首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Sarma  S. S. S.  Nandini  S. 《Hydrobiologia》2002,486(1):169-174
Freshwater cladocerans and rotifers were used as prey to study functional response and prey selection by adult females of Chirocephalus diaphanus under laboratory conditions. For functional response studies, we offered three rotifer species (Brachionus calyciflorus, B. patulus and Euchlanis dilatata) and three cladoceran species (Alona rectangula, Ceriodaphnia dubia and Moina macrocopa) at various densities ranging from 0.5 to 16 ind. ml–1. We found increased zooplankton consumption with increasing prey density but beyond 4 ind ml–1 cladocerans and 8 ind. ml–1 rotifers, the number of animals eaten plateaued. In general, C. diaphanus consumed fewer large prey (cladocerans) and many more smaller zooplankton (rotifers). For prey selection experiments, we used B. calyciflrous, B. patulus, C. dubia and M. macrocopa, offered at the ratio of two rotifers: one cladoceran and at three prey densities (total zooplankton numbers: 3, 6 and 12 ind. ml–1). Prey selectivity patterns followed the functional response trends. In general, regardless of prey types, with an increase in the available zooplankton, there was an increase in the number of prey consumed. At any given prey density, C. diaphanus consumed higher numbers of rotifers than cladocerans. Among the prey offered, B. patulus and M. macrocopa were positively selected. Results are discussed in light of possible control of zooplankton by anostracans in temporary ponds.  相似文献   

2.
The investigation of the zooplankton community in the upstream part of Stratos reservoir during a 24 months survey (September 2004–August 2006) revealed 26 invertebrate species (14 rotifers, 6 cladocerans, 5 copepods and one mollusk larva). The mean abundance of the total zooplankton was higher in the first sampling period (2004–2005) and ranged between 8.81 and 47.74 ind. L−1, than the second period (2005–2006) when fluctuated between 1.91 and 43.09 ind. L−1. The seasonal variation was strongly influenced by the presence of rotifers, which accounting on average for 68.4% in total. Among them Keratella cochlearis and the order Bdelloidea were numerically the most important, while Macrocyclops albidus prevailed among the copepods and Bosmina longirostris among the cladocerans. Dreissena polymorpha was the only mollusk found in the zooplankton community. Rotifers, copepods and cladocerans showed a seasonal succession with the former preceding in the abundance having their first maximum in spring, while copepods and cladocerans followed, having peaks of abundance in early summer and in autumn, respectively. No seasonal succession among the cladoceran species was observed. The intense water flow in the upstream part of the reservoir, as well as temperature, conductivity, DO, pH, phosphates and silicates, were significant parameters controlling abiotic and biotic elements of the ecosystem and consequently influencing the seasonal variation and the dynamics of the zooplankton community.  相似文献   

3.
Publications in Russian on the influence of epibiontic rotifers on cladocerans as well as on predator-prey interrelations between cladocerans and rotifers are reviewed. Proales daphnicola and Brachionus rubens are common epibionts of Cladocera. The biology of these species is described including the choice of host, feeding, reproduction and impact on the host. Representatives of the families Daphniidae and Moinidae are most readily colonized. At high densities of epibiontic rotifers, a high percentage of young Cladocera die. Predators consuming cladocerans (mainly Bosminidae) belong to the family Asplanchnidae. Rotifers are consumed by the predatory cladocerans Leptodora and Polyphemus. The results of functional response experiments by the author with P. pediculus feeding on Synchaeta pectinata, Asplanchna priodonta, colonial and solitary Conochilus unicornis, and Platyias patulus are given. In the range of prey densities of 100–1600 1–1 a functional response was found in all the rotifers except P. patulus. Colonies of C. unicornis were not consumed. The highest level of feeding rate saturation was observed in Synchaeta pectinata. Various adaptations in prey morphology prevented effective predation: coloniality, large size of the prey and hard lorica with spines.  相似文献   

4.
Salinization of freshwater bodies due to anthropogenic activity is currently a very serious problem in Mexico. One of the consequences may be changes in the rotifer and cladoceran populations, both of which are generally abundant in freshwater bodies. Under laboratory conditions we evaluated the effect of different salt (sodium chloride) concentrations (0–4.5 g l−1) on the population dynamics of ten freshwater zooplankton species (rotifers: Anuraeopsis fissa, Brachionus calyciflorus, B. havanaensis, B. patulus and B. rubens; cladocerans: Alona rectangula, Ceriodaphnia dubia, Daphnia pulex, Moina macrocopa and Simocephalus vetulus). All of the zooplankton species tested were adversely affected by 1.5–3.0 g l−1 NaCl. In the range of salt concentrations tested, the population growth curves of B. patulus and B. rubens showed almost no lag phase and reached peak abundances within a week or two; A. fissa had a lag phase of about a week, while both B. calyciflorus and B. havanaensis started to increase in abundance immediately following the initiation of the experiments. Increased NaCl levels reduced the population abundances of A. fissa, B. calyciflorus and B. havanaensis at or beyond 1.5 g l−1. NaCl at 1 g l−1 had little effect on the population growth of cladocerans. M. macrocopa, which was more resistant to NaCl than the other cladoceran species, showed positive population growth even at 4.5 g l−1. The rates of population increase (r, day−1) were generally higher for rotifers than for cladocerans. Depending on the NaCl concentration, the r of rotifers ranged from +0.57 to −0.58 day−1, while the r for cladocerans was lower (+0.34 to −0.22 day−1).  相似文献   

5.
Kim  Hyun-Woo  Joo  Gea-Jae 《Hydrobiologia》2000,438(1-3):171-184
The longitudinal distribution and seasonal dynamics of zooplankton were examined along a 200-km section of the middle to lower Nakdong River, Korea. Zooplankton was sampled twice a month from January 1995 to December 1997 at five sites in the main river channel. There was considerable longitudinal variation in total zooplankton abundance (ANOVA, p < 0.001). All major zooplankton groups (rotifers, cladocerans, copepodids and nauplii) increased significantly with distance downstream along the river. There also were statistically significant seasonal differences in zooplankton abundance at the sampling sites (ANOVA, p < 0.01). Zooplankton abundance was high in spring and fall and low in summer and winter. The seasonal pattern of rotifers was similar to that of total zooplankton. This reflected the fact that rotifers (Brachionus calyciflorus, B. rubens, Keratella cochlearis and Polyarthra spp.) strongly dominated the zooplankton community at all locations. Among the macrozooplankton, small-bodied cladocerans (e.g. Bosmina spp.) dominated; the abundance of large-bodied cladocerans (e.g. Daphnia) was negligible (0–5 ind. l–1). Among the environmental variables considered, partial residence time seemed to play the most important role in determining characteristics of the river zooplankton community.  相似文献   

6.
Sublittoral hard bottom biocoenoses in Balsfjord, Norway (69°31′ N, 19°1′ E), were monitored using underwater stereophotogrammetry. The study includes manipulation of natural densities of organisms and testing the importance of biological interactions and “key species ” for the structure of biocoenoses. Underwater photography has the advantages of being a non-destructive method, but it is selective because small or hidden organisms cannot always be observed. Field experiments with exclusion of organisms from cages seem suitable for testing hypotheses concerning which animals are “key species ” in certain biocoenoses. Sea-urchins(Strongylocentrotus droebachiensis, S. pallidus) were suspected to be “key species ” in the present study, and their removal from cages caused an increase in abundance of barnacles(Balanus balanoides), the limpetAcmaea testudinalis and algal cover.  相似文献   

7.
Zooplankton species composition and abundance variation was studied in Lake Amvrakia, which is a deep, temperate, gypsum karst lake situated in the western Greece. The two year survey of zooplankton revealed 33 species (23 rotifers, five cladocerans, four copepods and one mollusc larva). The mean integrated abundance of the total zooplankton ranged between 83.6 and 442.7 ind. L−1, with the higher density to be recorded in the surface 0–20 m layer. Small numbers of specimens of almost all species were found also in the hypoxic or anoxic hypolimnion. Copepods and especially the calanoid Eudiaptomus drieschi dominated the zooplankton community throughout the sampling period, followed by Dreissena polymorpha larvae, rotifers and cladocerans. Seasonal succession among the cladocerans and the most abundant rotifer species was observed. The concentration of chlorophyll-a was the most important factor for the variation of total zooplankton, as well as for the rotifers’ community. Dissolved oxygen affected copepods and cladocerans, water level correlated mainly with the molluscs larvae of D. polymorpha, while temperature influenced the variation of several rotifers, the cladoceran Diaphanosoma orghidani and the mollusc larvae. Negative correlation of conductivity with the cladoceran Daphnia cucullata and the copepods E. drieschi and Macrocyclops albidus was found. The differences in species composition found in Lake Amvrakia in comparison to the nearby lakes are probably ought to the geographical isolation and perhaps to its particular chemistry (e.g., elevated conductivity).  相似文献   

8.
A mesocosm experiment was conducted “in situ” in a Chara dominated shallow lake near Valencia (Spain) to study top–down and bottom–up effects on rotifers by means of nutrient and fish additions. Both processes were important in determining rotifer abundance, biomass and diversity. A total of 36 mesocoms were established with triplicate treatment combinations of three fish levels (from no fish to 45 individuals of Gambusia holbrooki males) and four nutrient enrichment levels (from no additions to 10 mg l−1 nitrate-N and 1 mg l−1 phosphate-P). The main effect was a notable increase of planktonic and plant associated rotifers densities with fish. Rotifers benefited from mosquitofish predation on microcrustaceans and chironomids. The results showed a marked negative relationship between rotifer and cyclopoid abundances, indicating the importance of the predatory pressure of cyclopoids on rotifers. Effects on rotifer diversity were also evident, in general rotifer diversity decreased with nutrients and increased with fish. The effects of nutrients analysed at species level showed two contrasting density responses: an increase or a decrease with nutrients, which levelled off at high nutrient concentrations. High-level nutrient additions (from 5 mg l−1 nitrate-N and 0.5 mg l−1 phosphate-P) induced a switch to a turbid state with macrophyte disappearance. Most planktonic rotifer species, as well as plant associated ones, diminished when the turbid state was well established, especially in the mesocosms without fish. In the turbid mesocosms, relative abundance of plant-associated rotifers (as a whole) was higher than that of planktonic rotifers. The changes in rotifer species composition after the switch from a clear to a turbid water state are also described. Species of the genus Anuraeopsis, Trichocerca and Hexarthra, dominant in the clear water state, practically disappeared in the turbid water state, in which Proalides tentaculatus and Lecane nana were the main species. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez Advances in Rotifer Research  相似文献   

9.
Den sharing by conspecific spiny lobsters (aggregation) is modulated by chemical attraction but may confer several, not necessarily mutually exclusive, antipredator byproduct benefits: a “guide effect”, which only benefits the individual attracted to a sheltered conspecific; a “dilution effect”, which reduces per-capita risk of predation simply through aggregation; or active “group defense”. Each potential benefit has a different set of predictors (relationships between aggregation and conspecific or predator densities), but conflicting results could suggest the simultaneous operation of more than one benefit. These predictions were tested for coexisting Panulirus guttatus (a reef-obligate) and Panulirus argus (a temporary reef-dweller) using data collected during 11 surveys on fixed sites over a coral reef in Mexico. P. guttatus greatly outnumbered P. argus, but P. argus showed a greater tendency to aggregate. All three benefits of den sharing operated for the more social P. argus, with “group defense” being of the most benefit for larger individuals, and the “guide” and “dilution” effects for smaller individuals recently immigrating into the reef habitat and sharing dens with larger conspecifics. P. guttatus did not display “group defense” and its aggregations appeared to be modulated by the interplay between attraction and aggressive behaviors. This species relied more on solitary crypticity, especially at larger sizes, but appeared to benefit from a “guide effect” at high conspecific densities. In experimental tanks, each species tended to aggregate when tested separately, but when tested jointly, aggregation among P. guttatus was significantly reduced. The experimental results reflect the differential patterns of aggregation between the fore-reef, where P. guttatus dominated, and the back-reef, where coexistence of both species was greater.  相似文献   

10.
Zooplankton species abundance and vertical distribution were followed in two south-central British Columbia saline meromictic lakes during the recent decade of their declining water levels. The lower salinity mixolimnion (0–7 m) of both lakes circulates partially most years down to their primary chemoclines marked by a 10–15 cm layer of purple sulfur bacteria (Amoebobacter purpureus) heavily grazed upon mainly by late copepodite stages and adults of Diaptomus connexus, possibly by some rotifers, but apparently not by cladocerans. Vertical distribution profiles, over an 8-year period, are presented mainly for the rotifer Brachionus plicatilis, two cladocerans Ceriodaphnia lacustris, and Daphnia pulicaria, as well as copepodite and adult D. connexus during normal periods of unimeromixis and a period of weak bimeromixis caused by shallow upper low salinity layers coming from drainage basin inputs.  相似文献   

11.
The aquarium trade has a long history of transporting and introducing fish, plants and snails into regions where they are not native. However, other than snails, research on species carried “incidentally” rather than deliberately by this industry is lacking. I sampled invertebrates in the plankton, and from water among bottom stones, of 55 aquaria from 43 New Zealand households. I recorded 55 incidental invertebrate taxa, including copepods, ostracods, cladocerans, molluscs, mites, flatworms and nematodes. Six were known established non-indigenous species, and eight others were not previously recorded from New Zealand. Of the latter, two harpacticoid copepod species, Nitokra pietschmanni and Elaphoidella sewelli, are not native to or known from New Zealand, demonstrating the aquarium trade continues to pose an invasion risk for incidental fauna. The remaining six species were littoral/benthic rotifers with subtropical/tropical affinities; these may or may not be native, as research on this group is limited. A variety of behaviours associated with the set-up and keeping of home aquaria were recorded (e.g., fish and plants in any home were sourced from stores, wild caught, or both, and cleaning methods varied), which made prediction of “high risk” behaviours difficult. However, non-indigenous species had a greater probability of being recorded in aquaria containing aquatic plants and in those that were heated. Methods for disposal of aquarium wastes ranged from depositing washings on the lawn or garden (a low risk for invasion) to disposing of water into outdoor ponds or storm-water drains (a higher risk). It is recommended that aquarium owners be encouraged to pour aquarium wastes onto gardens or lawns—already a common method of disposal—as invasion risk will be minimised using this method.  相似文献   

12.
We modelled the effect of habitat heterogeneity on the abundance of the submediterranean Saponaria bellidifolia, a red list species in Romania. The study was designed at two scales: 100 and 0.5 m2. At larger scale, generalized additive models and canonical correspondence analysis were used to model the density of ramets, whereas at microscale, binomial logistic regression was employed to model the species’ occurrence. S. bellidifolia abundance responded sensitively to habitat type (classified as “grassy”, “rocky” and “scree”), rather than to microclimatic variables. At both scales, habitat type was the best predictor of ramet abundance, followed by slope and vegetation cover. At 0.5 m2, soil depth was also a good predictor of species occurrence. The data revealed that screes are the most suitable habitats for hosting relatively large populations of this rare species, because of occasional natural disturbances and presumably lower interspecific competition.  相似文献   

13.
In desert and steppe habitats of the complex North Caspian semi-desert, more than twofold differences in the number of hortobiont Curculionoidea species (33 and 75 species, respectively) were observed between the “dry” (1972–1974) and “humid” (2003–2005) climatic phases. The abundance of most species changed. Polyphagous steppe weevils of the subfamily Entiminae (Otiorhynchus velutinus, Euidosomus acuminatus, Omias verruca, and O. rotundatus) with spring activity of adults were the most stable, representing the main dominants of the spring communities both in the 1970s and 2000s. Nearly all of the weevils that changed their abundance since the 1970s were specialized herbivores with summer adult activity. In the more humid 2000s, the abundance of some desert-steppe weevils dominating the desert communities (Phacephorus nebulosus, Metadonus anceps and especially Ptochus porcellus) dropped drastically. Most of the species whose abundance increased most strongly (Phyllobius brevis, Trachyphloeus amplithorax, Archaeophloeus inermis, Stenopterapion tenue, Sitona inops, S. longulus, Tychius spp.) are associated with Medicago romanica, the plant that considerably raised its density in the microdepressions during the “humid” phase. The data show an evident reduction of the most xerophilic (desertsteppe) components of the weevil community and an increase in the fraction of mesophilic species. These changes seem to follow a cyclic pattern.  相似文献   

14.
Crassulacean acid metabolism (CAM) was induced in Mesembryanthemum crystallinum L. by either NaCl- or high light (HL)- stress. This generated in mesophyll cells predominantly of NaCl-stressed plants two different types of vacuoles: the generic acidic vacuoles for malic acid accumulation and additionally less acidic (“neutral”) vacuoles for NaCl sequestration. To examine differences in the tonoplast properties of the two types of vacuoles, we separated microsomal membranes of HL- and NaCl-stressed M. crystallinum plants by centrifugation in sucrose density gradients. Positive immunoreactions of a set of antibodies directed against tonoplast specific proteins and tonoplast specific ATP- and PPi-hydrolytic activity were used as markers for vacuolar membranes. With these criteria tonoplast membranes were detected in both HL- and NaCl-stressed plants in association with the characteristic low sucrose density but also at an unusual high sucrose density. In HL-stressed plants most of the ATP- and PPi-hydrolytic activity and cross reactivity with antibodies including that directed against the Na+/H+-antiporter from Arabidopsis thaliana was detected with light sucrose density. This relationship was inverted in NaCl-stressed plants; they exhibited most pump activity and immunoreactivity in the heavy fraction. The relative abundance of the heavy membrane fraction reflects the relative occurrence of “neutral” vacuoles in either HL- or NaCl-stressed plants. This suggests that tonoplasts of the “neutral” vacuoles sediment at high sucrose densities. This is consistent with the view that this type of vacuoles serves for Na+ sequestration and is accordingly equipped with a high capacity of proton pumping and Na+ uptake via the Na+/H+-antiporter.  相似文献   

15.
We studied experimentally the feeding selectivity of larvae of Prochilodus lineatus (Pisces), with particular emphasis on the role of veligers of the exotic bivalve Limnoperna fortunei. Three concentrations of veligers were offered to three developmental stages of P. lineatus. Veliger concentrations were: (1) higher than in the field (“enriched”, 0.09 ind. ml−1), (2) unmodified from field conditions (“normal”, 0.06 ind. ml−1), and (3) lower than in the field (“low”, 0.02 ind. ml−1). Fish developmental stages were protolarvae (approx. 10 days old), mesolarvae (17 days), and metalarvae (25 days). Proportions (in terms of numbers and biomass) and selectivity values were calculated for each prey item evaluated: veligers, small cladocerans + nauplii, medium-sized cladocerans, copepodits, and large cladocerans + copepods. Protolarvae and mesolarvae consumed veligers almost exclusively (88–90%, both in numbers and in biomass) when offered prey enriched in veligers, whereas for metalarvae veligers represented only 16.0% of the food consumed. At lower veliger concentrations, only protolarvae preferred Limnoperna veligers, whereas older fishes switched gradually to crustacean plankton. We conclude that veligers are preferred by the early fish developmental stages, and we speculate that this may be because their slower swimming makes them easier to capture than planktonic crustaceans. However, as fish larvae grow larger, veligers become too small a prey for their energetic needs, and they switch to larger items like cladocerans and copepods. We anticipate that this new and abundant food resource has an important impact on the survival and growth of P. lineatus.  相似文献   

16.
Zooplankton may at times graze cyanobacteria. However, their top-down effects are considered to be low, particularly in tropical regions dominated by small-size grazers that may be unable to consume efficiently filamentous or colonial species. Recently, cyanobacteria blooms were reported in the Senegal River hydrosystem. We conducted feeding experiments to assess the ability of copepods (Pseudodiaptomus hessei and Mesocyclops ogunnus), cladocerans (Moina micrura and Ceriodaphnia cornuta), and rotifers (Brachionus angularis, B. falcatus, and Keratella sp.) to control different cyanobacteria (Cylindrospermopsis raciborskii, Anabaena solitaria, A. flos-aquae, and Microcystis aeruginosa). None of the zooplankton species ingested M. aeruginosa. Mesocyclops ogunnus did not consume any of the cyanobacteria. Both cladocerans consumed the smallest filaments of cyanobacteria, whereas all the rotifers and P. hessei consumed a broader food-size spectrum. The functional feeding responses suggest that the concentration and size of the filaments are not the sole criteria for food consumption. The high zooplankton community grazing rates, estimated by applying the clearance rates measured in the laboratory to the in situ zooplankton abundance, indicate that grazing by zooplankton potentially constitutes an important controlling factor for the filamentous cyanobacteria in the tropics.  相似文献   

17.
Three cassava clones (SOM-1, “05”, and “50”) were cultured in vitro on MS medium plus sucrose (30 g L−1) and myo-inositol (100 mg L−1) without plant growth regulators and with additions of 0 (control), 0.5, 1, 1.5, 2, 2.5, and 3 g L−1 NaCl to test their salt tolerance. The same cassava clones were cultivated in greenhouse conditions on a sandy soil substratum and irrigated with 20% strength Hoagland solution, and additions of 0, 4, and 8 g L−1 of NaCl. Salinity negatively affected the survival, development, leaf water content, and mineral composition (mainly by accumulation of Cl and Na) of both in vitro and ex vitro plants, but with different intensity in each clone. In both conditions of culture (in vitro and ex vitro) clone SOM-1, from a desert arid saline zone of Somalia, was the most tolerant and clone “05”, from a rainy region of Ivory Coast, the most sensitive. Clone “50” tolerance to in vitro salt treatments, although lower, was not significantly different from that of SOM-1 but the ex vitro response was similar to “05”. In general, there was a correlation between in vitro and ex vitro behavior of the cassava plant regarding salt tolerance, which would allow the in vitro culture method to be used for selection of salt-tolerant plants of this crop.  相似文献   

18.
Shoot apical meristem (SAM) domes derived from five different outdoor and in vitro sources of juvenile and mature Eucalyptus urophylla × Eucalyptus grandis akin genotypes were compared. Overall measurements of SAM dome height H and diameter D ranged from 2 to 35 μm and 20 to 80 μm, with significant differences according to the various physiological origins of plant material investigated. SAM domes from the mature trees “Mat” were taller than those from the rejuvenated ministock plants “Rej”; from the in vitro microcuttings “IVM” of the same clone and also from the in vitro juvenile seedlings “IVJ”, whereas outdoor seedlings “Juv” exhibited intermediate SAM dome height. SAM domes from the rejuvenated material “Rej”, from the in vitro mature “IVM” and juvenile “IVJ” origins were also narrower than those from the outdoor seedlings “Juv” and to lesser extent than those from the mature trees “Mat”. Overall, the mature source “Mat” displayed bigger and somehow sharper hemispherical domes than those from “Rej” and “Juv”, physiologically more juvenile, or those from the in vitro origins “IVM” and “IVJ” which looked flatter and smaller. SAM dome height, diameter D and H/D values varied also significantly according to the plastochron. More specifically, H, D, and H/D SAM differences between the five origins were not significant during the early plastochron phase corresponding to leaf initiation, to become more salient as leaf structures started to elongate and to differentiate. This was particularly obvious for mature tree “Mat” SAM dome shapes which showed at this stage much higher H/D values than the other SAM sources. A shape index S used for characterizing more accurately dome shape confirmed these trends. These observations provide additional arguments to the view that juvenility in trees becomes more and more time- and shoot-tip restricted as ageing increases in the course of time during the ontogenetical process and could be ultimately confined to the most organogenic phase of SAM, from which shoot characteristics derive.  相似文献   

19.
Fairmount 1 thorny” (“FM1 thorny”) (a Rosa multiflora Thunb ex. J. Murr.) and a thornless sport of “FM1 thorny” (“Fairmount 1” (“FM1”)) were established in vitro to investigate chimeral segregation under various levels of BA and to obtain a pure thornless rose. While the chimeral thornless sport was expected to segregate in vitro and yield both thorny and thornless plantlets, “FM1 thorny” was to yield only thorny plants. “FM1” segregated in vitro into its constituent genotypes and yielded thorny and thornless plantlets, suggesting that “FM1” is chimeral. “FM1 thorny” produced only thorny plants in vitro. These results indicate that the “FM1 thorny” clone was not chimeral (pure thorny) and that the thornless regenerates of “FM1” did not develop via somaclonal variation. There was a significant linear relationship between increasing BA concentration and the percentage of thorny plants. Among a population of 690 tissue culture derived plants from all the BA experiments, 6 plants were classified as pure thornless plants 1 year later.  相似文献   

20.
Competition between rotifers and cladocerans of different body sizes   总被引:7,自引:0,他引:7  
Summary We conducted laboratory experiments to test the hypothesis that rotifers could coexist with small (<1.2 mm) but not large (>1.2 mm) cladocerans. Keratella cochlearis was excluded in <8 days by the large cladocerans Daphnia pulex and D. magna, probably through both interference and exploitative competition. On the other hand, K. cochlearis persisted for 8 weeks with two small cladocerans (Bosmina longirostris and Ceriodaphnia dubia) and excluded a third small cladoceran (D. ambigua). Similarly, Synchaeta oblonga coexisted with B. longirostris for >7 weeks, and K. testudo coexisted with D. ambigua for >4 weeks. Coexistence of small cladocerans and rotifers was always accompanied by suppression of one or both populations, probably primarily if not exclusively by exploitative competition for limiting food resources. These results indicate that the competitive dominance of cladocerans over rotifers decreases markedly with cladoceran body size and that factors other than body size may determine the competitive outcome between rotifers and small cladocerans. Our study provides a mechanistic explanation for a commonly observed pattern in natural zooplankton communities: planktonic rotifers often are abundant when only small cladocerans occur but typically are rare when large cladocerans are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号