首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated pancreatic islets from the rat have been demonstrated by stable isotope dilution-mass spectrometric methods to synthesize the 12-lipoxygenase product 12-hydroxyeicosatetraenoic acid (12-HETE) in amounts of 1.7 to 2.8 ng per 10(3) islets. No detectable amounts of 5-HETE and only trace amounts of 15-HETE could be demonstrated by these methods. Nordihydroguaiaretic acid (NDGA) and BW755C have been demonstrated to inhibit islet 12-HETE synthesis and also to inhibit glucose-induced insulin secretion. Inhibition of insulin secretion and of 12-HETE synthesis exhibited similar dependence on the concentration of these compounds. Eicosa-5,8,11,14-tetrynoic acid (ETYA) also inhibited glucose-induced insulin secretion, as previously reported, at concentrations which inhibit islet 12-HETE synthesis. Exogenous 12-HETE partially reversed the suppression of glucose-induced insulin secretion by lipoxygenase inhibitors, but exogenous 12-hydroperoxyeicosatetraenoic acid (12-HPETE), 15-HPETE, 5-HPETE, 15-HETE, or 5-HETE did not reverse this suppression. These observations argue against the recently suggested hypothesis that islet synthesis of 5-HETE modulates insulin secretion. Suppression of glucose-induced insulin secretion by ETYA, BW755C and NDGA may be due to inhibition of the islet 12-lipoxygenase by these compounds. The possibility that other processes involved in glucose-induced insulin secretion are inhibited by ETYA, BW755C and NDGA cannot yet be excluded.  相似文献   

2.
A potential role of arachidonic acid in the modulation of insulin secretion was investigated by measuring its effects on calmodulin-dependent protein kinase and protein kinase C in islet subcellular fractions. The results were interpreted in the light of arachidonic acid effects on insulin secretion from intact islets. Arachidonic acid could replace phosphatidylserine in activation of cytosolic protein kinase C (K0.5 of 10 microM) and maximum activation was observed at 50 microM arachidonate. Arachidonic acid did not affect the Ca2+ requirement of the phosphatidylserine-stimulated activity. Arachidonic acid (200 microM) inhibited (greater than 90%) calmodulin-dependent protein kinase activity (K0.5 = 50-100 microM) but modestly increased basal phosphorylation activity (no added calcium or calmodulin). Arachidonic acid inhibited glucose-sensitive insulin secretion from islets (K0.5 = 24 microM) measured in static secretion assays. Maximum inhibition (approximately 70%) was achieved at 50-100 microM arachidonic acid. Basal insulin secretion (3 mM glucose) was modestly stimulated by 100 microM arachidonic acid but in a non-saturable manner. In perifusion secretion studies, arachidonic acid (20 microM) had no effect on the first phase of glucose-induced secretion but nearly completely suppressed second phase secretion. At basal glucose (4 mM), arachidonic acid induced a modest but reproducible biphasic insulin secretion response which mimicked glucose-sensitive secretion. However, phosphorylation of an 80 kD protein substrate of protein kinase C was not increased when intact islets were incubated with arachidonic acid, suggesting that the small increases in insulin secretion seen with arachidonic acid were not mediated by protein kinase C. These data suggest that arachidonic acid generated by exposure of islets to glucose may influence insulin secretion by inhibiting the activity of calmodulin-dependent protein kinase but probably has little effect on protein kinase C activity.  相似文献   

3.
[14C]Arachidonic acid was converted to several lipoxygenase products by homogenates of human fetal tissues as determined by thin-layer chromatography. The net conversions of [14C]arachidonic acid to radiolabeled lipoxygenase products were high (greater than or equal to 5%) in the case of fetal liver and brain, and low (less than or equal to 2%) in the case of fetal adrenal, heart, and kidney.  相似文献   

4.
A number of hydroperoxy (HPETE) and hydroxy (HETE) products of the lipoxygenase pathway of arachidonic acid metabolism are chemotactic and chemokinetic for human neutrophils. We have investigated the relative chemokinetic potency of some of these products on human, rat and rabbit neutrophils. The most potent lipoxygenase product studied was 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid (5,12-diHETE), which was maximally chemokinetic and chemotactic between 0.1 and 1.0ng/ml for the three species. The 5, 11 and 12-HPETEs and HETEs were chemokinetic, but less active by at least two orders of magnitude, for human and rabbit neutrophils at concentrations between 0.1 and 10μg/ml. 15-HPETE and 15-HETE were inactive on human leucocytes, and none of the monosubstituted products studied were chemokinetic for rat neutrophils. These results indicate that 5,12-diHETE may be an important mediator in the local accumulation of leucocytes in the inflammatory response.  相似文献   

5.
6.
Arachidonic acid (AA) reaction with cyclooxygenase (COX) and lipoxygenases (LOX) yield eicosanoids that can mediate prostate cancer proliferation and enhance both tumour vascularization and metastasis. Increasingly measurement of eicosanoids with liquid chromatography is employed to implicate LOX activity in different biological systems and in particular link LOX activity to the progression of cancer in experimental models. This study demonstrates that simply identifying patterns of eicosanoid regio-isomerism is insufficient to designate LOX activity in prostate cancer cells and the analysis must include complete stereochemical assignment of the various isomers in order to validate the assignment of LOX activity.  相似文献   

7.
Although the cylo-oxygenase pathway of arachidonic acid (AA) metabolism inhibits glucose-stimulatedinsulin release throught synthesis of prostaglandins, very little attention has been given to the effects of lipoxygenase pathway products on beta cell function. We have examined the effects of two structurally-dissimilar lipoxygenase inhibitors on insulin release from mono-layer-cultured rat islet cell. Both nordihydroguaiaretic acid (NDGA, 20–50 μM) and BW755c (100–250μM) caused a dose-responsive inhibition of glucose-induced insulin release. This inhibitory effect occurred despite concomitant inhibition of prostaglandin E synthesis. Lipoxygenase inhibitors also impeded cyclic AMP accumulation. Insulin and cyclic AMP release induced by glucagon were also blunted. These studies suggest the hypothesis that AA released in or near the beta cell is metabolized to lipoxygenase product(s) which have feed-forward properties important to glucose- and glucagon-stimulated cyclic nucleotide accumulation and insulin release.  相似文献   

8.
The relationship between glucose-induced insulin secretion and metabolism of inositol phospholipid was investigated by means of an islet perifusion method and direct measuring of inositol phosphates after sonicating the islets. The results showed that the time course of inositol phospholipid breakdown is coincident with the first phase of glucose-induced insulin secretion. Analysis of the effluent perifusate as well as the water soluble inositol-containing substance after sonication of stimulated islets revealed that most of the metabolite of inositol phospholipid is inositol-triphosphate, the hydrolysis product of phosphatidylinositol-4,5-bisphosphate. On the other hand, perifusion of islets with exogenous inositol-triphosphate showed a monophasic and dose-dependent response of insulin secretion. Thus, the initial process of glucose stimulation is accompanied with the formation of inositol-triphosphate, which is a possible candidate for the triggering of first phase insulin secretion.  相似文献   

9.
It has been postulated that metabolites of the arachidonic acid pathway exert an important influence on hemostasis and thrombosis. This notion is based on in vitro experiments. We have utilized two experimental models to elucidate the physiologic roles of thromboxane A2 (TxA2) and prostacyclin (PGI2) in the modulation of thrombus formation. The role of TxA2 in promoting thrombus formation was evaluated in a rabbit model where the aorta was deendothelialized by a balloon catheter technique and indium-111-labeled platelets were used as a marker for quantifying platelet deposition. Both 1-benzylimidazole, a thromboxane synthase inhibitor, and 13-azaprostanoic acid, an antagonist of thromboxane/endoperoxide receptors significantly reduced the platelet deposition onto the damaged vessel wall. The data indicate the TxA2 plays an important role in thrombosis and hemostasis. The influence of PGI2 insufficiency due to accelerated PGI2 degradation on microvascular thrombosis was evaluated in a unique clinical disease, i.e. thrombotic thrombocytopenic purpura (TTP). Accelerated PGI2 degradation was observed in several patients with chronic TTP. The degradation abnormalities were corrected by plasma infusion in vivo or serum supplement in vitro. To test the hypothesis that PGI2 must be bound to serum macromolecules to prevent rapid hydrolysis, serum binding capacity for PGI2 was measured by Sephadex G-25 gel filtration. The binding capacity was significantly reduced in the patients and was corrected by serum supplement. Abnormalities of PGI2 binding were also noted in a group of patients with ischemic stroke. Our findings suggest that there exist in the serum certain constituents which bind and stabilize PGI2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A method for determination of the lipoxygenase products of linoleic acid (9- and 13-hydroxyoctadecadienoic acid; 9-HODE, 13-HODE) and of arachidonic acid (5-, 8-, 9-, 11-, 12-, and 15-hydroxyeicosatetraenoic acid; 5-, 8-, 9-, 11-, 12-, and 15-HETE) is described. The method combines solid-phase extraction, derivatization to the corresponding fully hydrogenated methylester/trimethylsilylether derivatives and capillary gas chromatography coupled with electron impact mass spectrometry. Each regioisomeric HODE and HETE shows a unique pair of mass spectrometric fragment ions originating from fission of the fatty acid carbon chain at the hydroxylated position. The carboxyl-terminal fragment is used for quantification relative to a carboxyl-18O2-labeled analogue added as internal standard and the methyl-terminal fragment is monitored for confirmation. The assay can be extended for quantification of the complete hydroxylation profile of linoleic and arachidonic acid. Applications of this assay are demonstrated for the quantification of HODEs and HETEs in normal, hyperplastic, and neoplastic mouse epidermis. In mouse epidermis papilloma, the tissue levels of 8- and 12-HETE were found to be increased by one to two orders of magnitude compared to levels in normal epidermis.  相似文献   

11.
R Reich  F Kohen  Z Naor  A Tsafriri 《Prostaglandins》1983,26(6):1011-1020
The possible involvement of products of the lipoxygenase pathway of arachidonic acid cascade in ovulation was tested by intrabursal injection of nordihydroguaiaretic acid (NDGA); 5, 8, 11-eicosatriynoic acid (5, 8, 11-ETYA), 3 amino-1-(3 trifluromethyphenyl)-2-pyrazoline hydrochloride (BW755c) and (FPL 55712). All these drugs reduced the number of ova released from the treated ovaries in a dose-dependent manner, without affecting ovulation from contralateral ovaries. NDGA was most potent since it completely blocked ovulation from the treated ovaries in 17/38 rats receiving a dose higher than 0.15 mg/bursa. This effect of NDGA cannot be ascribed to its inhibition of ovarian PGE synthesis. Conversion of labeled arachidonic acid via the lipoxygenase pathway by preovulatory rat follicles was demonstrated by TLC chromatography. Collectively, these results suggest the involvement of products of lipoxygenase pathway of arachidonic acid in ovulation in the rat.  相似文献   

12.
Leptin suppresses basal insulin secretion from rat pancreatic islets   总被引:2,自引:0,他引:2  
The effects of leptin on insulin secretion from pancreatic islets of Sprague–Dawley rats were examined in vitro. In a basal glucose medium (5.5 mM), insulin secretion from isolated islets was significantly decreased after addition of a recombinant leptin (80 nM) (3.20±0.14 nmol/10 islets/h) compared with that before the addition (4.41±0.30 nmol/10 islets/h). Although significant leptin suppression of insulin secretion was not observed under a glucose-stimulated (11.1 mM) condition, these results suggest that a negative feedback system may exist between leptin and insulin, which increases the production of leptin from adipose tissues.  相似文献   

13.
Preincubation of human neutrophils with chemotactic concentrations of 5(S)-hydroxy-eicosatetraenoic acid (5-HETE) or 5(S), 12(R)-dihydroxy-6, 14 cis-8, 10 trans-eicosatetraenoic acid (leukotriene B4) induces a state of preferential chemotactic unresponsiveness to the homologous factor, termed deactivation, and less suppression of the responses to other chemotactic stimuli. The ratio of the concentration required for maximal chemotactic deactivation of neutrophils to that which stimulates chemotaxis optimally is greater for 5-HETE and leukotriene B4 than for peptide and protein factors. In contrast to other chemotactic factors, 5-hydroperoxy-eicosatetraenoic acid (5-OOHETE) induces neutrophil chemotactic deactivation that is independent of the nature of the subsequent stimulus and is more slowly reversible after elimination of the fluid-phase deactivating factor. The unique characteristics of the chemotactic deactivation of human neutrophils by 5-OOHETE may be attributable in part to its endogenous metabolism to potent deactivating factors or to covalent derivatization of subcellular structures of the neutrophils by the highly reactive 5-OOHETE.  相似文献   

14.
Preincubation of human neutrophils with chemotactic concentrations of 5(S)-hydroxy-eicosatetraenoic acid (5-HETE) or 5(S), 12(R)-dihydroxy-6,14 cis-8,10 trans-eicosatetraenoic acid (leukotriene B4) induces a state of preferential chemotactic unresponsiveness to the homologous factor, termed deactivation, and less suppression of the responses to other chemotactic stimuli. The ratio of the concentrations required for maximal chemotactic deactivation of neutrophils to that which stimulates chemotaxis optimally is greater for 5-HETE and leukotriene B4 than for peptide and protein factors. In contrast to other chemotactic factors, 5-hydroperoxy-eicosatetraenoic acid (5-OOHETE) induces neutrophil chemotactic deactivation that is independent of the nature of the subsequent stimulus and is more slowly reversible after elimination of the fluid-phase deactivating factor. The unique characteristics of the chemotactic deactivation of human neutrophils by 5-OOHETE may be attributable in part to its endogenous metabolism to potent deactivating factors or to covalent derivatization of subcellular structures of the neutrophils by the highly reactive 5-OOHETE.  相似文献   

15.
Biochemical evidence in support of a role for arachidonic acid 5-lipoxygenase activity in pancreatic islet insulin secretion has been obtained. Peptidyl leukotriene metabolism was studied in rat islets using a dual-labeling technique in extended culture, with analysis of arachidonic acid metabolites by reverse-phase high-performance liquid chromatography. The production of [3H]arachidonoyl/[35S]cysteinyl leukotrienes C4 and E4 by islets was compared with that by mouse resident peritoneal macrophages and with the lipoxygenase metabolism of rabbit polymorphonuclear leukocytes. The stimulus-specific nature of leukotriene biosynthesis was characterized by low basal biosynthesis in unstimulated islet cells with a calcium-mediated activation of 5-lipoxygenase product formation.  相似文献   

16.
17.
Somatostatin receptors appear to be localized to secretory granules in pancreatic islet homogenates. Recruitment of these receptors to the islet-cell surfaces may mark the contact event between secretory granules and plasma membranes before release of insulin by fission. Isethionate, an impermeant anionic replacement for chloride, blocks the release step but does not affect receptor recruitment. By contrast, low concentrations of phenothiazine drugs, such as trifluoperazine and promethazine, inhibit both receptor recruitment and secretion. Scatchard analysis of phenothiazine effects on somatostatin receptors reveals that these drugs reduce the number of receptors but do not affect the affinity of the receptor for somatostatin. These data indicate that membrane contact and fission steps during exocytosis can be biochemically separated.  相似文献   

18.
In vertebrates, beta cells are aggregated in the form of pancreatic islets. Within these islets, communication between beta cells inhibits basal insulin secretion and enhances glucose-stimulated insulin secretion, thus contributing to glucose homeostasis during fasting and feeding. In the search for the underlying molecular mechanism, we have discovered that beta cells communicate via ephrin-As and EphAs. We provide evidence that ephrin-A5 is required for glucose-stimulated insulin secretion. We further show that EphA-ephrin-A-mediated beta cell communication is bidirectional: EphA forward signaling inhibits insulin secretion, whereas ephrin-A reverse signaling stimulates insulin secretion. EphA forward signaling is downregulated in response to glucose, which indicates that, under basal conditions, beta cells use EphA forward signaling to suppress insulin secretion and that, under stimulatory conditions, they shift to ephrin-A reverse signaling to enhance insulin secretion. Thus, we explain how beta cell communication in pancreatic islets conversely affects basal and glucose-stimulated insulin secretion to improve glucose homeostasis.  相似文献   

19.
A series of experiments was conducted to determine the effects of lipoxygenase products of arachidonic acid (AA) metabolism on the function of the bovine corpus luteum (CL). In the first experiment, reaction products of soybean lipoxidase-AA were added to dispersed bovine luteal cells in increasing concentrations. These lipoxygenase products resulted in a dose-related reduction in the biosynthesis of progesterone and 6-keto-prostaglandin (PG)F1 alpha, while the synthesis of PGF2 alpha was unaffected. In a second experiment, the addition of 5-hydroxyeicosatetraenoic acid (5-HETE), a specific lipoxygenase product, again resulted in a reduction in progesterone and 6-keto-PGF1 alpha, with no change in PGF2 alpha synthesis. Extremely high endogenous concentrations of 5-HETE were measured in luteal tissues (36 +/- 17 to 46 +/- 13 ng/10(6) cells) in a third experiment. In the fourth experiment, an inhibitor of the lipoxygenase pathways, nordihydroguaiaretic acid (NDGA) infused into the uterine lumen twice daily on Days 14-18 of the estrous cycle delayed luteolysis and resulted in lengthened estrous cycles (27.2 +/- 0.3 vs 21.5 +/- 1.0 days for controls, p less than 0.05). Thus, an inhibitor of the lipoxygenase pathway of arachidonic acid metabolism delays luteolysis, possibly by removing the preferential inhibition of PGF1 alpha biosynthesis caused by 5-HETE and other products of the lipoxygenase system. Collectively, these results suggest that products of the lipoxygenase pathway are involved in luteolysis in normal heifers.  相似文献   

20.
Yang SJ  Huh JW  Kim MJ  Lee WJ  Kim TU  Choi SY  Cho SW 《Biochimie》2003,85(6):581-586
It has been known that glutamate, generated by glutamate dehydrogenase (GDH), acts as an intracellular messenger in insulin exocytosis in pancreatic beta cells. Here we demonstrate the correlation of GDH activity and insulin release in rat pancreatic islets perfused with 5'-deoxypyridoxal. Perfusion of islets with 5'-deoxypyridoxal, an effective inhibitor of GDH, reduced the islet GDH activity at concentration-dependent manner. Treatment of 5'-deoxypyridoxal up to 2 mM did not affect the cell viability. There was reduction in V(max) values on average about 60%, whereas no changes in K(m) values for substrates and coenzymes were observed. The concentration of GDH on the Western blot analysis and the level of GDH mRNA remained unchanged. The concentration of glutamate decreased by 52%, whereas the concentration of 2-oxoglutarate increased up to 2.3-fold in the presence of 5'-deoxypyridoxal. 5'-Deoxypyridoxal had no effects on inhibition by GTP and activation by ADP or L-leucine of islet GDH. In parallel with the inhibition of GDH activity, perfusion of islets with 5'-deoxypyridoxal reduced insulin release up to 2.5-fold. Although precise mechanism for correlation between GDH activity and insulin release remains to be studied further, our results suggest a possibility that the inhibitory effect of 5'-deoxypyridoxal on islet GDH activity may correlate with its effect on insulin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号