首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a stochastic sequence evolution model to obtain alignments and estimate mutation rates between two homologous sequences. The model allows two possible evolutionary behaviors along a DNA sequence in order to determine conserved regions and take its heterogeneity into account. In our model, the sequence is divided into slow and fast evolution regions. The boundaries between these sections are not known. It is our aim to detect them. The evolution model is based on a fragment insertion and deletion process working on fast regions only and on a substitution process working on fast and slow regions with different rates. This model induces a pair hidden Markov structure at the level of alignments, thus making efficient statistical alignment algorithms possible. We propose two complementary estimation methods, namely, a Gibbs sampler for Bayesian estimation and a stochastic version of the EM algorithm for maximum likelihood estimation. Both algorithms involve the sampling of alignments. We propose a partial alignment sampler, which is computationally less expensive than the typical whole alignment sampler. We show the convergence of the two estimation algorithms when used with this partial sampler. Our algorithms provide consistent estimates for the mutation rates and plausible alignments and sequence segmentations on both simulated and real data.  相似文献   

2.
Our recent investigation in the protist Trichomonas vaginalis suggested a DNA sequence periodicity with a unit length of 120.9 nt, which represents a sequence signature for nucleosome positioning. We now extended our observation in higher eukaryotes and identified a similar periodicity of 175 nt in length in Caenorhabditis elegans. In the process of defining the sequence compositional characteristics, we found that the 10.5-nt periodicity, the sequence signature of DNA double helix, may not be sufficient for cross-nucleosome positioning but provides essential guiding rails to facilitate positioning. We further dissected nucleosome-protected sequences and identified a strong positive purine (AG) gradient from the 5′-end to the 3′-end, and also learnt that the nucleosome-enriched regions are GC-rich as compared to the nucleosome-free sequences as purine content is positively correlated with GC content. Sequence characterization allowed us to develop a hidden Markov model (HMM) algorithm for decoding nucleosome positioning computationally, and based on a set of training data from the fifth chromosome of C. elegans, our algorithm predicted 60%-70% of the well-positioned nucleosomes, which is 15%-20% higher than random positioning. We concluded that nucleosomes are not randomly positioned on DNA sequences and yet bind to different genome regions with variable stability, well-positioned nucleosomes leave sequence signatures on DNA, and statistical positioning of nucleosomes across genome can be decoded computationally based on these sequence signatures.  相似文献   

3.
SEGMENT: identifying compositional domains in DNA sequences   总被引:2,自引:0,他引:2  
MOTIVATION: DNA sequences are formed by patches or domains of different nucleotide composition. In a few simple sequences, domains can simply be identified by eye; however, most DNA sequences show a complex compositional heterogeneity (fractal structure), which cannot be properly detected by current methods. Recently, a computationally efficient segmentation method to analyse such nonstationary sequence structures, based on the Jensen-Shannon entropic divergence, has been described. Specific algorithms implementing this method are now needed. RESULTS: Here we describe a heuristic segmentation algorithm for DNA sequences, which was implemented on a Windows program (SEGMENT). The program divides a DNA sequence into compositionally homogeneous domains by iterating a local optimization procedure at a given statistical significance. Once a sequence is partitioned into domains, a global measure of sequence compositional complexity (SCC), accounting for both the sizes and compositional biases of all the domains in the sequence, is derived. SEGMENT computes SCC as a function of the significance level, which provides a multiscale view of sequence complexity.  相似文献   

4.
A Bayesian approach to DNA sequence segmentation   总被引:3,自引:0,他引:3  
Boys RJ  Henderson DA 《Biometrics》2004,60(3):573-581
Many deoxyribonucleic acid (DNA) sequences display compositional heterogeneity in the form of segments of similar structure. This article describes a Bayesian method that identifies such segments by using a Markov chain governed by a hidden Markov model. Markov chain Monte Carlo (MCMC) techniques are employed to compute all posterior quantities of interest and, in particular, allow inferences to be made regarding the number of segment types and the order of Markov dependence in the DNA sequence. The method is applied to the segmentation of the bacteriophage lambda genome, a common benchmark sequence used for the comparison of statistical segmentation algorithms.  相似文献   

5.
Conventional phylogenetic tree estimation methods assume that all sites in a DNA multiple alignment have the same evolutionary history. This assumption is violated in data sets from certain bacteria and viruses due to recombination, a process that leads to the creation of mosaic sequences from different strains and, if undetected, causes systematic errors in phylogenetic tree estimation. In the current work, a hidden Markov model (HMM) is employed to detect recombination events in multiple alignments of DNA sequences. The emission probabilities in a given state are determined by the branching order (topology) and the branch lengths of the respective phylogenetic tree, while the transition probabilities depend on the global recombination probability. The present study improves on an earlier heuristic parameter optimization scheme and shows how the branch lengths and the recombination probability can be optimized in a maximum likelihood sense by applying the expectation maximization (EM) algorithm. The novel algorithm is tested on a synthetic benchmark problem and is found to clearly outperform the earlier heuristic approach. The paper concludes with an application of this scheme to a DNA sequence alignment of the argF gene from four Neisseria strains, where a likely recombination event is clearly detected.  相似文献   

6.
We present here the use of a new statistical segmentation method on the Bacillus subtilis chromosome sequence. Maximum likelihood parameter estimation of a hidden Markov model, based on the expectation-maximization algorithm, enables one to segment the DNA sequence according to its local composition. This approach is not based on sliding windows; it enables different compositional classes to be separated without prior knowledge of their content, size and localization. We compared these compositional classes, obtained from the sequence, with the annotated DNA physical map, sequence homologies and repeat regions. The first heterogeneity revealed discriminates between the two coding strands and the non-coding regions. Other main heterogeneities arise; some are related to horizontal gene transfer, some to t-enriched composition of hydrophobic protein coding strands, and others to the codon usage fitness of highly expressed genes. Concerning potential and established gene transfers, we found 9 of the 10 known prophages, plus 14 new regions of atypical composition. Some of them are surrounded by repeats, most of their genes have unknown function or possess homology to genes involved in secondary catabolism, metal and antibiotic resistance. Surprisingly, we notice that all of these detected regions are a + t-richer than the host genome, raising the question of their remote sources.  相似文献   

7.
We determined partial ND4 gene sequences of mitochondrial DNA from 15 heterorhabditid nematode isolates, representing 5 species collected from different regions of the world, by using polymerase chain reaction (PCR) and direct-sequencing of PCR products. Aligned nucleotide as well as amino acid sequences were used to differentiate nematode species by comparing sequence divergence and to infer phylogeny of the nematodes by using maximum parsimony and likelihood methods. Robustness of our phylogenetic trees was checked by bootstrap tests. The 15 nematode isolates can be divided into 7 haplotypes based on DNA sequences. On a larger scale, the sequence divergence revealed 4 distinct groups corresponding to 4 described species. No sequence divergence was detected from 5 isolates of Heterorhabditis bacteriophora or between Heterorhabditis marelatus to Heterorhabditis hepialius. Our sequence data yielded phylogenetic trees with identical topologies when different tree-building methods were used. Most relationships were also confirmed by using amino acid sequences in maximum parsimony analysis. Our molecular phylogeny of Heterorhabditis species support an existing taxonomy that is based largely on morphology and the sequence divergence of the ND4 gene permits species identification.  相似文献   

8.
Three Markov models (Dayhoff, Proportional and Poisson models; Hasegawa et al., 1992a) for amino acid substitution during evolution were used for maximum likelihood analyses of proteins coded for in mitochondrial DNA in estimating a phylogenetic tree among human, bovine and murids (mouse and rat) with chicken as an outgroup. It turned out that Dayhoff model is the most appropriate model among the alternatives in approximating the amino acid substitutions of proteins coded for in mitochondrial DNA. In spite of the presence of the complete sequence data of mitochondrial genomes, we could not resolve the trichotomy among human, bovine and murids, probably because the time length separating two branching events among these three lines was short and because chicken is too distant from mammals to be used as an outgroup. It was suggested that the average substitution rate of amino acids coded for in mitochondrial DNA is lower along the bovine line than those along the human or murid lines. Advantages of amino acid sequence analysis over nucleotide sequence analysis in phylogenetic study were discussed.  相似文献   

9.
Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.  相似文献   

10.
11.
Hidden Markov models (HMMs) are a class of stochastic models that have proven to be powerful tools for the analysis of molecular sequence data. A hidden Markov model can be viewed as a black box that generates sequences of observations. The unobservable internal state of the box is stochastic and is determined by a finite state Markov chain. The observable output is stochastic with distribution determined by the state of the hidden Markov chain. We present a Bayesian solution to the problem of restoring the sequence of states visited by the hidden Markov chain from a given sequence of observed outputs. Our approach is based on a Monte Carlo Markov chain algorithm that allows us to draw samples from the full posterior distribution of the hidden Markov chain paths. The problem of estimating the probability of individual paths and the associated Monte Carlo error of these estimates is addressed. The method is illustrated by considering a problem of DNA sequence multiple alignment. The special structure for the hidden Markov model used in the sequence alignment problem is considered in detail. In conclusion, we discuss certain interesting aspects of biological sequence alignments that become accessible through the Bayesian approach to HMM restoration.  相似文献   

12.
Comparative ab initio prediction of gene structures using pair HMMs   总被引:3,自引:0,他引:3  
We present a novel comparative method for the ab initio prediction of protein coding genes in eukaryotic genomes. The method simultaneously predicts the gene structures of two un-annotated input DNA sequences which are homologous to each other and retrieves the subsequences which are conserved between the two DNA sequences. It is capable of predicting partial, complete and multiple genes and can align pairs of genes which differ by events of exon-fusion or exon-splitting. The method employs a probabilistic pair hidden Markov model. We generate annotations using our model with two different algorithms: the Viterbi algorithm in its linear memory implementation and a new heuristic algorithm, called the stepping stone, for which both memory and time requirements scale linearly with the sequence length. We have implemented the model in a computer program called DOUBLESCAN. In this article, we introduce the method and confirm the validity of the approach on a test set of 80 pairs of orthologous DNA sequences from mouse and human. More information can be found at: http://www.sanger.ac.uk/Software/analysis/doublescan/  相似文献   

13.
14.
Summary A new estimate of the sequence divergence of mitochondrial DNA in related species using restriction enzyme maps is constructed. The estimate is derived assuming a simple Posisson-like model for the evolutionary process and is chosen to maximize an expression which is a reasonable approximation to the true likelihood of the restriction map data. Using this estimate, four sets of mitochondrial DNA data are analyzed and discussed.  相似文献   

15.
A Markov analysis of DNA sequences   总被引:12,自引:0,他引:12  
We present a model by which we look at the DNA sequence as a Markov process. It has been suggested by several workers that some basic biological or chemical features of nucleic acids stand behind the frequencies of dinucleotides (doublets) in these chains. Comparing patterns of doublet frequencies in DNA of different organisms was shown to be a fruitful approach to some phylogenetic questions (Russel & Subak-Sharpe, 1977). Grantham (1978) formulated mRNA sequence indices, some of which involve certain doublet frequencies. He suggested that using these indices may provide indications of the molecular constraints existing during gene evolution. Nussinov (1981) has shown that a set of dinucleotide preference rules holds consistently for eukaryotes, and suggested a strong correlation between these rules and degenerate codon usage. Gruenbaum, Cedar & Razin (1982) found that methylation in eukaryotic DNA occurs exclusively at C-G sites. Important biological information thus seems to be contained in the doublet frequencies. One of the basic questions to be asked (the "correlation question") is to what extent are the 64 trinucleotide (triplet) frequencies measured in a sequence determined by the 16 doublet frequencies in the same sequence. The DNA is described here as a Markov process, with the nucleotides being outcomes of a sequence generator. Answering the correlation question mentioned above means finding the order of the Markov process. The difficulty is that natural sequences are of finite length, and statistical noise is quite strong. We show that even for a 16000 nucleotide long sequence (like that of the human mitochondrial genome) the finite length effect cannot be neglected. Using the Markov chain model, the correlation between doublet and triplet frequencies can, however, be determined even for finite sequences, taking proper account of the finite length. Two natural DNA sequences, the human mitochondrial genome and the SV40 DNA, are analysed as examples of the method.  相似文献   

16.
Phylogenetic methods can produce biased estimates of phylogeny when base composition varies along different lineages. Pettigrew (1994, Curr. Biol. 4:277-280) has suggested that base composition bias is responsible for the apparent support for the monophyly of bats (Chiroptera: megabats and microbats) from several different nuclear and mitochondrial genes. Pettigrew's "flying DNA" hypothesis makes several predictions: (1) that metabolic constraints associated with flying result in elevated levels of adenine and thymine throughout the genome of both megabats and microbats, (2) that the resulting base compositional bias in bats is sufficient to mislead phylogenetic methods and account for the support for bat monophyly from several nuclear and mitochondrial genes, and (3) that phylogenetic analysis using pairwise distances corrected for compositional bias should eliminate the support for bat monophyly. We tested these predictions by analyzing DNA sequences from two nuclear and three mitochondrial genes. The predicted base compositional bias does not appear to exist in some of the genes, and in other genes the differences in AT content are very small. Analyses under a wide diversity of criteria and models of evolution, including analyses that take base composition into account (using log-determinant distances), all strongly support bat monophyly. Moreover, simulation analyses indicate that even extreme bias toward AT-base composition in bats would be insufficient to explain the observed levels of support for bat monophyly. These analyses provide no support for the "flying DNA" hypothesis, whereas the monophyly of bats appears to be well supported by the DNA sequence data.  相似文献   

17.
Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.  相似文献   

18.
The PHASE software package allows phylogenetic tree construction with a number of evolutionary models designed specifically for use with RNA sequences that have conserved secondary structure. Evolution in the paired regions of RNAs occurs via compensatory substitutions, hence changes on either side of a pair are correlated. Accounting for this correlation is important for phylogenetic inference because it affects the likelihood calculation. In the present study we use the complete set of tRNA and rRNA sequences from 69 complete mammalian mitochondrial genomes. The likelihood calculation uses two evolutionary models simultaneously for different parts of the sequence: a paired-site model for the paired sites and a single-site model for the unpaired sites. We use Bayesian phylogenetic methods and a Markov chain Monte Carlo algorithm is used to obtain the most probable trees and posterior probabilities of clades. The results are well resolved for almost all the important branches on the mammalian tree. They support the arrangement of mammalian orders within the four supra-ordinal clades that have been identified by studies of much larger data sets mainly comprising nuclear genes. Groups such as the hedgehogs and the murid rodents, which have been problematic in previous studies with mitochondrial proteins, appear in their expected position with the other members of their order. Our choice of genes and evolutionary model appears to be more reliable and less subject to biases caused by variation in base composition than previous studies with mitochondrial genomes.  相似文献   

19.
Model-based phylogenetic reconstruction methods traditionally assume homogeneity of nucleotide frequencies among sequence sites and lineages. Yet, heterogeneity in base composition is a characteristic shared by most biological sequences. Compositional variation in time, reflected in the compositional biases among contemporary sequences, has already been extensively studied, and its detrimental effects on phylogenetic estimates are known. However, fewer studies have focused on the effects of spatial compositional heterogeneity within genes. We show here that different sites in an alignment do not always share a unique compositional pattern, and we provide examples where nucleotide frequency trends are correlated with the site-specific rate of evolution in RNA genes. Spatial compositional heterogeneity is shown to affect the estimation of evolutionary parameters. With standard phylogenetic methods, estimates of equilibrium frequencies are found to be biased towards the composition observed at fast-evolving sites. Conversely, the ancestral composition estimates of some time-heterogeneous but spatially homogeneous methods are found to be biased towards frequencies observed at invariant and slow-evolving sites. The latter finding challenges the result of a previous study arguing against a hyperthermophilic last universal ancestor from the low apparent G + C content of its rRNA sequences. We propose a new model to account for compositional variation across sites. A Gaussian process prior is used to allow for a smooth change in composition with evolutionary rate. The model has been implemented in the phylogenetic inference software PHASE, and Bayesian methods can be used to obtain the model parameters. The results suggest that this model can accurately capture the observed trends in present-day RNA sequences.  相似文献   

20.
Statistical Properties of a DNA Sample under the Finite-Sites Model   总被引:1,自引:0,他引:1       下载免费PDF全文
Z. Yang 《Genetics》1996,144(4):1941-1950
Statistical properties of a DNA sample from a random-mating population of constant size are studied under the finite-sites model. It is assumed that there is no migration and no recombination occurs within the locus. A Markov process model is used for nucleotide substitution, allowing for multiple substitutions at a single site. The evolutionary rates among sites are treated as either constant or variable. The general likelihood calculation using numerical integration involves intensive computation and is feasible for three or four sequences only; it may be used for validating approximate algorithms. Methods are developed to approximate the probability distribution of the number of segregating sites in a random sample of n sequences, with either constant or variable substitution rates across sites. Calculations using parameter estimates obtained for human D-loop mitochondrial DNAs show that among-site rate variation has a major effect on the distribution of the number of segregating sites; the distribution under the finite-sites model with variable rates among sites is quite different from that under the infinite-sites model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号