首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of sugars and amino acids into the mycelium of Erysiphe pisi DC. was investigated using two different systems, intact leaf discs and mycelial suspensions. Of the sugars tested, glucose was preferentially taken up by both uninfected and mildew-infected leaf discs, whereas glutamine was taken up by both tissues at a higher rate than lysine or aspartic acid. Leaf discs from infected tissue had a greater uptake capacity than those from healthy tissue for both sugars and amino acids. The uptake of glucose was inhibited more markedly than that of sucrose and fructose by 10 μ m carbonyl cyanide m -chlorophenylhydrazone (CCCP), 1 m m N -ethylmaleimide (NEM), 1 m m diethyl pyrocarbonate (DEPC) and 1 m m phenylglyoxal, whereas 1 m m PCMBS ( p -chloro-mercuribenzenesulphonic acid) inhibited sucrose uptake to the greatest extent. Uptake of glutamine, lysine and aspartic acid was inhibited similarly by CCCP (80%), NEM (20%), DEPC (70%) and PCMBS (60%). Additionally, leaf discs were used to determine which solutes could be taken up from leaf tissue by the fungus. The uptake of sugars into the mycelium was greater than that of amino acids.
Suspensions of powdery mildew mycelium accumulated glucose at about three times the rate of sucrose or fructose, and the amino acid glutamine was taken up at three times the rate of lysine or aspartic acid. Spores separated from the suspension had a low uptake capacity.
When the reducing sugar concentration of leaf apoplastic fluid was estimated, leaves infected by powdery mildew had much higher amounts in the apoplast, whereas the activity of acid invertase also appeared to be higher in apoplastic fluids from infected leaves. When apoplastic fluid samples were run on SDS gels, an invertase antibody detected two bands in samples from infected tissues that were not found in the uninfected samples.  相似文献   

2.
3.
4.
Glucose, and not sucrose, is transported from wheat to wheat powdery mildew   总被引:1,自引:0,他引:1  
P. N. Sutton  M. J. Henry  J. L. Hall 《Planta》1999,208(3):426-430
The main host carbon energy source transferred from wheat leaves (Triticum aestivum L.) to wheat powdery mildew (Erysiphe graminis f.sp. tritici) has been investigated in three ways. When the uptake of sugars by isolated mycelial suspensions was examined, the uptake rate for glucose was considerably higher than that for a range of other solutes. Analysis by high-performance liquid chromatography of leaf and mycelial extracts following uptake of sugars into infected leaf pieces confirmed that sucrose was rapidly hydrolyzed in the leaf; no sucrose or fructose could be detected in mycelial extracts. Furthermore, studies of the uptake of asymmetrically labelled sucrose indicated that this sugar is cleaved prior to uptake by the pathogen. Thus several lines of evidence show that glucose, and not sucrose, is the major carbon energy source transferred from host to fungal mycelium. Received: 11 November 1998 / Accepted: 18 January 1999  相似文献   

5.
Symbiotic dinitrogen fixation of legume nodules is fuelled by phloem-imported carbohydrates. These have to pass several cell layers to reach cells infected with Rhizobium bacteroids. It is unclear whether apoplastic steps are involved in carbohyd-rate translocation within the nodule. Protoplasts were isolated from the infected and uninfected cells of the central tissue of Vicia faba nodules using a recently developed protocol. These protoplasts were used to elucidate pathways for sugar transport in this tissue. Both types of protoplasts released protons into the medium. Acidification was inhibited by vanadate and erythrosin B. However, it was stimulated by fusicoccin only in uninfected cells. A symport of sugars with protons can therefore be energized in both cell types. Uptake of 14C-labelled sugars was determined using a phthalate centrifugation technique. Uninfected protoplasts accumulated glucose through high-affinity H+/glucose-symport that was not competitively inhibited by fructose or sucrose. Uninfected protoplasts also absorbed sucrose with biphasic kinetics. At 0.1, 1, and 10 mM sucrose, uptake was inhibited by CCCP. Fusicoccin did not stimulate the linear phase of sucrose uptake. Glucose inhibited sucrose uptake nearly completely. This was not related to sucrose cleavage in the medium because sucrose was absorbed at a much higher rate than glucose, and glucose concentration did not increase in sucrose-containing protoplast suspensions. By contrast with uninfected protoplasts, infected cells did not show transporter-mediated glucose or sucrose uptake. The findings underline a role of uninfected cells in sugar translocation. Infected cells are not apoplastically supplied with sugars and possibly depend on uninfected cells for carbon supply.  相似文献   

6.
苜蓿假盘菌侵染苜蓿叶片的细胞学研究   总被引:1,自引:0,他引:1  
采用微分干涉相差显微镜、扫描和透射电镜技术系统研究了苜蓿假盘菌Pseudopeziza medicaginis在苜蓿叶片的侵染过程及超微结构特征。结果表明,接种4h后,子囊孢子萌发产生芽管;12h后,芽管以直接侵入的方式进入表皮细胞形成侵染菌丝;24h后,表皮细胞中侵染菌丝向相邻表皮细胞扩展,同时侵入到叶肉细胞以胞内生长方式扩展;接种72h后,侵染菌丝在表皮细胞下的叶肉组织中形成初始菌落;第5d后,菌丝扩展至整个叶片组织,大量菌丝聚集形成子座组织,并进一步形成子囊盘与子囊。病菌菌丝在侵入寄主细胞初期,并不  相似文献   

7.
苜蓿假盘菌侵染苜蓿叶片的细胞学研究   总被引:2,自引:0,他引:2  
采用微分干涉相差显微镜、扫描和透射电镜技术系统研究了苜蓿假盘菌Pseudopeziza medicaginis在苜蓿叶片的侵染过程及超微结构特征。结果表明,接种4h后,子囊孢子萌发产生芽管;12h后,芽管以直接侵入的方式进入表皮细胞形成侵染菌丝;24h后,表皮细胞中侵染菌丝向相邻表皮细胞扩展,同时侵入到叶肉细胞以胞内生长方式扩展;接种72h后,侵染菌丝在表皮细胞下的叶肉组织中形成初始菌落;第5d后,菌丝扩展至整个叶片组织,大量菌丝聚集形成子座组织,并进一步形成子囊盘与子囊。病菌菌丝在侵入寄主细胞初期,并不穿透寄主质膜与原生质,而是被其所包围。但随着菌丝进一步扩展,叶片组织发生了一系列的病理变化,其中包括叶肉细胞肿胀、细胞质消解、叶绿体等细胞器解体以及寄主细胞坏死塌陷,并最终在叶表面产生典型的褐斑病症状。  相似文献   

8.
The regulation of sugar uptake and accumulation in bean pod tissue   总被引:15,自引:12,他引:3       下载免费PDF全文
Sacher JA 《Plant physiology》1966,41(1):181-189
The identity, localization and physiological significance of enzymes involved in sugar uptake and accumulation were determined for endocarp tissue of pods of Kentucky Wonder pole beans (Phaseolus vulgaris). An intracellular, alkaline invertase (pH optimum, 8) was assayed in extracted protein, as well as enzymes involved in sucrose synthesis, namely, uridinediphosphate (UDP-glucose pyrophosphorylase and UDP-glucose-fructose transglucosylase). Indirect evidence indicated the presence also of hexokinase, phosphohexoseisomerase and phosphoglucomutase. The data suggested that sucrose synthesis occurred in the cytoplasm, and that both sugar storage and an alkaline invertase occurred in the vacuole. The latter functions to hydrolyze accumulated sucrose. An outer space invertase (pH optimum, 4.0) was detected, but was variable in occurrence. Although its activity at the cell surface enhanced sucrose uptake, sucrose may be taken up unaltered.

Over a wide range of concentrations of exogenous glucose the sucrose/reducing sugar ratio of accumulated sugars remained unchanged at about 20. Synthesis of sucrose appears to be requisite to initial accumulation from glucose or fructose, as free hexoses do not increase at the apparent saturating concentration for uptake. Sucrose accumulation from exogenous hexose represents a steady-state value, in which sucrose is transported across the tonoplast into the vacuole at a rate equivalent to its rate of synthesis. Evidence indicates that this component of the accumulation process involves active transport of sucrose against a concentration gradient. The ratio of sucrose/reducing sugars in the accumulated sugars immediately after a period of uptake was inversely related to the level of inner space invertase. Within 16 hours after a period of accumulation, practically all of the sugar occurs as glucose and fructose.

The absence of competition among hexoses and sucrose indicated that a common carrier was not involved in their uptake. From a series of studies on the kinetics of uptake of glucose and fructose, including competition studies, the effects of inhibitors, radioactive assay of accumulated sugars and the distribution of label in accumulated sucrose it appeared that rate limitation for glucose or fructose uptake resides in the sequence of reactions leading to sucrose synthesis, rather than in a process mediated by a carrier protein.

  相似文献   

9.
Liquid scintillation spectrophotometry was employed to determine absorption of 3H-glucose by rats infected with the coccidium Eimeria nieschulzi. In vivo studies showed increased uptake of label into small intestinal tissue and hepatic portal plasma at 3 days postinoculation and decreased absorption at 8 days postinfection compared to uninfected control animals. Observations of tissues incubated in labeled glucose in vitro confirm in vivo findings of increased uptake early in infection and malabsorption coinciding with the observation of clinical disease symptoms.  相似文献   

10.
Localised changes in photosynthesis in oat leaves infected with the biotrophic rust fungus Puccinia coronata Corda were examined at different stages of disease development by quantitative imaging of chlorophyll fluorescence. Following inoculation of oat leaves with crown rust the rate of whole-leaf gas exchange declined. However, crown rust formed discrete areas of infection which expanded as the disease progressed and these localised regions of infection gave rise to heterogeneous changes in photosynthesis. To quantify these changes, images of chlorophyll fluorescence were taken 5, 8 and 11 d after inoculation and used to calculate images representing two parameters; ΦII, a measure of PSII photochemical efficiency and ΔFm/Fm′, a measure of non-photochemical energy dissipation (qN). Five days after inoculation, disease symptoms appeared as yellow flecks which were correlated with the extent of the fungal mycelium within the leaf. At this stage, ΔII was slightly reduced in the infected regions but, in uninfected regions of the leaf, values of ΦII were similar to those of healthy leaves. In contrast, qN (ΔFm/Fm′) was greatly reduced throughout the infected leaf in comparison to healthy leaves. We suggest that the low value of qN in an infected leaf reflects a high demand for ATP within these leaves. At sporulation, 8 d after inoculation, ΦII was reduced throughout the infected leaf although the reduction was most marked in areas invaded by fungal mycelium. In the infected leaf the pattern of non-photochemical quenching was complex; qN was low within invaded regions, perhaps reflecting high metabolic activity, but was now much higher in uninfected regions of the infected leaf, in comparison to healthy leaves. Eleven days after inoculation “green islands” formed in regions of the leaf associated with the fungal mycelium. At this stage, photosynthesis was severely inhibited over the entire leaf; however, heterogeneity was still apparent. In the region not invaded by the fungal mycelium, ΦII and qN were very low and these regions of the leaf were highly fluorescent, indicating that the photosynthetic apparatus was severely damaged. In the greenisland tissue, ΦII was low but detectable, indicating that some photosynthetic processes were still occurring. Moreover, qN was high and fluorescence low, indicating that the cells in this region were not dead and were capable of significant quenching of chlorophyll fluorescence.  相似文献   

11.
Oxygen uptake rates (OUR) of Sf9 insect cells propagated in a serum-free medium (SF900II, Gibco) and of cells infected with a recombinant AcNPV were investigated before and after infection in a laboratory-scale bioreactor. The volumetric OURs of uninfected and exponentially growing cells were found to be proportional to the cell density. For infected cultures, the specific OUR of cells increased immediately after addition of virus and a maximum of 1.3 times the value of uninfected cells was noted for all the cultures between 8 to 30 hours post infection, which coincides with the period at which most viral replication and the majority of DNA synthesis takes place. It was observed that the rate of rise in the specific OUR decreased as the cell density at the time of infection increased, which meant that the later the infection, the later the maximum sOUR was observed. We therefore suggest that OUR measurement can be used to reflect the efficiency of a batch infection. Carbohydrate and amino acid consumption rates from an infected run were analysed in an effort to identify substrate(s) that may be used at increased rates to fuel the rise in oxygen demand observed early in the infection cycle. No observable rise in the consumption rates of glucose or glutamine, which are the major energy sources for animal cells, were seen after infection but an increase in the consumption rates of some amino acids suggests that infected Sf9 cells may utilise amino acids at an enhanced rate for energy post infection.  相似文献   

12.
Plants are regularly colonised by fungi and bacteria, but plant‐inhabiting microbes are rarely considered in studies on plant–herbivore interactions. Here we show that young gypsy moth (Lymantria dispar) caterpillars prefer to feed on black poplar (Populus nigra) foliage infected by the rust fungus Melampsora larici‐populina instead of uninfected control foliage, and selectively consume fungal spores. This consumption, also observed in a related lepidopteran species, is stimulated by the sugar alcohol mannitol, found in much higher concentration in fungal tissue and infected leaves than uninfected plant foliage. Gypsy moth larvae developed more rapidly on rust‐infected leaves, which cannot be attributed to mannitol but rather to greater levels of total nitrogen, essential amino acids and B vitamins in fungal tissue and fungus‐infected leaves. Herbivore consumption of fungi and other microbes may be much more widespread than commonly believed with important consequences for the ecology and evolution of plant–herbivore interactions.  相似文献   

13.
Summary Rust infected leaves of wheat plants were incubated with glucose-14C. Uredospores which were formed during the application of the tracer were analyzed. All isolated compounds were labeled with 14C. When germinating uredospores were incubated directly with 14C-glucose, the isolated glutamic acid, arginine and lysine had practically no radioactivity. These compounds did, however, contain considerable 14C-activity when they were isolated from uredospores formed on leaves that had been treated with the tracer. We therefore conclude that these amino acids were synthesized in the host and were taken up by the haustoria of the mycelium.High 14C-radioactivity was also found in all carbohydrates (chitin, glucomannan, polyols etc.). Hexoses isolated from the spore constituents chitin and glucomannan showed the same distribution of radioactivity as the applied glucose-1-14C or glucose-6-14C. It follows that the rust mycelium takes up glucose or a similar monosaccharide from the wheat plant. The C-6-skeleton is not degraded to smaller metabolites before it is taken up.  相似文献   

14.
Carbohydrate-hybridization probes (Vreeland and Laetsch, 1989, Planta (177, 423–434) were used to localize the homogalacturonan (pectate) component of pectins in the cell walls of leaves and soybean root nodules. Leaves of two species of the dicotyledon Dubautia were compared; these species contain much pectin but differ in their tissue water relations with respect to their cell-wall properties. Maturation of the primary cell walls in nodules was studied in the Bradyrhizobium japonicum-Glycine max symbiosis. Probe labelling was based on the divalent-cation-mediated association between pectate in tissue sections and fluorescein-conjugated pectate fragments. Pectate was also labelled by mixed-dimer formation with fluorescent polyguluronate derived from alginate. The specificity of the probe for unesterified polygalacturonate was indicated by increased cell-wall labelling after chemical or enzymatic deesterification of tissue sections, in contrast to elimination of labelling by chemical esterification. Postfixation of tissue sections improved retention of soluble pectate. Pectate differences were found in the leaves among cell types, in degree of esterification, and between plant species. The cell walls of soybean nodules were strongly labelled by the pectate probe in nodules one week and three weeks after infection. Pectate was more highly esterified in the central infected zone than in the surrouding cortex. Within the infected zone, walls of uninfected cells and infected cells were similarly labelled by the pectate probe. The results indicate that the pectate molecular probe provides detailed information on pectate distribution at the cellular level for investigations of cell-wall structure, development and physiology.Abbreviations EDTA ethylenedinitrilotetraacetic acid (ethylenediaminetetraacetic acid) - NMR nuclear magnetic resonance spectroscopy - TTB 1,3,5-triazido-2,4,6-trinitrobenene  相似文献   

15.
We have obtained Nicotiana tabacum transgenic cell lines expressing a sucrose binding protein (sbp) homologue gene from soybean (Glycine max L.), designated s-64, either in the sense or antisense orientation. Sense cell lines over-accumulated the S-64 protein, whereas the antisense cell lines had reduced levels of the endogenous homologue protein. Sucrose uptake experiments were conducted by incubating suspension-cultured tobacco cells with radiolabeled sucrose at pH 4.5 or 7.0. Raising the extracellular pH to 7.0 caused an inhibition of radiolabeled carbon uptake efficiency, which was attributed to the pH-sensitivity of cell-wall invertase (EC 3.2.1.26), H+/hexose transporter and/or H+/sucrose symporter activities. Because SBP-mediated sucrose uptake has been shown to be insensitive to extracellular pH in yeast, we performed the sucrose uptake experiments in sense and antisense cultured cells at pH 7.0. Under this condition, the level of SBP homologue correlated with the efficiency of radiolabeled uptake by the transgenic tobacco cells. Furthermore, manipulation of S-64 levels altered sucrose-cleaving activities in a metabolic compensatory manner. Enhanced accumulation of S-64 caused an increase in intracellular sucrose synthase (cleavage, EC 2.4.1.13) activity with a concomitant decline in cell-wall invertase activity. This result may reflect a metabolic adjustment of the sense cell lines caused by its high efficiency of direct sucrose uptake as disaccharide. In contrast, the level of cell-wall invertase activity was remarkably increased in antisense cells, favoring the invertase-dependent sugar uptake system. Collectively, these results may establish a functional link between radiolabeled influx and S-64 accumulation, suggesting that SBP affects sucrose uptake in suspension-cultured cells.  相似文献   

16.
Plasmodium lophurae-infected red blood cells utilized considerably greater quantities of glucose than did uninfected duckling red cells. Kinetic analysis of glucose transport showed: (A). Below a concentration of 2 mM in the medium the uptake process followed Michaelis-Menten kinetics (carrier-mediated facilitated diffusion) whereas at concentrations greater than this simple diffusion became the main mode of entry. (B). The apparent transport constants, Kt, for normal and infected cells were similar. However there was an 8-fold increase in the maximal velocity, Vmax, for infected cells. (C). “Free” malaria parasites had a significantly lower Kt and a higher Vmax than did normal or infected red cells. Entry and exit studies with the nonmetabolizable sugar analog, 3-0-methyl glucose, demonstrated that the enhanced rate of uptake by infected cells involved an increase in the simple diffusion component and the degree of enhancement was correlated with the size of the intracellular parasite. Competition experiments suggested that in the malaria-infected cell one locus is involved in the carrier-mediated transport of glucose, mannose and galactose whereas another locus transports fructose and/or glycerol. These results indicate that the enhanced entry of glucose into the malaria-infected red cell is a consequence of factors other than increased glucose catabolism by the host-parasite complex, and the host cell's capacity to take up greater quantities of sugar directly involves the growing intracellular plasmodium.  相似文献   

17.
Solutions of sucrose, glucose, raffinose, and stachyose were fed via the petiole to detached leaves of plant species known to transfer sugars during photosynthesis into the phloem using either the apoplastic or the symplastic pathway of phloem loading. Symplastic phloem loaders, which translocate raffinose-type oligosaccharides and sucrose in the phloem, and apoplastic plants, translocating exclusively sucrose, were selected for this study. As the sugars arrived with the transpiration stream in the leaf blade within little more than a minute, dark respiration increased. Almost simultaneously, fluorescence of a potential-indicating dye, which had been infiltrated into the leaves, indicated membrane depolarization. Another fluorescent dye used to record the apoplastic pH revealed apoplastic alkalinization that occurred with a slight lag phase after respiration and membrane depolarization responses. Occasionally, alkalinization was preceded by transient apoplastic acidification. Whereas membrane depolarization and apoplastic acidification are interpreted as initial responses of the proton motive force across the plasma membrane to the advent of sugars in the leaf apoplast, the following apoplastic alkalinization showed that sugars were taken up from the apoplast into the symplast in cotransport with protons. This was true not only for glucose and sucrose, but also for raffinose and stachyose. Similar observations were made for sugar uptake not only in leaves of plants known to export sugars by symplastic phloem loading but also of plants using the apoplastic pathway. Increased respiration during sugar uptake revealed tight coupling between respiratory ATP production and ATP consumption by proton-translocating ATPase of the plasma membrane, which exports protons into the apoplast, thereby compensating for the proton loss in the apoplast when protons are transported together with sugars into the symplast. The extent of stimulation of respiration by sugars indicated that sugar uptake was not limited to phloem tissue. Ratios of the extra CO2 released during sugar uptake to the amounts of sugars taken up were variable, but lowest values were lower than 0.2. When a ratio of 0.2 is taken as a basis to calculate rates of sugar uptake from observed maxima of sugar-dependent increases in respiration, rates of sugar uptake approached 350 nmol/(m2 leaf surface s). Sugar uptake rates were half-saturated at sugar concentrations in the feeding solutions of about 10–25 mM indicating a low in vivo affinity of sugar uptake systems for sugars.  相似文献   

18.
Stripe rust (Puccinia striiformis f.sp. tritici) is the most devastating disease of wheat (Triticum aestivum L.) accounting huge economical losses to the industry worldwide. HD 2329 was a widely grown wheat cultivar which had become highly susceptible to stripe rust and was used to understand the biochemical aspects of the host pathogen interaction through characterization of superoxide dismutase (SOD). In the present study, two types of SOD, ionically or covalently bound to the particulate fraction were found in the stripe rust infected and uninfected wheat leaves of susceptible cultivar HD 2329. Cell walls of leaves contained a high level of SOD, of which 41-44% was extractable by 2 M NaCl and 10-13% by 0.5% EDTA in infected and uninfected leaves. The NaCl-released SOD constituted the predominant fraction. It exhibited maximum activity at pH 9.0, had a Km value of 1.82-2.51 for uninfected and 1.77-2.37 mM for infected, respectively with pyrogallol as the substrate, and a Vmax of 9.55-21.4 and 12.4-24.1 delta A min(-1)g(-1)FW. A temperature optimum of 20 degrees C was observed for SOD of both uninfected and infected leaves. SOD showed differential response to metal ions, suggesting their distinctive nature. Inhibition of wall bound SOD by iodine and its partial regeneration of activity by mercaptoethanol suggested the involvement of cysteine in active site of the enzyme. These two forms showed greater differences with respect to thermodynamic properties like energy of activation (Ea) and enthalpy change (delta H), while entropy change (delta S) and free energy change (delta G) were similar. The results further showed that pathogen infection of the leaves of susceptible wheat cultivar induced a decrease in the SOD activity and kinetics which might be critical during the response of plant cells to the infection.  相似文献   

19.
The sporophyte of bryophytes is dependent on the gametophyte for its carbon nutrition. This is especially true of the sporophytes of Polytrichum species, and it was generally thought that sucrose was the main form of sugar for long distance transport in the leptom. In Polytrichum formosum, sucrose was the main soluble sugar of the sporophyte and gametophyte tissues, and the highest concentration (about 230 mm) was found in the haustorium. In contrast, sugars collected from the vaginula apoplast were mainly hexoses, with traces of sucrose and trehalose. p-Chloromercuribenzene sulfonate, a nonpermeant inhibitor of the cell wall invertase, strongly reduced the hexose to sucrose ratio. The highest cell wall invertase activity (pH 4.5) was located in the vaginula, whereas the highest activity of a soluble invertase (pH 7.0) was found in both the vaginula and the haustorium. Glucose uptake was carrier-mediated but only weakly dependent on the external pH and the transmembrane electrical gradient, in contrast to amino acid uptake (S. Renault, C. Despeghel-Caussin, J.L. Bonnemain, S. Delrot [1989] Plant Physiol 90: 913-920). Furthermore, addition of 5 or 50 mm glucose to the incubation medium induced a marginal depolarization of the transmembrane potential difference of the transfer cells and had no effect on the pH of this medium. Glucose was converted to sucrose after its absorption into the haustorium. These results demonstrate the noncontinuity of sucrose at the gametophyte/sporophyte interface. They suggest that its conversion to glucose and fructose at this interface, and the subsequent reconversion to sucrose after hexose absorption by haustorium cells, mainly governs sugar accumulation in this latter organ.  相似文献   

20.
1. Phyllosphere interactions are known to influence a variety of tree canopy community members, but less frequently have they been shown to affect processes across ecosystem boundaries. Here, we show that a fungal endophyte (Rhytisma punctatum) slows leaf litter decomposition of a dominant riparian tree species (Acer macrophyllum) in an adjacent stream ecosystem. 2. Patches of leaf tissue infected by R. punctatum show significantly slower decomposition compared to both nearby uninfected tissue from the same leaf, and completely uninfected leaves. These reduced rates of decomposition existed despite 50% greater nitrogen in infected tissues and may be driven by slower rates of decomposition for fungal tissues themselves or by endophyte–hyphomycete interactions. 3. Across a temperate forest in the Pacific Northwest, approximately 72% of all A. macrophyllum leaves were infected by R. punctatum. Since R. punctatum infection can influence leaf tissue on entire trees and large quantities of leaf litter at the landscape scale, this infection could potentially result in a mosaic of ‘cold spots’ of litter decomposition and altered nutrient cycling in riparian zones where this infection is prevalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号