulation. The amount of beta-arrestin bound to the third intracellular loop and the carboxyl tail of beta1AR is lower than that of beta2AR. The fusion protein of beta-arrestin 1 with glutathione-S-transferase inhibits the beta1- and beta2AR-stimulated adenylyl cyclase activities. However, inhibition of the beta1AR-stimulated activity requires a higher amount of the fusion protein than that of the beta2AR-stimulated activity. These results suggest that affinity of beta1AR for beta-arrestins is lower than that of beta2AR, and explains the resistance to agonist-induced internalization. This conclusion is further supported by the finding that beta-arrestin can induce internalization of beta1AR when beta-arrestin 1 fused to the carboxyl tail of beta1AR.  相似文献   

5.
beta-Arrestins are multifunctional proteins identified on the basis of their ability to bind and uncouple G protein-coupled receptors (GPCR) from heterotrimeric G proteins. In addition, beta-arrestins play a central role in mediating GPCR endocytosis, a key regulatory step in receptor resensitization. In this study, we visualize the intracellular trafficking of beta-arrestin2 in response to activation of several distinct GPCRs including the beta2-adrenergic receptor (beta2AR), angiotensin II type 1A receptor (AT1AR), dopamine D1A receptor (D1AR), endothelin type A receptor (ETAR), and neurotensin receptor (NTR). Our results reveal that in response to beta2AR activation, beta-arrestin2 translocation to the plasma membrane shares the same pharmacological profile as described for receptor activation and sequestration, consistent with a role for beta-arrestin as the agonist-driven switch initiating receptor endocytosis. Whereas redistributed beta-arrestins are confined to the periphery of cells and do not traffic along with activated beta2AR, D1AR, and ETAR in endocytic vesicles, activation of AT1AR and NTR triggers a clear time-dependent redistribution of beta-arrestins to intracellular vesicular compartments where they colocalize with internalized receptors. Activation of a chimeric AT1AR with the beta2AR carboxyl-terminal tail results in a beta-arrestin membrane localization pattern similar to that observed in response to beta2AR activation. In contrast, the corresponding chimeric beta2AR with the AT1AR carboxyl-terminal tail gains the ability to translocate beta-arrestin to intracellular vesicles. These results demonstrate that the cellular trafficking of beta-arrestin proteins is differentially regulated by the activation of distinct GPCRs. Furthermore, they suggest that the carboxyl-tail of the receptors might be involved in determining the stability of receptor/betaarrestin complexes and cellular distribution of beta-arrestins.  相似文献   

6.
The cAMP-specific phosphodiesterase PDE4D5 can interact with the signalling scaffold proteins RACK (receptors for activated C-kinase) 1 and beta-arrestin. Two-hybrid and co-immunoprecipitation analyses showed that RACK1 and beta-arrestin interact with PDE4D5 in a mutually exclusive manner. Overlay studies with PDE4D5 scanning peptide array libraries showed that RACK1 and beta-arrestin interact at overlapping sites within the unique N-terminal region of PDE4D5 and at distinct sites within the conserved PDE4 catalytic domain. Screening scanning alanine substitution peptide arrays, coupled with mutagenesis and truncation studies, allowed definition of RACK1 and beta-arrestin interaction sites. Modelled on the PDE4D catalytic domain, these form distinct well-defined surface-exposed patches on helices-15-16, for RACK1, and helix-17 for beta-arrestin. siRNA (small interfering RNA)-mediated knockdown of RACK1 in HEK-293 (human embryonic kidney) B2 cells increased beta-arrestin-scaffolded PDE4D5 approx. 5-fold, increased PDE4D5 recruited to the beta2AR (beta2-adrenergic receptor) upon isoproterenol challenge approx. 4-fold and severely attenuated (approx. 4-5 fold) both isoproterenol-stimulated PKA (protein kinase A) phosphorylation of the beta2AR and activation of ERK (extracellular-signal-regulated kinase). The ability of a catalytically inactive form of PDE4D5 to exert a dominant negative effect in amplifying isoproterenol-stimulated ERK activation was ablated by a mutation that blocked the interaction of PDE4D5 with beta-arrestin. In the present study, we show that the signalling scaffold proteins RACK1 and beta-arrestin compete to sequester distinct 'pools' of PDE4D5. In this fashion, alterations in the level of RACK1 expression may act to modulate signal transduction mediated by the beta2AR.  相似文献   

7.
Kim J  Ahn S  Guo R  Daaka Y 《Biochemistry》2003,42(10):2887-2894
The epidermal growth factor (EGF) receptor (EGFR) plays a central role in regulating cell proliferation, differentiation, and migration. Cellular responses to EGF are dependent upon the amount of EGFR present on the cell surface. Stimulation with EGF induces sequestration of the receptor from the plasma membrane and its subsequent downregulation. Recently, internalization of the EGFR was also shown to be required for mitogenic signaling via the activation of MAP kinases. Therefore, mechanisms regulating internalization of the EGFR represent an important facet for the control of cellular response. Here, we demonstrate that EGFR is removed from the cell surface not only following stimulation with EGF, but also in response to stimulation of G protein-coupled lysophosphatidic acid (LPA) and beta2 adrenergic (beta2AR) receptors. Using a FLAG epitope-tagged EGFR to quantitate receptor internalization, we show that incubation with EGF, LPA, or isoproterenol (ISO) causes the time-dependent loss of cell surface EGFR. Internalization of EGFR by these ligands involves the tyrosine kinase activity of the receptor itself and c-Src, as well as the GTPase activity of dynamin. Unexpectedly, we find that internalization of the EGFR by EGF is dependent upon Gbetagamma and beta-arrestin proteins; expression of minigenes encoding the carboxyl terminii of the G protein-coupled receptor kinase 2, or beta-arrestin1, attenuates LPA-, ISO-, and EGF-mediated internalization of EGFR. Thus, G protein-coupled receptors can control the function of the EGFR by regulating its endocytosis.  相似文献   

8.
The beta1-adrenergic receptor (beta1AR) is known to be localized to synapses and to modulate synaptic plasticity in many brain regions, but the molecular mechanisms determining beta1AR subcellular localization are not fully understood. Using overlay and pull-down techniques, we found that the beta1AR carboxyl terminus associates with MAGI-2 (membrane-associated guanylate kinase inverted-2), a protein also known as S-SCAM (synaptic scaffolding molecule). MAGI-2 is a multidomain scaffolding protein that contains nine potential protein-protein interaction modules, including 6 PDZ domains, 2 WW domains, and a guanylate kinase-like domain. The beta1AR carboxyl terminus binds with high affinity to the first PDZ domain of MAGI-2, with the last few amino acids of the beta1AR carboxyl terminus being the key determinants of the interaction. In cells, the association of full-length beta1AR with MAGI-2 occurs constitutively and is enhanced by agonist stimulation of the receptor, as assessed by both co-immunoprecipitation experiments and immunofluorescence co-localization studies. Agonist-induced internalization of the beta1AR is markedly increased by co-expression with MAGI-2. Strikingly, this result is the opposite of the effect of co-expression with PSD-95, a previously reported binding partner of the beta1AR. Further cellular experiments revealed that MAGI-2 has no effect on beta1AR oligomerization but does promote association of beta1AR with the cytoplasmic signaling protein beta-catenin, a known MAGI-2 binding partner. These data reveal that MAGI-2 is a specific beta1AR binding partner that modulates beta1AR function and facilitates the physical association of the beta1AR with intracellular proteins involved in signal transduction and synaptic regulation.  相似文献   

9.
Gao H  Sun Y  Wu Y  Luan B  Wang Y  Qu B  Pei G 《Molecular cell》2004,14(3):303-317
Norepinephrine released by the sympathetic nerve terminals regulates the immune system primarily via its stimulation of beta(2)-adrenergic receptor (beta(2)AR), but the underlying molecular mechanisms remain to be elicited. Beta(2)AR, a well-studied G protein-coupled receptor (GPCR), is functionally regulated by beta-arrestin2, which not only causes receptor desensitization and internalization but also serves as a signaling molecule in GPCR signal transduction. Here we show that beta-arrestin2 directly interacts with IkappaBalpha (inhibitor of NF-kappaB, the key molecule in innate and adaptive immunity) and thus prevents the phosphorylation and degradation of IkappaBalpha. Consequently, beta-arrestin2 effectively modulates activation of NF-kappaB and expression of NF-kappaB target genes. Moreover, stimulation of beta(2)AR significantly enhances beta-arrestin2-IkappaBalpha interaction and greatly promotes beta-arrestin2 stabilization of IkappaBalpha, indicating that beta-arrestin2 mediates a crosstalk between beta(2)AR and NF-kappaB signaling pathways. Taken together, the current study may present a novel mechanism for regulation of the immune system by the sympathetic nervous system.  相似文献   

10.
Beta-arrestin2 and its ubiquitination play crucial roles in both internalization and signaling of seven-transmembrane receptors (7TMRs). To understand the connection between ubiquitination and the endocytic and signaling functions of beta-arrestin, we generated a beta-arrestin2 mutant that is defective in ubiquitination (beta-arrestin2(0K)), by mutating all of the ubiquitin acceptor lysines to arginines and compared its properties with the wild type and a stably ubiquitinated beta-arrestin2-ubiquitin (Ub) chimera. In vitro translated beta-arrestin2 and beta-arrestin2(0K) displayed equivalent binding to recombinant beta(2)-adrenergic receptor (beta(2)AR) reconstituted in vesicles, whereas beta-arrestin2-Ub bound approximately 4-fold more. In cellular coimmunoprecipitation assays, beta-arrestin2(0K) bound nonreceptor partners, such as AP-2 and c-Raf and scaffolded phosphorylated ERK robustly but displayed weak binding to clathrin. Moreover, beta-arrestin2(0K) was recruited only transiently to activated receptors at the membrane, did not enhance receptor internalization, and decreased the amount of phosphorylated ERK assimilated into isolated beta(2)AR complexes. Although the wild type beta-arrestin2 formed ERK signaling complexes with the beta(2)AR at the membrane, a stably ubiquitinated beta-arrestin2-Ub chimera not only stabilized the ERK signalosomes but also led to their endosomal targeting. Interestingly, in cellular fractionation assays, the ubiquitination state of beta-arrestin2 favors its distribution in membrane fractions, suggesting that ubiquitination increases the propensity of beta-arrestin for membrane association. Our findings suggest that although beta-arrestin ubiquitination is dispensable for beta-arrestin cytosol to membrane translocation and its "constitutive" interactions with some cytosolic proteins, it nevertheless is a prerequisite both for the formation of tight complexes with 7TMRs in vivo and for membrane compartment interactions that are crucial for downstream endocytic and signaling processes.  相似文献   

11.
Agonist-stimulated beta(2)-adrenergic receptor (beta(2)AR) ubiquitination is a major factor that governs both lysosomal trafficking and degradation of internalized receptors, but the identity of the E3 ubiquitin ligase regulating this process was unknown. Among the various catalytically inactive E3 ubiquitin ligase mutants that we tested, a dominant negative Nedd4 specifically inhibited isoproterenol-induced ubiquitination and degradation of the beta(2)AR in HEK-293 cells. Moreover, siRNA that down-regulates Nedd4 expression inhibited beta(2)AR ubiquitination and lysosomal degradation, whereas siRNA targeting the closely related E3 ligases Nedd4-2 or AIP4 did not. Interestingly, beta(2)AR as well as beta-arrestin2, the endocytic and signaling adaptor for the beta(2)AR, interact robustly with Nedd4 upon agonist stimulation. However, beta(2)AR-Nedd4 interaction is ablated when beta-arrestin2 expression is knocked down by siRNA transfection, implicating an essential E3 ubiquitin ligase adaptor role for beta-arrestin2 in mediating beta(2)AR ubiquitination. Notably, beta-arrestin2 interacts with two different E3 ubiquitin ligases, namely, Mdm2 and Nedd4 to regulate distinct steps in beta(2)AR trafficking. Collectively, our findings indicate that the degradative fate of the beta(2)AR in the lysosomal compartments is dependent upon beta-arrestin2-mediated recruitment of Nedd4 to the activated receptor and Nedd4-catalyzed ubiquitination.  相似文献   

12.
Agonist-dependent regulation of G protein-coupled receptors is dependent on their phosphorylation by G protein-coupled receptor kinases (GRKs). GRK2 and GRK3 are selectively regulated in vitro by free Gbetagamma subunits and negatively charged membrane phospholipids through their pleckstrin homology (PH) domains. However, the molecular binding determinants and physiological role for these ligands remain unclear. To address these issues, we generated an array of site-directed mutants within the GRK2 PH domain and characterized their interaction with Gbetagamma and phospholipids in vitro. Mutation of several residues in the loop 1 region of the PH domain, including Lys-567, Trp-576, Arg-578, and Arg-579, resulted in a loss of receptor phosphorylation, likely via disruption of phospholipid binding, that was reversed by Gbetagamma. Alternatively, mutation of residues distal to the C-terminal amphipathic alpha-helix, including Lys-663, Lys-665, Lys-667, and Arg-669, resulted in decreased responsiveness to Gbetagamma. Interestingly, mutation of Arg-587 in beta-sheet 3, a region not previously thought to interact with Gbetagamma, resulted in a specific and profound loss of Gbetagamma responsiveness. To further characterize these effects, two mutants (GRK2(K567E/R578E) and GRK2(R587Q)) were expressed in Sf9 cells and purified. Analysis of these mutants revealed that GRK2(K567E/R578E) was refractory to stimulation by negatively charged phospholipids but bound Gbetagamma similar to wild-type GRK2. In contrast, GRK2(R587Q) was stimulated by acidic phospholipids but failed to bind Gbetagamma. In order to examine the role of phospholipid and Gbetagamma interaction in cells, wild-type and mutant GRK2s were expressed with a beta(2)-adrenergic receptor (beta(2)AR) mutant that is responsive to GRK2 phosphorylation (beta(2)AR(Y326A)). In these cells, GRK2(K567E/R578E) and GRK2(R587Q) were largely defective in promoting agonist-dependent phosphorylation and internalization of beta(2)AR(Y326A). Similarly, wild-type GRK2 but not GRK2(K567E/R578E) or GRK2(R587Q) promoted morphinedependent phosphorylation of the mu-opioid receptor in cells. Thus, we have (i) identified several specific GRK2 binding determinants for Gbetagamma and phospholipids, and (ii) demonstrated that Gbetagamma binding is the limiting step for GRK2-dependent receptor phosphorylation in cells.  相似文献   

13.
Lin FT  Chen W  Shenoy S  Cong M  Exum ST  Lefkowitz RJ 《Biochemistry》2002,41(34):10692-10699
Beta-arrestins mediate agonist-dependent desensitization and internalization of G protein-coupled receptors. Previously, we have shown that phosphorylation of beta-arrestin1 by ERKs at Ser-412 regulates its association with clathrin and its function in promoting clathrin-mediated internalization of the receptor. In this paper we report that beta-arrestin2 is also phosphorylated, predominantly at residues Thr-383 and Ser-361. Isoproterenol stimulation of the beta(2)-adrenergic receptor promotes dephosphorylation of beta-arrestin2. Mutation of beta-arrestin2 phosphorylation sites to aspartic acid decreases the association of beta-arrestin2 with clathrin, thereby reducing its ability to promote internalization of the beta(2)-adrenergic receptor. Its ability to bind and desensitize the beta(2)-adrenergic receptor is, however, unaltered. These results suggest that, analogous to beta-arrestin1, phosphorylation/dephosphorylation of beta-arrestin2 regulates clathrin-mediated internalization of the beta(2)-adrenergic receptor. In contrast to beta-arrestin1, which is phosphorylated by ERK1 and ERK2, phosphorylation of beta-arrestin2 at Thr-383 is shown to be mediated by casein kinase II. Recently, it has been reported that phosphorylation of visual arrestin at Ser-366 prevents its binding to clathrin. Thus it appears that the function of all arrestin family members in mediating internalization of G protein-coupled receptors is regulated by distinct phosphorylation/dephosphorylation mechanisms.  相似文献   

14.
Beta-arrestin 2 has been shown to participate in the pathogenesis of asthma by inducing Th2 cell migration to the lungs. Whether beta-arrestin 2 regulates cytokine production of CD4+ T cells is still unknown. The aim of the present study was to investigate the effect of beta-arrestin 2 on the cytokine production of CD4+ T lymphocytes and the mechanism involved in a mouse model for asthma. After silencing beta-arrestin 2 expression in CD4+ T lymphocytes from asthmatic mice by RNA interference (RNAi), the interleukin-4 (IL-4) and interferon-gamma (IFN-gamma) levels in CD4+ T lymphocyte culture supernatants with or without terbutaline stimulation were determined. Cell-surface beta2 adrenergic receptor (beta2AR) as well as GATA3 expression of CD4+ T lymphocytes were also measured. CD4+ T lymphocytes of mice with allergic asthma expressed higher levels of beta-arrestin 2 on both mRNA and protein levels. beta-arrestin 2 RNAi decreased IL-4 (43.16%) and GATA3 (protein 77.21%, mRNA 62.98%) expression after terbutaline stimulation. Cell-surface beta2AR of CD4+ T lymphocytes decreased (15.27%) after terbutaline treatment, but recovered after beta-arrestin 2 RNAi down-modulation. These findings demonstrate that beta-arrestin 2 regulates IL-4 production and GATA3 expression of CD4+ T lymphocytes partly through the beta2AR signaling pathway in an allergic asthma model.  相似文献   

15.
16.
G protein-coupled receptor signaling is dynamically regulated by multiple feedback mechanisms, which rapidly attenuate signals elicited by ligand stimulation, causing desensitization. The individual contributions of these mechanisms, however, are poorly understood. Here, we use an improved fluorescent biosensor for cAMP to measure second messenger dynamics stimulated by endogenous beta(2)-adrenergic receptor (beta(2)AR) in living cells. beta(2)AR stimulation with isoproterenol results in a transient pulse of cAMP, reaching a maximal concentration of approximately 10 microm and persisting for less than 5 min. We investigated the contributions of cAMP-dependent kinase, G protein-coupled receptor kinases, and beta-arrestin to the regulation of beta(2)AR signal kinetics by using small molecule inhibitors, small interfering RNAs, and mouse embryonic fibroblasts. We found that the cAMP response is restricted in duration by two distinct mechanisms in HEK-293 cells: G protein-coupled receptor kinase (GRK6)-mediated receptor phosphorylation leading to beta-arrestin mediated receptor inactivation and cAMP-dependent kinase-mediated induction of cAMP metabolism by phosphodiesterases. A mathematical model of beta(2)AR signal kinetics, fit to these data, revealed that direct receptor inactivation by cAMP-dependent kinase is insignificant but that GRK6/beta-arrestin-mediated inactivation is rapid and profound, occurring with a half-time of 70 s. This quantitative system analysis represents an important advance toward quantifying mechanisms contributing to the physiological regulation of receptor signaling.  相似文献   

17.
18.
beta(1)-Adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. However, beta(1)AR can internalize as G protein-coupled receptor kinase 2 (GRK2) is fused to its carboxyl terminus. Internalization of the beta(1)AR and GRK2 fusion protein (beta(1)AR/GRK2) is dependent on dynamin but independent of beta-arrestin and phosphorylation. The beta(1)AR/GRK2 fusion protein internalizes via clathrin-coated pits and is found to co-localize with the endosome that contains transferrin. The fusion proteins consisting of beta(1)AR and various portions of GRK2 reveal that the residues 498-502 in the carboxyl-terminal domain of GRK2 are critical to promote internalization of the fusion proteins. This domain contains a consensus sequence of a clathrin-binding motif defined as a clathrin box. In vitro binding assays show that the residues 498-502 of GRK2 bind the amino-terminal domain of clathrin heavy chain to almost the same extent as beta-arrestin1. The mutation of the clathrin box in the carboxyl-terminal domain of GRK2 results in the loss of the ability to promote internalization of the fusion protein. GRK2 activity increases and then decreases as the concentration of clathrin heavy chain increases. Taken together, these results imply that GRK2 contains a functional clathrin box and directly interacts with clathrin to modulate its function.  相似文献   

19.
FRET (fluorescence resonance energy transfer) and co-immunoprecipitation studies confirmed the capacity of beta-arrestin 2 to self-associate. Amino acids potentially involved in direct protein-protein interaction were identified via combinations of spot-immobilized peptide arrays and mapping of surface exposure. Among potential key amino acids, Lys(285), Arg(286) and Lys(295) are part of a continuous surface epitope located in the polar core between the N- and C-terminal domains. Introduction of K285A/R286A mutations into beta-arrestin 2-eCFP (where eCFP is enhanced cyan fluorescent protein) and beta-arrestin 2-eYFP (where eYFP is enhanced yellow fluorescent protein) constructs substantially reduced FRET, whereas introduction of a K295A mutation had a more limited effect. Neither of these mutants was able to promote beta2-adrenoceptor-mediated phosphorylation of the ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases). Both beta-arrestin 2 mutants displayed limited capacity to co-immunoprecipitate ERK1/2 and further spot-immobilized peptide arrays indicated each of Lys(285), Arg(286) and particularly Lys(295) to be important for this interaction. Direct interactions between beta-arrestin 2 and the beta2-adrenoceptor were also compromised by both K285A/R286A and K295A mutations of beta-arrestin 2. These were not non-specific effects linked to improper folding of beta-arrestin 2 as limited proteolysis was unable to distinguish the K285A/R286A or K295A mutants from wild-type beta-arrestin 2, and the interaction of beta-arrestin 2 with JNK3 (c-Jun N-terminal kinase 3) was unaffected by the K285A/R286A or L295A mutations. These results suggest that amino acids important for self-association of beta-arrestin 2 also play an important role in the interaction with both the beta2-adrenoceptor and the ERK1/2 MAPKs. Regulation of beta-arrestin 2 self-association may therefore control beta-arrestin 2-mediated beta2-adrenoceptor-ERK1/2 MAPK signalling.  相似文献   

20.
Activation of CXCR2 IL-8 receptor leads to activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and rapid receptor endocytosis. Co-immunoprecipitation and co-localization experiments showed that arrestin and CXCR2 form complexes with components of the ERK1/2 cascade following ligand stimulation. However, in contrast to the activation of the beta2-adrenergic receptor, arrestin was not necessary for ERK1/2 phosphorylation or receptor endocytosis. In contrast, beta-arrestin 1/2 double knockout cells showed greatly enhanced phosphorylation of ERK1/2, as well as phosphorylation of the stress kinases p38 and c-Jun N-terminal protein kinase. The stimulation of stress kinases in arrestin double knockout cells could be attenuated in the presence of diphenylene iodonium (DPI), an inhibitor of the NADPH oxidase, suggesting that reactive oxidant species (ROS) participated in mitogen-activated protein kinase (MAPK) activation. ROS could indeed be detected in IL-8-stimulated beta-arrestin 1/2 knockout cells, and cytoplasmic Rac was translocated to the membrane fraction, which is a prerequisite for oxidant formation. The oxidative burst induced cell death within 6 h of IL-8 stimulation of these cells, which could be prevented in the presence of DPI. These results indicate a novel function for arrestin, which is protection from an excessive oxidative burst, resulting from the sustained stimulation of G-protein-coupled receptors that cause Rac translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号