首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Insulin-like growth factor binding proteins (IGFBPs) are key regulators of insulin-like growth factor (IGF) mediated signal transduction and thereby can profoundly influence cellular phenotypes and cell fate. Whereas IGFBPs are extracellular proteins, intracellular activities were described for several IGFBP family members, such as IGFBP-3, which can be reinternalized by endocytosis and reaches the nucleus through routes that remain to be fully established. Within the family of IGFBPs, IGFBP-6 is unique for its specific binding to IGF-II. IGFBP-6 was described to possess additional IGF-independent activities, which have in part been attributed to its translocation to the nucleus; however, cellular uptake of IGFBP-6 was not described. To further explore IGFBP-6 functions, we developed a new method for the purification of native human IGFBP-6 from cell culture supernatants, involving a four-step affinity purification procedure, which yields highly enriched IGFBP-6. Whereas protein purified in this way retained the capacity to interact with IGF-II and modulate IGF-dependent signal transduction, our data suggest that, unlike IGFBP-3, human IGFBP-6 is not readily internalized by human tumor cells. To summarize, this work describes a novel and efficient method for the purification of native human insulin-like growth factor binding protein 6 (IGFBP-6) from human cell culture supernatants, applying a four-step chromatography procedure. Intactness of purified IGFBP-6 was confirmed by IGF ligand Western blot and ability to modulate IGF-dependent signal transduction. Cellular uptake studies were performed to further characterize the purified protein, showing no short-term uptake of IGFBP-6, in contrast to IGFBP-3.  相似文献   

2.

Background

Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297).

Methodology/Principal Findings

We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway.

Conclusions

Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and complexity of the IGF-independent actions of these IGF binding proteins.  相似文献   

3.
Insulin-like growth factor (IGF)-I is a pleiotropic hormone that regulates vascular smooth muscle cell (VSMC) migration, proliferation, apoptosis, and differentiation. These actions are mediated by the IGF-I receptor. How activation of the same receptor by the same ligand leads to these diverse cellular responses is not well understood. Here we describe a novel mechanism specifying VSMC responses to IGF-I stimulation, distinctive for the pivotal roles of local IGF-binding proteins (IGFBPs). The role of local IGFBPs was indicated by comparing the activities of IGF-I and des-1-3-IGF-I, an IGF-I analog with reduced binding affinity to IGFBPs. Compared with IGF-I, des-1-3-IGF-I was more potent in stimulating DNA synthesis but much less potent in inducing directed migration of VSMCs. When the effects of individual IGFBPs were tested, IGFBP-2 and IGFBP-4 were found to inhibit IGF-I-stimulated DNA synthesis and migration. IGFBP-5 had an inhibitory effect on IGF-I-stimulated DNA synthesis, but it strongly potentiated IGF-I-induced VSMC migration. By using a non-IGF-binding IGFBP-5 mutant and an IGF-I-neutralizing antibody, it was demonstrated that IGFBP-5 also stimulates VSMC migration in an IGF-independent manner. This effect of IGFBP-5 was inhibited by soluble heparin and by treating cells with heparinase. Mutation of the heparin-binding motif of IGFBP-5 reduced its migration promoting activity. These findings suggest that local IGFBPs are important determinants of cellular responses to IGF-I stimulation, and a key player in this paradigm is IGFBP-5. IGFBP-5 not only modulates IGF-I actions, but it also stimulates cell migration by interacting with cell-surface heparan sulfate proteoglycans.  相似文献   

4.
The insulin-like growth factor-binding proteins (IGFBPs) comprise a family of six related peptides that interact with high affinity with IGFs. IGFBPs compete with IGF receptors for IGF binding, and as a consequence of this competition they can affect cell growth. In addition, IGF-independent regulatory mechanisms of IGFBPs have been described. Despite their common property to interact with IGFs every IGFBP is expressed in a tightly regulated time- and tissue-specific manner suggesting that each protein may have its own distinct functions. Several transgenic mouse models overexpressing IGFBP-1, -2, -3, or -4 were developed in the past few years. Brain abnormalities were a common feature of IGFBP-1 transgenic models. Individual strains showed alterations in glucose homeostasis, reproductive performance, and a reduction of somatic growth as the most prominent phenotypes. The latter was also the main effect observed in IGFBP-2 transgenic mice. The overexpression of IGFBP-3 under the control of an ubiquitous promoter resulted in selective organomegaly, whereas mammary gland-targeted expression of this protein caused an altered involution after pregnancy in this organ. Tissue-specific overexpression of IGFBP-4 resulted in hypoplasia and reduced weight of smooth muscle-rich tissues such as bladder, aorta, and stomach. This review summarizes the current knowledge about the actions of IGFBPs in vivo based on the presently established transgenic mice.  相似文献   

5.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

6.
7.
Insulin-like growth factor binding proteins (IGFBPs) affect the biological activity of IGF-I in several cell types, including cultured muscle cells. Additionally, at least one of the IGFBPs, IGFBP-3, has been shown to have IGF-independent effects on cell proliferation. Numerous studies have shown that immortalized muscle cell lines produce various IGFBPs, but to date no muscle cell line has been reported to produce IGFBP-3 protein or mRNA. Unlike muscle cell lines, primary cultures of porcine embryonic myogenic cells express IGFBP-3 mRNA and secrete a protein that is immunologically identifiable as IGFBP-3. Additionally, steady-state IGFBP-3 levels change significantly during differentiation. Here we report that differentiation of porcine myogenic cells in an IGFBP-3-free medium is accompanied by reduced steady-state IGFBP-3 mRNA levels. Steady-state levels of IGFBP-3 mRNA decreased approximately sevenfold (P < .05) during differentiation and then increased to predifferentiation levels once differentiation was complete. Addition of TGF-beta1 (0.5 ng/ml) to porcine myogenic cultures suppressed fusion and resulted in a sevenfold increase in steady-state IGFBP-3 mRNA and a 1.8-fold increase in IGFBP-3 protein levels as compared to untreated control cultures (P < .05). Results suggest that alterations in IGFBP-3 mRNA and protein may play a role in differentiation of porcine embryonic muscle cells.  相似文献   

8.
Insulin-like growth factor-binding proteins (IGFBPs) are important regulators of bone metabolism. However, their precise roles are not fully understood, since IGFBPs can have both enhancing and inhibiting effects on IGF action, depending on context and posttranslational modifications, as well as IGF-independent effects. This review focuses on recent findings from cell culture, rodent models, and clinical studies concerning local IGFBP-2, IGFBP-4, and IGFBP-5 action in bone.  相似文献   

9.
We have demonstrated previously that insulin-like growth factor binding protein (IGFBP)-3 alone has little growth inhibitory effect on Hs578T human breast cancer cells, but that it can dramatically accentuate the apoptotic response to the physiological trigger, ceramide, in an IGF-independent manner. We have now studied the potential of other IGFBPs (1-6) to interact with apoptotic signalling pathways. Hs578T cells were preincubated with a binding protein (100 ng/ml) for 24 h, followed by co-incubation of the binding protein with an apoptotic dose of ceramide or RGD-containing peptide for a further 24 h. Apoptosis was assessed using flow cytometry, MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazolyl blue) assay and morphological assessment. Binding protein profiles were determined using ligand and immunoblotting techniques. Each of the IGFBPs (1-6) alone had no significant (P > 0. 05) growth inhibitory effects relative to control cells. In contrast to IGFBP-3, which significantly (P < 0.05) accentuated C2-induced apoptosis, IGFBP-1, -2, and -6 had no effect, whereas IGFBP-4 and -5 each caused marked (P < 0.01) inhibition of ceramide-induced programmed cell death. Apoptosis induced by RGD was also significantly (P < 0.05) reduced by IGFBP-5, whereas IGFBP-3 had no effect. These data provide evidence to suggest that individual IGFBPs have specific IGF-independent effects and act differentially on apoptotic signalling pathways.  相似文献   

10.
A family of six high affinity IGF-binding proteins (IGFBPs 1-6) plays an important role in modulating IGF activities. Recent studies suggest that some IGFBPs may have IGF-independent effects, including induction of apoptosis and modulation of cell migration. However, very little is known about possible IGF-independent actions of IGFBP-6. We have generated a non-IGF-binding IGFBP-6 mutant by substituting Ala for four amino acid residues (Pro(93)/Leu(94)/Leu(97)/Leu(98)) in its N-domain IGF-binding site. A >10,000-fold loss of binding affinity for IGF-I and IGF-II was observed using charcoal solution binding assay, BIAcore biosensor, and ligand blotting. Wild-type and mutant IGFBP-6, as well as IGF-II, induced cell migration in RD rhabdomyosarcoma and LIM 1215 colon cancer cells. Cell migration was mediated by the C-domain of IGFBP-6. Transient p38 phosphorylation was observed in RD cells after treatment with IGFBP-6, whereas no change was seen in phospho-ERK1/2 levels. Phospho-JNK was not detected. IGFBP-6-induced cell migration was inhibited by SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of ERK1/2 MAPK activation. In contrast, SP600125, a JNK MAPK inhibitor, had no effect on migration. Knockdown of p38 MAPK using short interfering RNA blocked IGFBP-6-induced migration of RD cells. These results indicate that p38 MAPK is involved in IGFBP-6-induced IGF-independent RD cell migration.  相似文献   

11.
High affinity insulin-like growth factor-binding proteins (IGFBP-1 to -6) are a family of structurally homologous proteins that induce cellular responses by insulin-like growth factor (IGF)-dependent and -independent mechanisms. The IGFBP-3 receptor, which mediates the IGF-independent growth inhibitory response, has recently been identified as the type V transforming growth factor-beta receptor (TbetaR-V) (Leal, S. M., Liu, Q. L., Huang, S. S., and Huang, J. S. (1997) J. Biol. Chem. 272, 20572-20576). To characterize the interactions of high affinity IGFBPs with TbetaR-V, mink lung epithelial cells (Mv1Lu cells) were incubated with 125I-labeled recombinant human IGFBPs (125I-IGFBP-1 to -6) in the presence of the cross-linking agent disuccinimidyl suberate and analyzed by 5% SDS-polyacrylamide gel electrophoresis and autoradiography. 125I-IGFBP-3, -4, and -5 but not 125I-IGFBP-1, -2, and -6 bound to TbetaR-V as demonstrated by the detection of the approximately 400-kDa 125I-IGFBP.TbetaR-V cross-linked complex in the cell lysates and immunoprecipitates. The analyses of 125I-labeled ligand binding competition and DNA synthesis inhibition revealed that IGFBP-3 was a more potent ligand for TbetaR-V than IGFBP-4 or -5. Most of the high affinity 125I-IGFBPs formed dimers at the cell surface. The cell-surface dimer of 125I-IGFBP-3 preferentially bound to and was cross-linked to TbetaR-V in the presence of disuccinimidyl suberate. IGFBP-3 did not stimulate the cellular phosphorylation of Smad2 and Smad3, key transducers of the transforming growth factor-beta type I/type II receptor (TbetaR-I.TbetaR-II) heterocomplex-mediated signaling. These results suggest that IGFBP-3, -4, and -5 are specific ligands for TbetaR-V, which mediates the growth inhibitory response through a signaling pathway(s) distinct from that mediated by the TbetaR-I and TbetaR-II heterocomplex.  相似文献   

12.
Cellular protein delivery is an emerging technique, by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an E. coli expression vector suited for protein cellular delivery experiments. The plasmid is designed to generate a C-terminal fusion with the 12 amino acid HIV-Tat peptide as a protein transduction domain (PTD), whereas the protein N-terminus is fused to an 17-residue peptide lanthanide-binding tag (LBT). LBT is used for both purification by affinity chromatography and fluorescent detection with Tb(3+) as a coordinating metal. We have employed the TA-cloning site between the two tags, LBT and PTD, according to the PRESAT-vector methodology [N. Goda, T. Tenno, H. Takasu, H. Hiroaki, M. Shirakawa, The PRESAT-vector: asymmetric T-vector for high-throughput screening of soluble protein domains for structural proteomics, Protein Sci. 13 (2004) 652-658], which facilitates unidirectional cloning of any PCR-amplified DNA fragments corresponding to the protein of interest. A simple three-step protocol consisting of affinity purification of LBT/PTD dual-tagged proteins has also been developed, in which the proteins are purified by heparin-, then immobilized Ni(2+)-, and then heparin-affinity chromatography, in this order. The purified protein is ready for protein delivery experiment, and the delivered protein is visible by fluorescent microscopy. Our LBT/PTD dual-tagged PRESAT-vector provides a powerful research tool for exploring cellular functions of proteins in the post-genomic era.  相似文献   

13.
The anabolic effects and bioavailability of insulin-like growth factors I and II (IGF-I, IGF-II) are regulated in part by a family of IGF-binding proteins (IGFBPs). There are six known members of the IGFBP family, which share distinct structural characteristics and functional activities. To study the binding properties of these proteins, we have expressed recombinant IGFBP-3 and IGFBP-4 using the LCR/Mel expression system. Using this system, we found that recombinant IGFBP-3 was secreted by Mel cells and had a glycosylation pattern similar to that of native IGFBP-3. Recombinant IGFBP-4 secreted from Mel cells had a molecular size identical to that of non-glycosylated native IGFBP-4. The binding kinetics of recombinant IGFBPs was measured using a solid-phase ligand-binding assay, an in vitro solution-binding assay, and a cellular proliferation assay. IGF-I bound with high affinity to recombinant IGFBP-3 and IGFBP-4 with K(D)s of <0.25 nmol. As reported for native IGFBPs, IGF-II bound with affinity higher than IGF-I to recombinant IGFBP-3 and IGFBP-4 (K(D) of <0.05 nmol). Recombinant IGFBP-3 and IGFBP-4 were found to inhibit the IGF-induced proliferation of an NIH3T3 cell line engineered to overexpress the IGF-I receptor. We have compared the binding kinetics of Mel cell-expressed IGFBPs with that of recombinant protein expressed in Escherichia coli and found them to be equivalent. Here, we show that the LCR/Mel expression system represents an effective route for expression of biologically active IGFBPs.  相似文献   

14.
The primary role of insulin-like growth factor binding proteins (IGFBPs) is to regulate availability of IGFs for interacting with receptors, but IGFBPs perform IGF-independent actions as well. The availability and activity of IGFBPs in the circulation is influenced primarily by their concentration and structural modifications, but possibly also by interaction with major plasma proteins such as transferrin, alpha-2-macroglobulin (α2M), and fibrinogen. Four types of circulating IGFBP complexes were examined in this study by immuno- and ligand-binding assays in adults of different age. The amounts of IGFBP-3/transferrin and IGFBP-1/fibrinogen complexes were similar in middle- and old-aged persons, whereas the amounts of IGFBP-1 (or -2)/α2M monomer complexes were lower in the old-aged group and negatively correlated with total IGFBP-1 (or -2) amounts in blood. In contrast to IGFBP-1, IGFBP-2 was present in significantly greater quantities in complexes with α2M dimer than α2M monomer in older individuals. IGFBP complexes did not bind 125I-labeled IGF-I in amounts detectable by ligand blotting. According to the results of this study, the quantities of IGFBP-1 and IGFBP-2, which interact with α2M, are age-dependent and, in the case of complexes with α2M monomer, they are negatively correlated with the total circulating levels of these two IGFBPs.  相似文献   

15.
16.
Cellular protein delivery is an emerging technique by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an Escherichia coli expression vector including human specific gene sequences for protein cellular delivery. The plasmid was generated by ligation the nucleotides 770–817 of the homeobox A5 mRNA sequence which was matched with protein transduction domain (PTD) of homeodomain protein A5 (HOXA5) into pET expression vector. The cellular uptake of HOXA5-PTD-EGFP was detected in 1 min and its transduction reached a maximum at 1 h within cell lysates. The cellular uptake of HOXA5-EGFP at 37 °C was greater than in 4 °C. For study for the functional role of human HOXA5-PTD, we purified HOXA5-APE1/Ref-1 and applied it on monocyte adhesion. Pretreatment with HOXA5-APE1/Ref-1 (100 nM) inhibited TNF-α-induced monocyte adhesion to endothelial cells, compared with HOXA5-EGFP. Taken together, our data suggested that human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins.  相似文献   

17.
The insulin-like growth factors (IGFs) have been implicated in the growth regulation of human breast cancer. Since the IGFs are associated with specific binding proteins (IGFBPs) which may modulate receptor/ligand interactions, production of IGFBPs by breast cancer cells could alter their IGF-dependent growth. This study examined the expression of IGFBPs 4, 5, and 6 in eight breast cancer cell lines (BCCLs) using ribonuclease (RNase) protection assays. IGFBP-4 mRNA was detected in all BCCLs studied. IGFBP-5 expression was higher in estrogen receptor (ER) positive cells, while IGFBP-6 mRNA was detected in only two ER negative BCCLs. We also found that E2 treatment enhanced the expression of IGFBPs 2, 4, and 5 in T47-D cells. We next studied IGFBP mRNA expression in 40 primary breast tumors. All tumors expressed mRNA for IGFBPs 2–6 but none expressed IGFBP-1 message. IGFBP-3 expression was higher in ER negative tumors, while that of IGFBP-4 and -5 was higher in ER positive specimens. These differences were statistically significant (P < .05). Ligand blot analysis of tumor extracts confirmed the presence of IGFBPs in breast cancer tissues. Thus, differential IGFBP expression in ER positive and negative tumors suggests an important role for this protein in breast cancer biology.  相似文献   

18.
The ovarian insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system operates to permit maximal stimulation of steroidogenesis in the dominant follicle. In atretic follicles, the predominant IGFBPs are IGFBP-2 and IGFBP-4, which appear to be selectively cleaved in healthy follicles. We have recently demonstrated potent inhibition by IGFBP-4 of both theca and granulosa cell steroid production. The degree to which the inhibition occurred suggested that it was greater than might be expected by sequestration of IGF alone. Our study was designed to test this idea. Granulosa cells were harvested from follicles dissected intact from patients undergoing total abdominal hysterectomy and bilateral salpingoophorectomy. Granulosa cells were incubated with or without gonadotropins and IGFBP-4 in the presence or absence of either the IGF type I receptor blocker alphaIR3 or excess IGFBP-3 to remove the effects of endogenous IGF action. Steroid accumulation in the medium was assessed. IGFBP-4 continued to exert potent inhibitory effects when the action of endogenous IGF was removed from the system, demonstrating that its actions are independent of IGF binding. There was no effect on cell metabolism, and the effects on steroidogenesis were reversible after IGFBP-4 removal from the culture medium. No similar effects were seen with IGFBP-2. These reasults are the first evidence of IGF-independent IGFBP-4 actions and the first evidence of IGF-independent actions of any IGFBPs in the ovary.  相似文献   

19.
Hajjar D  Santos MF  Kimura ET 《Biorheology》2006,43(3-4):311-321
Functional orthopedic appliances correct dental malocclusion partially by exerting indirect mechanical stimulus on the condylar cartilage, modulating growth and the adaptation of orofacial structures. However, the exact nature of the biological responses to this therapy is not well understood. Insulin-like growth factors I and II (IGF-I and II) are important local factors during growth and differentiation in the condylar cartilage [D. Hajjar, M.F. Santos and E.T. Kimura, Propulsive appliance stimulates the synthesis of insulin-like growth factors I and II in the mandibular condylar cartilage of young rats, Arch. Oral Biol. 48 (2003), 635-642]. The bioefficacy of IGFs at the cellular level is modulated by IGF binding proteins (IGFBP). The aim of this study was to verify the mRNA and protein expression of IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6 in the condylar cartilage of young male Wistar rats that used a mandibular propulsive appliance for 3, 9, 15, 20, 30 or 35 days. For this purpose, sagittal sections of decalcified and paraffin-embedded condyles were submitted to immunohistochemistry and the condylar cartilage to RT-PCR. The control group showed a gradual increase in the protein expression of all IGFBPs, except IGFBP-4. Following use of the appliance, IGFBP-3 and IGFBP-6 expression decreased in the early stage of the treatment. At 20 days of treatment there was a decline in the IGFs and IGFBP-3, IGFBP-4 and IGFBP-5 expression and at 30 days there was a peak in the IGFs and all IGFBPs expression except for IGFBP-3 where the peak was observed in the control animals. The expression patterns of all IGFBPs in the condylar cartilage were similar. The modulation of IGFBP-3, -4, -5 and -6 expression in the condylar cartilage in response to the propulsive appliance suggests that those peptides are involved in the mandibular adaptation during this therapy.  相似文献   

20.
The biological activity of IGF-I and -II is controlled by six binding proteins (IGFBPs), preventing the IGFs from interacting with the IGF receptor. Proteolytic cleavage of IGFBPs is one mechanism by which IGF can be released to bind the receptor. The IGFBPs are usually studied individually, although the presence of more than one of the IGFBPs in most tissues suggests a cooperative function. Thus, the IGFBPs are part of regulatory networks with proteolytic enzymes in one end and the IGF receptor in the other end. We have established a model system that allows analysis of the dynamics between IGF, IGFBP-4 and -5, the IGF receptor, and the proteolytic enzyme PAPP-A, which specifically cleaves both IGFBP-4 and -5. We demonstrate different mechanisms of IGF release from IGFBP-4 and -5: cooperative binding to IGF is observed for the proteolytic fragments of IGFBP-5, but not fragments of IGFBP-4. Furthermore, we find that PAPP-A-mediated IGF-dependent cleavage of IGFBP-4 is inhibited by IGFBP-5, which sequesters IGF from IGFBP-4, and that cleavage of both IGFBP-4 and -5 is required for the release of bioactive IGF. Finally, we show that cell surface-localized proteolysis of IGFBP-4 represents the final regulatory step of efficient IGF delivery to the receptor. Our data define a regulatory system in which molar ratios between the IGFBPs and IGF and between the different IGFBPs, sequential proteolytic cleavage of the IGFBPs, and surface association of the activating proteinase are key elements in the regulation of IGF receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号