首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The oxyntic cell in the gastric glands of the bullfrog was examined in lead hydroxide-stained sections of gastric mucosae fixed in buffered osmium tetroxide and embedded in n-butyl methacrylate. During gastric acid secretion (pH 1–2) induced by histamine administration in cannulated frogs, the pattern of fine structure in the oxyntic cell differs strikingly from that in the oxyntic cell of the non-acid-secreting stomach. The relative number of smooth surfaced profiles decreases and a greater concentration of these elements is associated with the apical region of the oxyntic cell facing the lumen of the gastric gland. Similar concentrations of these elements are found in those regions of cytoplasm surrounding intercellular canaliculi which lie between adjacent cells and communicate with the lumen of a gastric gland. In these regions, the smooth surfaced profiles (35 to 65 mµ in width) characteristically form a tubular network. The membrane-bounded contents appear to be continuous with the extracellular medium, both on the capillary side and at the apical surface of the cell adjoining the lumen of the gastric gland. Mitochondria are distributed randomly in the cytoplasmic matrix of the oxyntic cell.  相似文献   

2.
This study was undertaken to determine the mechanism by which ammonium chloride (NH(4)Cl) inhibits stimulated acid secretion in the bullfrog gastric mucosa. To this end, four possible pathways of inhibition were studied: 1) blockade of basolateral K(+) channel, 2) blockade of ion transport activity, 3) neutralization of secreted H(+) in the luminal solution, or 4) ATP depletion. Addition of nutrient 10 mM NH(4)Cl (calculated NH(3) concentration = 92.5 microM and NH(4)(+) concentration = 9.91 mM) inhibited acid secretion within 30 min. Inhibition of acid secretion did not occur by blockade of basolateral K(+) channel activity or ion transport activity or by neutralization of the luminal solution. Although ATP depletion occurred in the presence of NH(4)Cl, the magnitude of ATP depletion in 30 min was not sufficient to inhibit stimulated acid secretion. By comparing the effect of NH(4)Cl on the resistance of inhibited or stimulated tissues, we demonstrate that NH(4)Cl acts specifically on stimulated tissues. We propose that NH(4)Cl blocks activity of an apical K(+) channel present in stimulated oxyntic cells. Our data suggest that the activity of this channel is important for the regulation of acid secretion in bullfrog oxyntic cells.  相似文献   

3.
Summary The possibility of recycling, fusion and retrieval of membranes during the gastric secretory process was studied in isolated gastric mucosae of the toadBufo marinus. Incorporation and efflux of14C-inulin and horseradish peroxidase (HRP) into the tissue as well as transmission and freeze-fracture electron microscopic studies during the secretory cycle were done. HRP and14C-inulin were incorporated into the tubulovesicular membrane system during the secreting-resting transition. Upon restimulation, markers were released towards the lumen. Marker efflux preceded onset of H+ secretion. Morphological transformations in the oxyntic cell as evidenced from transmission and freeze-fracture electron microscopy preceded acid secretion coinciding with marker efflux. At this time, images that have been associated with membrane fusion were found in the apical membranes of oxyntic cells. The results are consistent with a model where membrane area increases by a fusion mechanism at the expense of the tubulovesicular system. This transformation precedes the onset of H+ secretion. Upon cessation of the stimulus or inhibition, membranes are retrieved and the tubulovesicular system reformed. Retrieved membranes could be then reutilized in the next secretory cycle.  相似文献   

4.
Many forms of diarrhoeal disease, particularly so called “secretory” diarrhoeal disease are thought to arise by the active secretion of chloride ion from the enterocytes, creating an osmotic gradient for fluid movement into the small intestinal lumen. This model implies that normally occurring intestinal secretion is catastrophically enhanced by bacterial enterotoxins. This review advocates that neither normal nor abnormal intestinal secretion from the enterocytes occurs and that no competent proof for chloride secretion exists. Prior to 1970, the physiological evidence failed to support the concept of the formation of intestinal juice as a normal intestinal event. support the concept of the formation of intestinal juice as a normal intestinal event. The concept was later revived to explain the high rate of fluid entry into the lumen after exposure to cholera toxin. Much evidence has been advanced for the chloride secretion hypothesis, the dominant secretory paradigm after 1974, but is the evidence sufficiently compelling for it to be regarded as proving the chloride secretory model? The evidence falls into four categories and a fifth conjectural argument that proposes that an abnormal chloride ion channel in cystic fibrotic sufferers confers a natural selective advantage by preventing diarrhoeal disease. Secretion is putatively demonstrated by 1) showing that mass transfer of fluid is into the lumen (secretion) and not merely a failure to transport out of the lumen (failed absorption). Support is offered by 2) chloride ion flux measurementsin vitro in Ussing chambers and by 3) shortcircuit current measurements that are consistent with and purport to show chloride ion movement into the lumen. In addition, 4) pharmacological agents are identified that affect short-circuit current and these are assumed to be anti-secretory, consistent with the biochemical mechanism for secretion, confirmed wherever possible by mouse knock-out models. Finally, the proxy methods used to study water movement such as elevated short-circuit current measurements show these to be absent in cystic fibrotic patients. The enterocyte secretion hypothesis is challenged here on the basis of an examination of the methods used to show secretion, particularly after exposing the small intestine to heat stable enterotoxin (STa) fromE. coli. STa is thought to be secretory because fluid entry into the lumen is claimed, enhanced isotopic flux of chloride ion towards the lumen occurs, an increase in short-circuit current is found, preventable by various drugs that are deemed likely to be anti-secretory and also because the short-circuit current changes after STa are not seen in cystic fibrotic patients. Using volume recoveryin vivo, STa is found not to be secretory but only anti-absorptive. Hence, other techniques used to show secretion are not fit for that purpose. If STa is identified as secretory and yet no secretion occurs, how reliable is the evidence for other toxins being secretory when these methods are used? This review concludes that chloride ion secretion is unproven. A review of the literature indicates that secretion occurs not because epithelial cells actively pump water but by interdiction of fluid absorption, increased conductivity through tight junctions and an increased hydrostatic driving force through elevated capillary pressure. The exclusive focus on chloride secretion may explain the failure to develop antisecretory drugs over the last three decades.  相似文献   

5.
EGF, produced mainly by salivary glands, inhibits gastric acid secretion, stimulates the proliferation of gastric mucosal cells and protects the mucosa against various ulcerogens, but its role in the pathogenesis of stress ulcerations is unknown. In this study, rats with intact or resected salivary glands were exposed to water immersion and restraint stress (WRS) without and with pretreatment with exogenous EGF or dimethyl PGE2 (dmPGE2) at doses which were shown previously to protect the mucosa against topical irritants. During 1.5-12 h of WRS, the formation of gastric ulcerations increased progressively with the duration of stress reaching peak after 6 h of stress and being significantly higher in rats with removed salivary glands than in intact animals. Gastric acid secretion and DNA synthesis in oxyntic mucosa declined with the duration of WRS, but after sialoadenectomy a significant increase in gastric acid secretion and a further decline in DNA synthesis were observed after WRS. EGF contents in the gastric lumen and the gastric mucosa were several times higher in rats subjected to stress than in control unstressed animals, indicating that stress causes an extensive release of EGF. Both exogenous EGF (17 nmol/kg/h) and dmPGE2 (143 nmol/kg) prevented, in part, the formation of gastric lesions, while inhibiting gastric acid secretion both in rats with intact or resected salivary glands. We conclude that water immersion and restraint stress is accompanied by an excessive release of EGF, which appears to attenuate gastric secretion, enhances the DNA synthesis and may limit the formation of stress-induced gastric ulcerations.  相似文献   

6.
A simple and reproducible method for isolating oxyntic glands from the rat gastric mucosa was developed. The mucosa was incubated with pronase and EGTA, and then treated mechanically to release glands that were separated from single cells by sedimentation. Parietal cells were identified by immunostaining using a monoclonal antibody against H,K-ATPase. The glandular cells appeared morphologically intact. By careful control of the conditions of gland isolation, long glandular structures comprising hundreds of cells surrounding the lumen were obtained. Intraperitoneal injection of Br-deoxyuridine in the rat 1.5 h before the isolation procedure resulted in glands with a labeling of cells in their neck region. The glands were viable, as demonstrated by their ability to respond to various hormones. Histamine dose-dependently stimulated the acid formation which was measured as the accumulation of [14C]aminopyrine. At 100 microM histamine the accumulation was increased 5-10-fold. At 100 nM, pentagastrin potentiated the histamine stimulated accumulation by approximately 40% but pentagastrin alone did not stimulate. The oxyntic glands obtained by the present procedure appear useful for studies on cell physiology, including regulation of acid secretion, cellular interactions, and possibly also differentiation and proliferation mechanisms since long glandular fragments that contained the proliferative zone could be isolated.  相似文献   

7.
In the oxyntic mucosa of the mammalian stomach, histamine is stored in ECL cells and in mucosal mast cells. In the rat, at least 80 percent of oxyntic mucosal histamine resides in the ECL cells. Histamine is a key factor in the regulation of gastric acid secretion. Following depletion of ECL-cell histamine by treatment with alpha-fluoromethylhistidine (alpha-FMH), basal acid secretion was reduced, and gastrin-stimulated acid secretion was abolished. Vagally-induced acid secretion (by insulin injection or pylorus ligation) was unaffected by alpha-FMH treatment but inhibited by an H2 antagonist. These results suggest that gastrin stimulates acid secretion via release of ECL-cell histamine, whereas vagally-induced acid secretion--although histamine-dependent--does not rely on ECL-cell histamine. Gastrin is known to have a trophic effect on the oxyntic mucosa. By combining long-term hypergastrinemia with continuous infusion of alpha-FMH, we were able to show that gastrin-evoked trophic effects in the stomach do not depend on ECL-cell histamine.  相似文献   

8.
Potassium-dependent phosphatase activity can be demonstrated in unfixed frozen sections of mouse stomach using either adenosine triphosphate (ATP) or p-nitrophenyl phosphate (NPP) as substrate. In both cases the potassium-dependent reaction is confined to oxyntic cells, but with ATP, a strong, potassium-independent reaction occurs in the connective tissue of the lamina propria and elsewhere. In the NPP system potassium-independent reaction is very slight, and the oxyntic cell reaction shows responses to inhibitors that differentiate it from Na+, K+-ATPase and that are consistent with its identification with the dephosphorylation step of the proton pump enzyme H+, K+-ATPase, recognized as the active transport component in gastric acid secretion.  相似文献   

9.
The digestive function of the stomach depends on acidification of the gastric lumen. Acid secretion into the lumen is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. A coupling protein is ezrin, whose phosphorylation at Ser-66 by PKA is required for parietal cell activation. However, little is known regarding the molecular mechanism(s) by which this signaling pathway operates in gastric acid secretion. Here we show that PKA cooperates with MST4 to orchestrate histamine-elicited acid secretion by phosphorylating ezrin at Ser-66 and Thr-567. Histamine stimulation activates PKA, which phosphorylates MST4 at Thr-178 and then promotes MST4 kinase activity. Interestingly, activated MST4 then phosphorylates ezrin prephosphorylated by PKA. Importantly, MST4 is important for acid secretion in parietal cells because either suppression of MST4 or overexpression of non-phosphorylatable MST4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, overexpressing MST4 phosphorylation-deficient ezrin results in an inhibition of gastric acid secretion. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ezrin signaling cascade to polarized epithelial secretion in gastric parietal cells.  相似文献   

10.
Na-K-2Cl cotransporter-1 (NKCC) has been detected at exceptionally high levels in the gastric mucosa of several species, prompting speculation that it plays important roles in gastric secretion. To investigate this possibility, we 1) immunolocalized NKCC protein in the mouse gastric mucosa, 2) compared the volume and composition of gastric fluid from NKCC-deficient mice and their normal littermates, and 3) measured acid secretion and electrogenic ion transport by chambered mouse gastric mucosa. NKCC was localized to the basolateral margin of parietal cells, mucous neck cells, and antral base cells. In NKCC-deficient mice, gastric secretions of Na+, K+, Cl-, fluid, and pepsinogen were markedly impaired, whereas secretion of acid was normal. After stimulation with forskolin or 8-bromo-cAMP, chambered corpus mucosa vigorously secreted acid, and this was accompanied by an increase in transmucosal electrical current. Inhibition of NKCC with bumetanide reduced current to resting levels but had no effect on acid output. Although prominent pathways for basolateral Cl- uptake (NKCC) and apical Cl- exit [cystic fibrosis transmembrane conductance regulator (CFTR)] were found in antral base cells, no impairment in gastric secretion was detected in CFTR-deficient mice. Our results establish that NKCC contributes importantly to secretions of Na+, K+, Cl-, fluid, and pepsinogen by the gastric mucosa through a process that is electrogenic in character and independent of acid secretion. The probable source of the NKCC-dependent nonacidic electrogenic fluid secretion is the parietal cell. The observed dependence of pepsinogen secretion on NKCC supports the concept that a nonacidic secretory stream elaborated from parietal cells facilitates flushing of the proenzyme from the gastric gland lumen.  相似文献   

11.
Many studies have implicated F-actin in the regulation of gastric acid secretion using cytochalasin D (CD) to disrupt apical actin filaments in oxyntic cells. However, it is known that CD also affects mucosal permeability by disrupting tight junction structure. Here we investigated the contribution of F-actin to mucosal permeability and acid secretion in the stomach using CD. Stomachs were mounted in Ussing chambers and acid secretion (stimulated or inhibited), transepithelial resistance (TER), mannitol flux, bicarbonate transport, and dual mannitol/sodium fluxes were determined with or without CD. H(+) back diffusion was predicted from its diffusion coefficient. Incubation with CD resulted in a significant reduction in stimulated acid secretion. TER was unchanged in stimulated tissues but significantly reduced in inhibited tissues. Mannitol flux, bicarbonate transport, and H(+)-back diffusion increased significantly with CD. However, the rates of bicarbonate and H(+) flux were not large enough to account for the inhibition of acid secretion. These findings demonstrate that actin filaments regulate paracellular permeability and play an essential role in the regulation of acid secretion in the stomach.  相似文献   

12.
The structural features of the uterine epithelium of the chorioallantoic placenta and omphalloplacenta in the viviparous Australian skink, Pseudemoia entrecasteauxii, were investigated using SEM and TEM techniques. In particular, the structural characteristics that would allow interpretation of function were analyzed, particularly those of gas exchange in the chorioallantoic placenta and histotrophy in the omphaloplacenta. Pseudemoia entrecasteauxii has a complex placenta consisting of a placentome, paraplacentome, and omphaloplacenta. The paraplacentome has a well-vascularized lamina propria in which projecting uterine capillaries displace the overlying uterine epithelial cells, reducing them to attenuated cytoplasmic extensions. Associated cell nuclei and organelles are lost from this region, to provide a capillary lumen to uterine lumen barrier of 0.5-1.0 microm. Hence, the paraplacentome is likely a prominent site for gaseous exchange via simple diffusion. The omphaloplacenta has a similar cytology to that of the placentome, but the uterine epithelial cells are hypertrophied and the apical plasma membrane actively secretes vesicles into the uterine lumen. The omphaloplacenta shows features that are associated with histotrophic transport of nutrients via vesicle secretion, very similar to that of lipid apocrine secretion. The placentome consists of cuboidal cells in the uterine epithelium, with large centrally located nuclei overlying the well-vascularized lamina propria. Although the placentome has a similar cytological structure to that of the omphaloplacenta, granules or active vesicle secretion were not observed. Thus, the placentome may be associated with histotrophy, but not via apocrine secretion. Squamate placentation is epitheliochorial; however, we propose a new term be used to describe the type of placentation in P. entrecasteauxii: "cyto-epitheliochorial," because of the extreme attenuation of uterine epithelial cells of the paraplacentome.  相似文献   

13.
This work describes a comprehensive mathematical model of the human respiratory control system which incorporates the central mechanisms for predicting sleep-induced changes in chemical regulation of ventilation. The model integrates four individual compartments for gas storage and exchange, namely alveolar air, pulmonary blood, tissue capillary blood, body tissues, and gas transport between them. An essential mechanism in the carbon dioxide transport is its dissociation into bicarbonate and acid, where a buffering mechanism through hemoglobin is used to prevent harmfully low pH levels. In the current model, we assume high oxygen levels and consider intracellular hydrogen ion concentration as the principal respiratory control variable. The resulting system of delayed differential equations is solved numerically. With an appropriate choice of key parameters, such as velocity of blood flow and gain of a non-linear controller function, the model provides steady-state results consistent with our experimental observations measured in subjects across sleep onset. Dynamic predictions from the model give new insights into the behaviour of the system in subjects with different buffering capacities and suggest novel hypotheses for future experimental and clinical studies.  相似文献   

14.
《Biophysical journal》2023,122(3):484-495
The vital function of red blood cells (RBCs) is to mediate the transport of oxygen from lungs to tissues and of CO2 from tissues to lungs. The gas exchanges occur during capillary transits within fractions of a second. Each oxygenation-deoxygenation and deoxygenation-reoxygenation transition on hemoglobin triggers sharp changes in RBC pH, leading to downstream changes in ion fluxes, membrane potential, and cell volume. The dynamics of these changes during the variable periods between capillary transits in vivo remains a mystery inaccessible to study by current methodologies, a knowledge gap on a fundamental physiological process that is the focus of the present study. The use of a computational model of human RBC homeostasis of tested accreditation enabled a detailed investigation of the expected RBC changes during intercapillary transits, with results advancing novel insights and predictions. The predicted rates of relative RBC volume change on oxygenation-deoxygenation (oxy-deoxy) and deoxygenation-reoxygenation transitions were about 1.5%/min and ?0.9%/min, respectively, far too slow to allow the cells to reach steady states in the intervals between capillary transits. The amplitude of the oxy-deoxy-reoxygenation volume fluctuations varied in proportion with the duration of the intercapillary transit intervals. Upon capillary entry, oxy-deoxy-induced changes occur concurrently with deformation-induced PIEZO1 channel activation, both processes affecting cell pH, membrane potential, and cell volume during intertransit periods. The model showed that the effects were strictly additive as expected from processes operating independently on the cell’s homeostatic fabric. Analysis of the mechanisms behind these predictions revealed, for the first time, the complex interactions between oxy-deoxy and ion transport processes that ensure the long-term homeostatic stability of RBCs for optimal gas transport in physiological conditions and how these may become altered in diseased states. Possible designs of microfluidic devices to test the model predictions are discussed.  相似文献   

15.
The most frequent localization of H-3-pentagasrine was found in the gastric mucosa of rats, a weak incorporation was observed in the cells of duodenum; liver and skeletal muscles showed no incorporation. In the acid-secreting region of gastric mucosa, the labeled pentagastrine was accumulated selectively in the main and endocrin cells, which allowed to suppose the presence of gastrine receptors in these cells. These data, together with the absence of the label over the oxyntic cells, amy evidence for the participation of endocrine histamine-containing cells in the control of hydrochloric acid secretion in the rat stomach.  相似文献   

16.
Pharmacological inhibition of gastric acid secretion and subsequent hypergastrinemia in Mastomys natalensis is an experimental model well suited for the study of gastric carcinoid formation. The genetic susceptibility of Mastomys to develop such tumors is a feature reminiscent of the situation in patients with the MEN-1 Zollinger Ellison syndrome, in whom tumor-induced hypergastrinemia, promotes the development of gastric carcinoids. Chronic hypergastrinemia, induced by the irreversible H2-receptor antagonist loxtidine will cause carcinoid formation in Mastomys already after four to six months. As in humans, gastric carcinoids in Mastomys are mainly composed of enterochromaffinlike (ECL) cells and have low malignant potential. Administration of exogenous gastrin to normal young animals increases the expression of histidine decarboxylase (HDC) mRNA in the oxyntic mucosa within 30 minutes. Endogenous hypergastrinemia, induced by short-time loxtidine treatment (three to 29 days) enhances the expression of HDC mRNA, histamine contents and ECL cell numbers in the oxyntic mucosa. Long-term loxtidine treatment (seven to 21 months) results in sustained hypergastrinemia and tumor formation. Tumor-bearing animals exhibited an increase in HDC mRNA and histamine content in the oxyntic mucosa as well as increased urinary excretion of the main histamine metabolite, tele-methylimidazole acetic acid (MeImAA). Subsequent to cessation of loxtidine treatment for two weeks, all parameters of histamine metabolism were normalized in tumor-bearing animals. These results indicate that gastric carcinoids developing during hypergastrinemia are well-differentiated neoplasms whose histamine synthesis and metabolism is regulated by plasma gastrin.  相似文献   

17.
Leptin is secreted into the gastric juice by epithelial Chief cells and reaches the duodenum in a biologically intact active form. We assessed the possibility that this gastric leptin crosses the intestinal mucosa by transcytosis through enterocytes to reach blood circulation. Endogenous gastric leptin secretion was triggered by cholinergic stimulation. In another set of experiments, recombinant leptin was inserted in vivo into the duodenal lumen. Plasma levels of leptin were assessed by enzyme immunoassay and Western blot, and duodenal tissue was processed for immunocytochemistry. We first observed that leptin was found inside duodenal enterocytes from fed rats but not inside those from fasted ones. Stimulation of gastric secretion by a cholinergic agent led to rapid increases in plasma leptin levels (202 +/- 39%) except when the pylorus was clamped. Insertion of recombinant leptin into the duodenal lumen raised plasma leptin concentrations (558 +/- 34%) quite rapidly, whereas carrier solution without leptin had no effect. The use of FITC-tagged leptin reinforced these results. Light and electron microscopy revealed the cellular compartments involved in its transcytosis, namely, the enterocyte microvilli, the endocytotic vesicles, the Golgi complex, and the basolateral interdigitations. Leptin was also present in the lamina propria, in capillary endothelial cell plasmalemmal vesicles, and in capillary lumina. These results demonstrate that gastric exocrine leptin is internalized by duodenal enterocytes and delivered to the lamina propria and blood circulation. It may thus be able to play important paracrine and endocrine functions for the control of gastric emptying and nutrient absorption.  相似文献   

18.
Relationship of ECL cells and gastric neoplasia.   总被引:3,自引:0,他引:3  
The enterochromaffin-like (ECL) cell in the oxyntic mucosa has a key role in the regulation of gastric secretion since it synthesizes and releases the histamine regulating the acid secretion from the parietal cell. Gastrin is the main regulator of the ECL cell function and growth. Long-term hypergastrinemia induces ECL cell hyperplasia, and if continued, neoplasia. ECL cell carcinoids occur in man after long-term hypergastrinemia in conditions like pernicious anemia and gastrinoma. There is also accumulating evidence that a proportion of gastric carcinomas of the diffuse type is derived from the ECL cell. Furthermore, the ECL cell may, by producing substances with angiogenic effects (histamine and basic fibroblast growth factor), be particularly prone to develop malignant tumors. Although the general opinion is that gastrin itself has a direct effect on the oxyntic mucosal stem cell, it cannot be excluded that the general trophic effect of gastrin on the oxyntic mucosa is mediated by histamine or other substances from the ECL cell, and that the ECL cell, therefore, could play a role also in the tumorigenesis/carcinogenesis of gastric carcinomas of intestinal type.  相似文献   

19.
The fine structure of the parietal (oxyntic) cell in the gastric glands (corpus of the stomach) of the dog was examined under conditions of active gastric acid secretion and compared with cellular structure in the non-acid-secretory (basal) state. Animals, in both acute and chronic experiments, were equipped with gastric fistulae so that gastric juice could be collected for analysis of total acidity, free acidity, volume, and pH prior to biopsy of the gastric mucosa. The specimens of mucosa were fixed in buffered OsO4 and embedded in n-butyl methacrylate and the thin sections were stained with lead hydroxide before examination in the electron microscope. A majority of parietal cells showed an alteration of fine structure during stimulation of gastric acid secretion by a number of different techniques (electrical vagal stimulation, histamine administration, or insulin injection). The changes in fine structure affected mainly the smooth surfaced vesicular elements and the intracellular canaliculi in the cytoplasm of the cell. The mitochondria also appeared to be involved to some extent. During acid secretion a greater concentration of smooth surface profiles is found adjacent to the walls of the intracellular canaliculi; other parietal cells exhibited a marked decrease in number of smooth surfaced elements. Intracellular canaliculi, always present in non-acid-secreting oxyntic cells, develop more extensively in cells of acid-secreting gastric glands. The surface area of these canaliculi is greatly increased by the elaboration of a large number of closely approximated and elongated microvilli. Still other parietal cells apparently in a different stage of the secretory cycle exhibit non-patent canaliculi lacking prominence; such cells have very few smooth surfaced vesicular elements. These morphological findings correlated with the acid-secretory state of the stomach provide evidence that the parietal cell participates in the process of acid secretion.  相似文献   

20.
Damage to the stomach results in excessive movement of hydrogen ion (H+) out of the lumen, and increased movement of sodium (Na+) and potassium (K+) into the lumen. Histamine liberation during damage probably adds to the destruction by increased capillary permeability and formation of edema. Previous reports have shown that the synthetic prostaglandin analogue 16,16-dimethyl prostaglandin E2 (Dm PGE2) protects dog gastric mucosa from aspirin- and ethanol-induced gastric mucosa damage. The effects of dm PGE2 on bile salt (sodium taurocholate) induced injury has not been investigated. Using the canine Heidenhain pouch, the present study examined the action of dm PGE2 on gastric mucosal damage induced by 5 mM sodium taurocholate in 100 mM HCl. Bile salt damaged the pouch mucosa as evidenced by an increased loss of H+, and increased net fluxes of both Na+ and K+. There was also an increase in the histamine content of the fluid irrigating the Heidenhain pouch. Intravenous injection of dm PGE2 in the doses 0.1 and 1.0 microgram/kg 1/2 h before administration of the sodium taurocholate in HCl significantly reduced the net loss of H+ and the gain of Na+, K+, and histamine. It is concluded the dm PGE2 effectively protects the canine gastric mucosa from the damaging effects of bile salt and that the mechanism of dm PGE2 protection of canine oxyntic mucosa may be mediated in part via inhibition of the gastric mucosal release of histamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号