首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
As individual cells or groups of cells move through the complex environment of the body, their migration is affected by multiple external cues. Some cues are diffusible signaling molecules, and some are solid biophysical features. How do cells respond appropriately? This perspective discusses the relationship between guidance input and the cellular output, considering effects from classical chemotaxis to contact-dependent guidance. The influences of membrane trafficking and of imposed constraints on directional movement are also considered. New insights regarding guidance and dynamic cell polarity have emerged from examining new cell migration models and from re-examining well known ones with new approaches and new tools.  相似文献   

2.
Xu Y  Ren XC  Quinn CC  Wadsworth WG 《Genetics》2011,189(3):899-906
Gradients of acetylcholine can stimulate growth cone turning when applied to neurons grown in culture, and it has been suggested that acetylcholine could act as a guidance cue. However, the role acetylcholine plays in directing axon migrations in vivo is not clear. Here, we show that acetylcholine positively regulates signaling pathways that mediate axon responses to guidance cues in Caenorhabditis elegans. Mutations that disrupt acetylcholine synthesis, transportation, and secretion affect circumferential axon guidance of the AVM neuron and in these mutants exogenously supplied acetylcholine improves AVM circumferential axon guidance. These effects are not observed for the circumferential guidance of the DD and VD motor neuron axons, which are neighbors of the AVM axon. Circumferential guidance is directed by the UNC-6 (netrin) and SLT-1 (slit) extracellular cues, and exogenously supplied acetylcholine can improve AVM axon guidance in mutants when either UNC-6- or SLT-1-induced signaling is disrupted, but not when both signaling pathways are perturbed. Not in any of the mutants does exogenously supplied acetylcholine improve DD and VD axon guidance. The ability of acetylcholine to enhance AVM axon guidance only in the presence of either UNC-6 or SLT-1 indicates that acetylcholine potentiates UNC-6 and SLT-1 guidance activity, rather than acting itself as a guidance cue. Together, our results show that for specific neurons acetylcholine plays an important role in vivo as a modulator of axon responses to guidance cues.  相似文献   

3.
Previous studies have indicated that the formation of stereotyped segmental nerves in leech embryos depends on the interactions between CNS projections and ingrowing afferents from peripheral neurons. Especially, CNS-ablation experiments have suggested that CNS-derived guidance cues are required for the correct navigation of several groups of peripheral sensory neurons. In order to directly test this hypothesis we have performed transplantations of CNS ganglia into ectopic sites in segments from which the resident ganglia have been removed. We find that the transplanted ganglia extend numerous axons distributed roughly equally in all directions. When these CNS projections reach and make contact with peripheral sensory axons they are used as guides for peripheral neurons to grow toward and into the ectopic ganglia even when this means following novel pathways that cross the midline and/or segmental boundaries. The peripheral sensory axons turn and grow toward the ectopic ganglia only when in physical contact with CNS axons, suggesting that diffusible chemoattractants are not a factor. These results demonstrate that the guidance cues provided by ectopic CNS projections are both necessary and sufficient to steer peripheral sensory neuron axons into the CNS.  相似文献   

4.
In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth-promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin-1 (CT-1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth-promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response.  相似文献   

5.
Axonal growth: where neurotrophins meet Wnts   总被引:5,自引:0,他引:5  
Axonal guidance is influenced by many cues, including polypeptide trophic factors, cytokines, diffusible attractants and repellents and changes in calcium. How these signals are conveyed and integrated is not well defined. Recent data suggest that molecules of the canonical Wnt signaling pathway may have direct actions on axonal growth through neurotrophin signaling. This surprising mechanism is supported by local inactivation of glycogen synthase kinase 3beta (GSK-3beta) by nerve growth factor through the integrin-linked kinase. Inhibition of GSK-3beta provides a positive regulatory signal for the cytoskeleton re-arrangement involved in axon extension. Moreover, microtubule stabilization is stimulated by adenomatous polyposis coli protein, a downstream target of GSK3, in response to neurotrophins. Therefore, components of the Wnt signaling pathway are downstream of trophic factors, providing new insights into cytoskeletal regulatory events during axonal growth.  相似文献   

6.
Regulation of growth cone actin filaments by guidance cues   总被引:16,自引:0,他引:16  
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dynamic actin filaments of growth cones are frequently targets of this regulatory signaling. Rho GTPases are key mediators of signaling by guidance cues, although much remains to be learned about how growth cone responses are orchestrated by Rho GTPase signaling to change the dynamics of polymerization, transport, and disassembly of actin filaments. Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament dynamics to regulate several aspects of growth cone behaviors. Activation of Trk receptors mediates local accumulation of actin filaments, while neurotrophin binding to p75 triggers local decrease in RhoA signaling that promotes lengthening of filopodia. Semaphorin IIIA and ephrin-A2 are guidance cues that trigger avoidance or repulsion of certain growth cones, and in vitro responses to these proteins include growth cone collapse. Dynamic changes in the activities of Rho GTPases appear to mediate responses to these cues, although it remains unclear what the changes are in actin filament distribution and dynamic reorganization that result in growth cone collapse. Growth cones in vivo simultaneously encounter positive and negative guidance cues, and thus, growth cone behaviors during axonal pathfinding reflect the complex integration of multiple signaling activities.  相似文献   

7.
Growing axons encounter multiple guidance cues, but it is unclear how separate signals are resolved and integrated into coherent instructions for growth cone navigation. We report that glycosylphosphatidylinositol (GPI)-anchored ephrin-As function as "reverse" signaling receptors for motor axons when contacted by transmembrane EphAs present in the dorsal limb. Ephrin-A receptors are thought to depend on transmembrane coreceptors for transmitting signals intracellularly. We show that the receptor tyrosine kinase Ret is required for motor axon attraction mediated by ephrin-A reverse signaling. Ret?also mediates GPI-anchored GFRα1 signaling in response to GDNF, a diffusible chemoattractant in the limb, indicating that Ret is a multifunctional coreceptor for guidance molecules. Axons respond synergistically to coactivation by GDNF and EphA ligands, and these cooperative interactions are gated by GFRα1 levels. Our studies uncover a hierarchical GPI-receptor signaling network that is constructed from combinatorial components and integrated through Ret using ligand coincidence detection.  相似文献   

8.
Semaphorins, the plexin family of semaphorin receptors, and scatter factor receptors share evolutionarily conserved protein modules, such as the semaphorin domain and Met Related Sequences (MRS). All these proteins also have in common a role in mediating cell guidance cues. During development, scatter factor receptors control cell migration, epithelial tubulogenesis, and neurite extension. Semaphorins and their receptors are known signals for axon guidance; they are also suspected to regulate developmental processes involving cell migration and morphogenesis, and have been implicated in immune function and tumor progression. Scatter factors and secreted semaphorins are diffusible ligands, whereas membrane-bound semaphorins signal by cell-cell interaction. Cell guidance control by semaphorins requires plexins, alone or in a receptor complex with neuropilins. Semaphorins, besides their role in axon guidance, are expected to have multiple functions in morphogenesis and tissue remodeling by mediating cell-repelling cues through plexin receptors.  相似文献   

9.
Lu Q  Sun EE  Klein RS  Flanagan JG 《Cell》2001,105(1):69-79
Transmembrane B ephrins and their Eph receptors signal bidirectionally. However, neither the cell biological effects nor signal transduction mechanisms of the reverse signal are well understood. We describe a cytoplasmic protein, PDZ-RGS3, which binds B ephrins through a PDZ domain, and has a regulator of heterotrimeric G protein signaling (RGS) domain. PDZ-RGS3 can mediate signaling from the ephrin-B cytoplasmic tail. SDF-1, a chemokine with a G protein-coupled receptor, or BDNF, act as chemoattractants for cerebellar granule cells, with SDF-1 action being selectively inhibited by soluble EphB receptor. This study reveals a pathway that links reverse signaling to cellular guidance, uncovers a novel mode of control for G proteins, and demonstrates a mechanism for selective regulation of responsiveness to neuronal guidance cues.  相似文献   

10.
Developing axons are guided to their targets by molecular cues in their local environment. Some cues are short-range, deriving from cells along axonal pathways. There is also increasing evidence for longer-range guidance cues, in the form of gradients of diffusible chemoattractant molecules, which originate from restricted populations of target cells. The guidance of developing commissural axons within the spinal cord depends on one of their intermediate cellular targets, the floor plate. We have shown previously that floor plate cells secrete a diffusible factor(s) that can alter the direction of commissural axon growth in vitro. Here we show that the factor is an effective chemoattractant for commissural axons. It can diffuse considerable distances through a collagen gel matrix and through dorsal and ventral neural epithelium in vitro to reorient the growth of virtually all commissural axons. The orientation of axons occurs in the absence of detectable effects on the survival of commissural neurons or on the rate of commissural axon extension. The regionally restricted expression of the factor suggests that it is present in the embryonic spinal cord in a gradient with its high point at the floor plate. These observations support the idea that the guidance of commissural axons to the ventral midline of the spinal cord results in part from the secretion of a chemoattractant by the floor plate.  相似文献   

11.
Sensory axons must develop appropriate connections with both central and peripheral targets. Whereas the peripheral cues have provided a classic model for neuron survival and guidance, less is known about the central cues or the coordination of central and peripheral connectivity. Here we find that type III Nrg1, in addition to its known effect on neuron survival, regulates axon pathfinding. In type III Nrg1(-/-) mice, death of TrkA(+) nociceptive/thermoreceptive neurons was increased, and could be rescued by Bax elimination. In the Bax and type III Nrg1 double mutants, axon pathfinding abnormalities were seen for TrkA(+) neurons both in cutaneous peripheral targets and in spinal cord central targets. Axon guidance phenotypes in the spinal cord included penetration of axons into ventral regions from which they would normally be repelled by Sema3A. Accordingly, sensory neurons from type III Nrg1(-/-) mice were unresponsive to the repellent effects of Sema3A in vitro, which might account, at least in part, for the central projection phenotype, and demonstrates an effect of type III Nrg1 on guidance cue responsiveness in neurons. Moreover, stimulation of type III Nrg1 back-signaling in cultured sensory neurons was found to regulate axonal levels of the Sema3A receptor neuropilin 1. These results reveal a molecular mechanism whereby type III Nrg1 signaling can regulate the responsiveness of neurons to a guidance cue, and show that type III Nrg1 is required for normal sensory neuron survival and axon pathfinding in both central and peripheral targets.  相似文献   

12.
In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth‐promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin‐1 (CT‐1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line‐derived neurotrophic factor (GDNF) and neurotrophin‐3 (NT‐3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth‐promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 101–114, 2002  相似文献   

13.
Several cell functions related to growth and survival regulation have been attributed specifically to the membrane form of heparin-binding EGF-like growth factor (proHB-EGF), rather than to the diffusible, processed HB-EGF isoform. These findings suggest the existence of a functional binding partner specifically for the membrane form of the growth factor. In this study we have identified the prosurvival cochaperone, BAG-1, as a protein that interacts with the cytoplasmic tail domain of proHB-EGF. Interaction between BAG-1 and the 24-amino acid proHB-EGF cytoplasmic tail was initially identified in a yeast two-hybrid screen and was confirmed in mammalian cells. The proHB-EGF tail bound BAG-1 in an hsp70-independent manner and within a 97-amino acid segment that includes the ubiquitin homology domain in BAG-1 but does not include the hsp70 binding site. Effects of BAG-1 and proHB-EGF co-expression were demonstrated in cell adhesion and cell survival assays and in quantitative assays of regulated secretion of soluble HB-EGF. Because the BAG-1 binding site is not present on the mature, diffusible form of the growth factor, these findings suggest a new mechanism by which proHB-EGF, in isolation from the diffusible form, can mediate cell signaling events. In addition, because effects of BAG-1 on regulated secretion of soluble HB-EGF were also identified, this interaction has the potential to alter the signaling capabilities of both the membrane-anchored and the diffusible forms of the growth factor.  相似文献   

14.
Non-genomic actions of thyroid hormone in brain development   总被引:1,自引:0,他引:1  
Leonard JL 《Steroids》2008,73(9-10):1008-1012
  相似文献   

15.
The olfactory system presents a practical model for investigating basic mechanisms involved in patterning connections between peripheral sensory neurons and central targets. Our understanding of olfactory map formation was advanced greatly by the discovery of cAMP signaling as an important determinant of glomerular positioning in the olfactory bulb. Additionally, several cell adhesion molecules have been identified recently that are proposed to regulate homotypic interactions among projecting axons. From these studies a model has emerged to partially explain the wiring of axons from widely dispersed neuron populations in the nasal cavity to relatively stereotyped glomerular positions. These advances have revitalized interest in axon guidance molecules in establishing olfactory topography, but also open new questions regarding how these patterns of guidance cues are established and function, and what other pathways, such as glycosylation, might be involved. This review summarizes the current state of this field and the important molecules that impact on cAMP-dependent mechanism in olfactory axon guidance.  相似文献   

16.
Molecular basis of semaphorin-mediated axon guidance   总被引:10,自引:0,他引:10  
The semaphorin family of proteins constitute one of the major cues for axonal guidance. The prototypic member of this family is Sema3A, previously designated semD/III or collapsin-1. Sema3A acts as a diffusible, repulsive guidance cue in vivo for the peripheral projections of embryonic dorsal root ganglion neurons. Sema3A binds with high affinity to neuropilin-1 on growth cone filopodial tips. Although neuropilin-1 is required for Sema3A action, it is incapable of transmitting a Sema3A signal to the growth cone interior. Instead, the Sema3A/neuropilin-1 complex interacts with another transmembrane protein, plexin, on the surface of growth cones. Certain semaphorins, other than Sema3A, can bind directly to plexins. The intracellular domain of plexin is responsible for initiating the signal transduction cascade leading to growth cone collapse, axon repulsion, or growth cone turning. This intracellular cascade involves the monomeric G-protein, Rac1, and a family of neuronal proteins, the CRMPs. Rac1 is likely to be involved in semaphorin-induced rearrangements of the actin cytoskeleton, but how plexin controls Rac1 activity is not known. Vertebrate CRMPs are homologous to the Caenorhabditis elegans unc-33 protein, which is required for proper axon morphology in worms. CRMPs are essential for Sema3A-induced, neuropilin-plexin-mediated growth cone collapse, but the molecular interactions of growth cone CRMPs are not well defined. Mechanistic aspects of plexin-based signaling for semaphorin guidance cues may have implications for other axon guidance events and for the basis of growth cone motility.  相似文献   

17.
Guidance receptors detect extracellular cues and instruct migrating cells how to orient in space. Border cells perform a directional invasive migration during Drosophila oogenesis and use two receptor tyrosine kinases (RTKs), EGFR and PVR (PDGF/VEGF Receptor), to read guidance cues. We find that spatial localization of RTK signaling within these migrating cells is actively controlled. Border cells lacking Cbl, an RTK-associated E3 ubiquitin ligase, have delocalized guidance signaling, resulting in severe migration defects. Absence of Sprint, a receptor-recruited, Ras-activated Rab5 guanine exchange factor, gives related defects. In contrast, increasing the level of RTK signaling by receptor overexpression or removing Hrs and thereby decreasing RTK degradation does not perturb migration. Cbl and Sprint both regulate early steps of RTK endocytosis. Thus, a physiological role of RTK endocytosis is to ensure localized intracellular response to guidance cues by stimulating spatial restriction of signaling.  相似文献   

18.
Longitudinal axons transmit all signals between the brain and spinal cord. Their axon tracts through the brain stem are established by a simple set of pioneer axons with precise trajectories parallel to the floor plate. To identify longitudinal guidance mechanisms in vivo, the overall role of floor plate tissue and the specific roles of Slit/Robo signals were tested. Ectopic induction or genetic deletion of the floor plate diverted longitudinal axons into abnormal trajectories. The expression patterns of the diffusible cues of the Slit family were altered in the floor plate experiments, suggesting their involvement in longitudinal guidance. Genetic tests of Slit1 and Slit2, and the Slit receptors Robo1 and Robo2 were carried out in mutant mice. Slit1;Slit2 double mutants had severe longitudinal errors, particularly for ventral axons, including midline crossing and wandering longitudinal trajectories. Robo1 and Robo2 were largely genetically redundant, and neither appeared to specify specific tract positions. However, combined Robo1 and Robo2 mutations strongly disrupted each pioneer tract. Thus, pioneer axons depend on long-range floor plate cues, with Slit/Robo signaling required for precise longitudinal trajectories.  相似文献   

19.
EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin   总被引:1,自引:0,他引:1  
Neuronal network formation in the developing nervous system is dependent on the accurate navigation of nerve cell axons and dendrites, which is controlled by attractive and repulsive guidance cues. Ephrins and their cognate Eph receptors mediate many repulsive axonal guidance decisions by intercellular interactions resulting in growth cone collapse and axon retraction of the Eph-presenting neuron. We show that the Rac-specific GTPase-activating protein alpha2-chimaerin binds activated EphA4 and mediates EphA4-triggered axonal growth cone collapse. alpha-Chimaerin mutant mice display a phenotype similar to that of EphA4 mutant mice, including aberrant midline axon guidance and defective spinal cord central pattern generator activity. Our results reveal an alpha-chimaerin-dependent signaling pathway downstream of EphA4, which is essential for axon guidance decisions and neuronal circuit formation in vivo.  相似文献   

20.
Axon guidance: receptor complexes and signaling mechanisms   总被引:5,自引:0,他引:5  
The generation of a functional neuronal network requires that axons navigate precisely to their appropriate targets. Molecules that specify guidance decisions have been identified, and the signaling events that occur downstream of guidance receptors are beginning to be understood. New research shows that guidance receptor signaling can be hierarchical -- one receptor silencing the other -- thereby allowing navigating growth cones to interpret opposing guidance cues. Among the known intracellular signaling molecules shared by all guidance receptor families, Rho GTPases appear to be primary regulators of actin dynamics and growth cone guidance. Novel effector molecules complete the picture and suggest additional signaling mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号