首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenomenon of antibody-dependent cell-mediated cytoxicity (ADCC) has been extended to include target cells acutely infected with herpes simplex type 1 virus (HSV-1) or herpes simplex type 2 virus (HSV-2) in an in vitro system that employs immune human serum and human blood mononuclear cells. The cytotoxic reaction was detectable after 1 hr of incubation and was complete between 4 and 8 hr. The amount of ADCC noted was directly proportional to the logarithm(10) of the effector: target cell ratio (E:T), and ADCC was noted at E:T as low as 1:1. The mononuclear effector cell was present in the blood of both HSV immune and non-immune individuals. The immune serum factor was demonstrated to be an antibody with specificity for HSV membrane antigen(s) and was reactive with target cells infected with either of the two HSV types. The antibody rendered the mononuclear cell cytotoxic by sensitization of the target cell rather than by direct attachment to or "arming" of the mononuclear cell. The physiochemical properties of the antibody as well as its presence in cord blood demonstrated that it is an immunoglobulin on the IgG class.  相似文献   

2.
Infant mice are extremely susceptible to fatal Herpes simplex virus (HSV) infection. They are unable to produce antibody to HSV, and their leukocytes cannot mediate antibody-dependent cellular cytotoxicity (ADCC) to HSV-infected cells. In order to avoid H-2-dependent effector mechanisms and instead analyze possible in vivo ADCC, a murine model employing adoptive transfer of antibody and human leukocytes was developed. Administration of either human immune globulin or leukocytes i.p. from HSV immune or nonimmune humans could not protect infant C57BL/6 mice from fatal HSV infection. In contrast, a combination of a subneutralizing dilution of globulin and leukocytes from nonimmune or immune human donors, given one day before inoculation, was highly protective against lethal HSV infection. The cells involved included lymphocytes or monocyte-macrophages. At least 5 X 10(6) viable leukocytes (or 1 X 10(6) monocyte-macrophages) and immune serum globulin concentrations as low as 10(-8) were protective. Infected cell monolayer adsorption and DEAE column fractionation demonstrated that the protection by globulin was due to specific antiviral IgG antibody. Protection was n ot seen in animals receiving virus before immune transfer. Protection did not involve synergistic viral neutralization by antibody and cells, as shown by in vitro experiments. Animals receiving globulin and cells, unlike normal infant mice, had circulating antiviral antibody and peritoneal leukocytes able to mediate ADCC to HSV-infected cells. This is the first in vivo evidence for the role of human ADCC. This model also allows for the in vivo evaluation of the ability of cells from immunocompromised humans to curb viral infection.  相似文献   

3.
Studies were carried out to determine whether the mononuclear cell in human blood which mediates antibody-dependent cellular cytotoxicity (ADCC) to herpes simplex virus (HSV)-infected target cells has surface Fc receptors which participate in the reaction. The F (ab')2 fragment of human IgG antibody was inactive both in ADCC and in complement-mediated cytolysis, but retained the capacity to neutralize infectious virus, to agglutinate erythrocytes coated with viral antigens, and to bind to the surface of virus-infected cells. Treatment of sensitized virus-infected target cells with staphylococcus protein A, which has affinity for the Fc epitope of IgG, strongly reduced their susceptibility to lysis by ADCC in a dose-dependent relationship. These findings indicate that the Fc portion of IgG antibody to the virus is necessary for cytotoxicity. Treatment of blood mononuclear cells with either heat-aggregated gamma-globulin or HSV immune complexes inhibited effector cell activity. The presence of "third party" cellular immune complexes also strongly inhibited ADCC. Adsorption of mononuclear cells to plastic surfaces coated with soluble third party immune complexes resulted in a significant reduction in effector cell activity. These findings demonstrate that the ADCC effector cell possesses surface Fc receptors which are utilized in the ADCC reaction. The presence of Fc receptors on the surface of the effector cell indicates that it is a K cell rather than a null cell.  相似文献   

4.
Freshly collected peritoneal cells (PC) and cultured spleen cells (SC) (but not fresh SC) from nonimmune mice could mediate antibody-dependent cellular cytotoxicity (ADCC) against herpes simplex virus (HSV)-infected cells in the presence of mouse or human sera containing antibody to HSV. PC also demonstrated variable natural killer cell cytotoxicity to infected cells. Both PC and cultured SC required high concentrations of antibody and high effector to target cell ratios for optimal ADCC. The time kinetics of the reaction appeared to depend on the state of activation of the effector cells. In both PC and SC populations, ADCC activity was limited to adherent cells, and was profoundly inhibited by particulate latex or silica. The murine effector cell found in PC and SC able to mediate ADCC to HSV-infected cells appears to be a macrophage.  相似文献   

5.
Freshly isolated or overnight cultured peripheral blood mononuclear cells from immune or nonimmune animals had natural cytolytic activity against bovine herpesvirus 1 (BHV-1)-infected tumor target cells. No lysis was demonstrated against tumor target cells alone. This natural cytolytic activity was present in mononuclear cells from the spleen, lymph node, and peripheral blood but little or no cytolytic activity was detected in bone marrow or thymus cells. When monoclonal antibodies and complement to deplete bovine mononuclear cell subpopulations from the nonadherent cells were used, results indicated the effector cell was not a T cell, B cell, or activated monocyte. From nonadherent populations separated on density gradients, it was determined that the effector cells were large, low density mononuclear cells. These results indicate the nonadherent effector cells mediating lysis of BHV-1-infected xenogeneic adherent target cells were large null lymphocytes and/or immature monocytes.  相似文献   

6.
Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.  相似文献   

7.
《MABS-AUSTIN》2013,5(3):494-504
Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.  相似文献   

8.
Eighty-seven murine monoclonal antibodies (MAb) produced against human tumors of various origins and representing six different immunoglobulin classes were tested for antitumor reactivity in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. Mouse splenocytes, thioglycolate-elicited mouse peritoneal macrophages, freshly obtained nonadherent human peripheral blood lymphocytes, and human monocytes were used as effector cells, and human or rabbit serum as the source of complement. Of all four effector cell types tested, mouse macrophages showed the highest cytotoxic activity, based on net cytotoxicity, minimum requirement for Mab concentration, and effector cell number. Different immunoglobulin classes were associated with characteristic patterns of reactivity with the various effector cells or complement, independent of the target cell type used. MAb able to mediate ADCC were found among all IgG subclasses, with IgG2a and IgG3 MAb inducing lysis with all effector cell types. IgM and IgA MAb were nonreactive in the various ADCC assays, but IgM MAb were highly cytotoxic with complement.  相似文献   

9.
Activation of macrophages (M phi) for host defense against tumor cells follows a sequence of priming events followed by an initiating stimulus that results in production and release of cytotoxic molecules that mediate target cell killing. We have developed a model to study specific macrophage cytotoxicity in vitro utilizing a cultured murine M phi cell line, J774. Specific cytotoxicity of cultured human gastrointestinal tumor cells is achieved in the presence of murine IgG2a monoclonal antibody (mAb) 17-1-A. The ability of these cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) is greatly enhanced following gamma-irradiation. ADCC can be demonstrated at mAb 17-1-A concentrations greater than or equal to 1 microgram/ml and effector/target cell ratios greater than or equal to 2. Exposure to doses greater than or equal to 10 Gy of gamma-irradiation increases ADCC threefold. Varying the duration from J774 M phi exposure to gamma-irradiation until addition of antibody-coated target cells showed that the primed state for ADCC is stable for at least 8 days but approximately 24 hr is required for complete development of the primed state. mAb-dependent target cell death begins 8 hr after addition of mAb and labeled target cells to primed effector cells and is complete by 24 hr. Incubation of unirradiated J774 M phi effector cells with recombinant murine interferon-gamma (rmIFN-gamma) also results in enhanced ADCC, but the extent of target cell killing achieved is less than that following priming by gamma-irradiation. Concomitant priming of gamma-irradiated J774 M phi with rmIFN-gamma increases the extent of ADCC. Further study of irradiated J774 cells may elucidate the molecular pathways utilized by M phi for achieving and maintaining the primed state for ADCC. Irradiated J774 cells will also provide a homogenous, stably primed cell type in which to examine the mechanism(s) of cytotoxicity employed by tumoricidal M phi.  相似文献   

10.
Human peripheral blood polymorphonuclear neutrophils (PMN) were tested for their ability to act as effector cells in antibody-dependent cell cytotoxicity (ADCC) against Herpes simplex virus (HSV) infected target cells sensitized with anti-HSV serum. The PMN from all 29 individuals tested could mediate ADCC in the presence of a standard human anit-HSV serum. Since PMN are prominent cells early in herpes lesions, it was hypothesized that because ADCC could represent an in vitro model for antiviral recovery, perhaps the efficacy of PMN at mediating ADCC might be impaired in those subjects to frequent recrudescent herpes. However, evidence for the hypothesis was not obtained since the PMN from individuals with frequent, infrequent, or unrecorded herpes labialis all showed approximately the same activity at mediating ADCC. Alternative ways in which PMN could be involved in antiviral recovery were discussed.  相似文献   

11.
The target antigen for antibody-dependent-cellular cytotoxicity (ADCC) on Epstein-Barr virus-(EBV) carrying lymphoblastoid cells expressing EBV-specific membrane antigen (MA) were examined with human serum antibody and adult human peripheral lymphocytes as effector cells. These studies confirmed that anti-MA-positive but not MA-negative sera were reactive in the ADCC. The ADCC reaction was positive with cells in which the MA consisted of late (LMA) and early (EMA) components. These included 1) MA-positive cells prepared by EBV antigen-adsorption, 2) cells carrying de novo-synthesized MA without adsorbed MA, and 3) EBV-producer cells expressing MA spontaneously. In all these preparations, the target cells were lysed roughly in parallel with the frequency of MA-positive cells. Inhibition of LMA synthesis in EBV-superinfected cells by phosphonoacetate (PA) reduced ADCC sensitivity significantly and to a far greater extent than MA synthesis as measured by immunofluorescence. This suggests that a target for ADCC is the PA-sensitive LMA. No ADCC reaction occurred with the cell preparation comprised of a high percentage of MA-positive cells induced by 5-iodo-2'-deoxyuridine, which is believed to be EMA only. These results strongly suggest that the target antigen for ADCC in EBV-positive cells is a late MA but not early MA.  相似文献   

12.
J Xiao  Z Brahmi 《Cellular immunology》1989,122(2):295-306
In a previous study, we demonstrated that human natural killer cells (NK) lost their lytic activity after interaction with a sensitive target. The loss of NK activity also led to the loss of antibody-dependent cellular cytotoxicity (ADCC), prompting us to postulate that NK and ADCC activities may result from a common lytic mechanism. In this study, we examined whether nonadherent lymphocytes cultured 7 days in the presence of IL-2 (lymphokine-activated killer (LAK) cells) could also be inactivated and, subsequently, be reactivated in the presence of IL-2. We tested three populations of effector cells (EC): cells isolated from freshly drawn blood and tested immediately, cells cultured with IL-2 for 18 hr, and LAK cells. Once they have interacted with K562, all three cell populations lost greater than 90% of their NK-like lytic activity (NK-CMC) but only 80% of ADCC. However, when we treated the three cell types with antibody-coated K562, they lost 90-99% of NK-CMC and 90-97% of ADCC. In these inactivated effector cells we also observed: (i) a reduction in membrane expression of C-reactive protein; and (ii) a decrease in the expression of Leu-11a when EC were inactivated with antibody-coated K562. The loss of lytic activity against K562 was accompanied by a concomitant loss of activity against other LAK-sensitive targets as well as against antibody-coated targets (ADCC). In competitive inhibition experiments the inactivated effector cells failed to inhibit normal NK-CMC and ADCC activities mediated by fresh NK cells. As we have shown previously, this target-directed inactivation was not due to cell death or to lack of conjugate formation. Inactivated LAK cells regained their lytic potential when cultured with IL-2 and this effect was time dependent. By 72 hr, LAK cells inactivated with K562 regained 99% NK-CMC and 82% ADCC, whereas LAK cells inactivated with antibody-coated K562 regained only 80% NK-CMC and 70% ADCC. When we treated the effector cells with emetine, a potent inhibitor of protein synthesis, we could still inactivate the effector cells with K562 and with antibody-coated K562 but could not reactivate them with IL-2.  相似文献   

13.
Human monocyte-macrophages (MΦ) displayed spontaneous cytotoxicity for human fibroblasts infected with herpes simples virus (HSV). The HSV-immune status of the MΦ did not affect the spontaneous cytotoxicity. Significant cytotoxicity required an effector cell to target cell ratio of at least 50: 1, and was first observed 12 hr after incubation of MΦ with HSV-infected cells. A 12- to 18-hr preincubation of MΦ with interferon enhanced the cytotoxic activity. Cytotoxicity activity was also observed with cytomegalovirus-infected HF implying that the cytotoxic activity of the MΦ was nonspecific for viral-infected cells.  相似文献   

14.
M Ito  T Ihara  C Grose    S Starr 《Journal of virology》1985,54(1):98-103
Seven murine monoclonal antibodies reacting with major glycoproteins of varicella-zoster virus were tested for functional activity in assays for antibody-dependent cellular cytotoxicity (ADCC) and antibody-plus-complement-mediated lysis. Human peripheral blood mononuclear cells killed varicella-zoster virus-infected fibroblasts in the presence of three of four monoclonal antibodies directed against gp98/62 and a single monoclonal antibody directed against gp118. Neither of two monoclonal antibodies directed against gp66 was able to mediate ADCC. In 18-h assays, adherent effector cells were more active than nonadherent effector cells in mediating ADCC. Adherent cells treated with anti-Leu-11b and complement retained their cytotoxic activity, suggesting that monocytes are responsible for most of the adherent-cell-mediated cytotoxicity. Both immunoglobulin G1 and G2a murine monoclonal antibodies were able to participate in ADCC. Of the two immunoglobulin G2a monoclonal antibodies tested, both of which reacted with gp98/62, only one mediated lysis in the presence of complement. These results indicate that some murine monoclonal antibodies against major glycoproteins of varicella-zoster virus have functional activity in cytotoxicity assays.  相似文献   

15.
The development of the immune response to xenogeneic tumor cells and the mechanism of potentiation of cell-mediated cytotoxicity (CMC) by xenoantiserum were investigated. The kinetics of potentiation of CMC resembled, both qualitatively and quantitatively, the kinetics of antibody-dependent cellular cytotoxicity (ADCC) of target cells treated with the same xenoantisera. Varying proportions of immune and nonimmune effector cells did not influence the amount of lysis of antibody-treated tumor cells. It would appear, therefore, that spleens from immunized animals contained cell populations that were capable of mediating both CMC and ADCC. Potentiation of CMC would appear to result from the preferential expression of ADCC effector cells; interaction of CMC effector cells was apparently hindered by the presence of antibody on the tumor cell surface. Immune complexes formed in antibody excess may also modify ADCC and the potentiation of CMC.  相似文献   

16.
The comparative cytotoxic specificities of freshly isolated human adherent and nonadherent blood mononuclear cells were examined against seven established target cell lines in 4 and 18 hr chromium release assays. The relative sensitivity of each target cell line to the cytotoxic effects of both adherent and nonadherent effector cells in cultures was identical. Moreover, the relative enhancing effects of interferon on cytotoxicity by both effector cell types were also identical. These adherent cell preparations were contaminated with up to 6% NK cells, as demonstrated by OKM1 staining and flow microfluorometry. These NK cells were loosely adherent and could be removed by vigorous wash procedures. The remaining tightly adherent monocytes also had the capacity to kill K562 cells and Chang cells, but these cytotoxic effects could not be increased by interferon. Enhancement by lactoferrin, however, was consistently observed. Treatment of mononuclear cells with Leu-lla, a monoclonal antibody that reacts with all NK cells, also abolished the enhancing effects of interferon, but not lactoferrin. These studies suggest that caution must be exercised in attributing all cytotoxic activities in adherent cell preparations to monocytes, and that lactoferrin and interferon can be used as functional probes to detect two distinct blood mononuclear cell subsets with natural cytotoxicity.  相似文献   

17.
Purified peripheral blood lymphocytes from 13 healthy donors, 6 melanoma patients and 1 halo nevus patient were tested for cytotoxic activity against an allogeneic melanoma cell line (IGR3) in, at least, one of the following assays: cell-mediated cytotoxicity (ADCC) and microcytotoxicity assays (ma). The lymphocytes were isolated by Ficoll-Triosil gradient centrifugation (fraction F) followed by removal of iron-phagocytosing and adherent cells (fraction FFF) and by subsequent passage through anti-IgG columns (fraction FFF-C). Leukocytes of each fraction were identified by different methods including morphology, rosette-formation, phagocytic activity, and membrane fluorescence. CMC activity paralled ADCC activity at a log lower level of sensitivity. In both assays lymphocytes of fractions F and FFF had the highest activity, whereas in fraction FFF-C cytotoxicity was strongly reduced. In all three lymphocyte fractions CMC and ADCC activity could be blocked by preincubation of the effector cells in aggregated IgG. Furthermore, depletion of E rosette-forming lymphocytes slightly increased ADCC and CMC activity, whereas depletion of EA and EAC rosette-forming lymphocytes strongly decreased it. Our results therefore indicate that in both CMC and ADCC assays, non-adherent, non-phagocytic Fc receptor-bearing lymphocytes ("K" cells) were the active cytotoxic cells. In MA, on the other hand, mononuclear phagocytes seemed to be the most active cell population. So far no significant difference was observed in CMC, ADCC, and MA between control persons and melanoma patients  相似文献   

18.
There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate "educated" KIR3DL1(+) NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate "uneducated" KIR3DL1(+) NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy.  相似文献   

19.
Summary Antibody-dependent cell-mediated cytotoxicity (ADCC) mediated by a murine monoclonal antibody against human colerectal carcinoma, antibody 19–9, with human effector cells was tested in 33 patients with various carcinomas, 16 patients with benign lesions, and 13 normal controls, using a 12-h 51Cr release assay using human colorectal cancer cells as targets. Peripheral blood mononuclear cells (PBM) from these groups of patients and normal controls achieved moderate levels of target cell lysis in the presence of the monoclonal antibody at the high effector to target cell ratio of 200:1. The ADCC activity of PBM in cancer patients was significantly higher than that in either normal persons or patients with benign lesions. Since the ADCC was shown to be mainly mediated by adherent monocytes in the PBM, ADCC activity of monocytes from cancer patients was compared to those from control groups at an effector to target cell ratio of 30:1. The results also showed that the lytic capacity of monocytes was significantly higher in cancer patients than that in the control populations.  相似文献   

20.
The immune response of WFu rats to a syngeneic Gross virus-induced lymphoma (C58NT)D evokes the simultaneous generation of effector cells able specifically to destroy the tumor cells by two different cytotoxic pathways: cell-mediated cytotoxicity (CMC) and antibody-dependent cellular cytotoxicity (ADCC). The question of possible interdependence in the relationship between the effector cells mediating both cytotoxicities was approached in several ways: (a) Immunospecific competition of one form of cytotoxicity (CMC or ADCC) did not interfere with the full expression of the other cytotoxic effect (ADCC or CMC, respectively), (b) Elimination of T cells by anti-thymocyte serum and complement completely abrogated the CMC activity while not impairing the ADCC activity, (c) Specific depletion of cytotoxic (CMC) lymphoid cells on monolayers of target cells bearing the sensitizing antigens considerably diminished the CMC activity, but did not affect the ADCC activity, (d) Depletion of Fc receptor-bearing cells (non-T cells) markedly reduced the ADCC activity, but did not interfere with CMC activity. These findings indicate that, in this system, two forms of cell-mediated cytotoxicity to tumor-associated antigens exist concurrently in the immune host and are expressions of different lymphoid cell populations; CMC is mediated by T cells, whereas ADCC is a non-T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号