首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genes expressed in skeletal muscle are often required in other tissues. This is particularly the case for cardiac and smooth muscle, both contractile tissues that share numerous characteristics with skeletal muscle, such that targeted inactivation can lead to embryonic lethality prior to a requirement for gene function in skeletal muscle. Thus, it is essential that conditional inactivation approaches are developed to disrupt genes specifically in skeletal muscle. In this report, we describe a transgenic mouse that expresses Cre recombinase under the control of a skeletal muscle-specific promoter from the mef2c gene. Cre expression in this transgenic line is completely restricted to skeletal muscle from early in development and is present in all skeletal muscles, including those of epaxial and hypaxial origins and in fast and slow fibers. This early skeletal muscle-specific Cre line will be a useful tool to define the function of genes specifically in skeletal muscle.  相似文献   

3.
4.
Somites give rise to a number of different embryonic cell types, including the precursors of skeletal muscle populations. The lateral aspect of amniote and fish somites have been shown to give rise specifically to hypaxial muscle, including the appendicular muscle that populates fins and limbs. We have investigated the morphogenetic basis for formation of specific hypaxial muscles within the zebrafish embryo and larvae. Transplantation experiments have revealed a developmentally precocious commitment of cells derived from pectoral fin level somites to forming hypaxial and specifically appendicular muscle. The fate of transplanted somites cannot be over-ridden by local inductive signals, suggesting that somitic tissue may be fixed at an early point in their developmental history to produce appendicular muscle. We further show that this restriction in competence is mirrored at the molecular level, with the exclusive expression of the receptor tyrosine kinase met within somitic regions fated to give rise to appendicular muscle. Loss-of-function experiments reveal that Met and its ligand, hepatocyte growth factor, are required for the correct morphogenesis of the hypaxial muscles in which met is expressed. Furthermore, we demonstrate a requirement for Met signaling in the process of proneuromast deposition from the posterior lateral line primordia.  相似文献   

5.
6.
7.
8.
9.
10.
The molecular mechanisms regulating smooth muscle-specific gene expression during smooth muscle development are poorly understood. Myocardin is an extraordinarily powerful cofactor of serum response factor (SRF) that stimulates expression of smooth muscle-specific genes. In an effort to search for proteins that regulate myocardin function, we identified a novel HMG box-containing protein HMG2L1 (high mobility group 2 like 1). We found that HMG2L1 expression is correlated with the smooth muscle cell (SMC) synthetic phenotype. Overexpression of HMG2L1 in SMCs down-regulated smooth muscle marker expression. Conversely, depletion of endogenous HMG2L1 in SMCs increases smooth muscle-specific gene expression. Furthermore, we found HMG2L1 specifically abrogates myocardin-induced activation of smooth muscle-specific genes. By GST pulldown assays, the interaction domains between HMG2L1 and myocardin were mapped to the N termini of each of the proteins. Finally, we demonstrated that HMG2L1 abrogates myocardin function through disrupting its binding to SRF and abolishing SRF-myocardin complex binding to the promoters of smooth muscle-specific genes. This study provides the first evidence of this novel HMG2L1 molecule playing an important role in attenuating smooth muscle differentiation.  相似文献   

11.
12.
Sonic hedgehog (Shh) has been proposed to function as an inductive and trophic signal that controls development of epaxial musculature in vertebrate embryos. In contrast, development of hypaxial muscles was assumed to occur independently of Shh. We here show that formation of limb muscles was severely affected in two different mouse strains with inactivating mutations of the Shh gene. The limb muscle defect became apparent relatively late and initial stages of hypaxial muscle development were unaffected or only slightly delayed. Micromass cultures and cultures of tissue fragments derived from limbs under different conditions with or without the overlaying ectoderm indicated that Shh is required for the maintenance of the expression of myogenic regulatory factors (MRFs) and, consecutively, for the formation of differentiated limb muscle myotubes. We propose that Shh acts as a survival and proliferation factor for myogenic precursor cells during hypaxial muscle development. Detection of a reduced but significant level of Myf5 expression in the epaxial compartment of somites of Shh homozygous mutant embryos at E9.5 indicated that Shh might be dispensable for the initiation of myogenesis both in hypaxial and epaxial muscles. Our data suggest that Shh acts similarly in both somitic compartments as a survival and proliferation factor and not as a primary inducer of myogenesis.  相似文献   

13.
14.
15.
The expression of striated muscle proteins occurs early in the developing embryo in the somites and forming heart. A major component of the assembling myofibrils is the actin-binding protein tropomyosin. In vertebrates, there are four genes for tropomyosin (TM), each of which can be alternatively spliced. TPM1 can generate at least 10 different isoforms including the striated muscle-specific TPM1alpha and TPM1kappa. We have undertaken a detailed study of the expression of various TM isoforms in 2-day-old (stage HH 10-12; 33 h) heart and somites, the progenitor of future skeletal muscles. Both TPM1alpha and TPM1kappa are expressed transiently in embryonic heart while TPM1alpha is expressed in somites. Both RT-PCR and in situ hybridization data suggest that TPM1kappa is expressed in embryonic heart whereas TPM1alpha is expressed in embryonic heart, and also in the branchial arch region of somites, and in the somites. Photobleaching studies of Yellow Fluorescent Protein-TPM1alpha and -TPM1kappa expressed in cultured avian cardiomyocytes revealed that the dynamics of the two probes was the same in both premyofibrils and in mature myofibrils. This was in sharp contrast to skeletal muscle cells in which the fluorescent proteins were more dynamic in premyofibrils. We speculate that the differences in the two muscles is due to the appearance of nebulin in the skeletal myocytes premyofibrils transform into mature myofibrils.  相似文献   

16.
17.
18.
The lymph heart is a sac-like structure on either side of avian tail. In some adult birds, it empties the lymph from the copulatory organ; however, during embryonic development, it is thought to circulate extra-embryonic lymph. Very little is known about the origin, innervation and the cellular changes it undergoes during development. Using immunohistochemistry and gene expression profiling we show that the musculature of the lymph heart is initially composed solely of striated skeletal muscle but later develops an additional layer composed of smooth myofibroblasts. Chick-quail fate-mapping demonstrates that the lymph heart originates from the hypaxial compartments of somites 34-41. The embryonic lymph heart is transiently innervated by somatic motoneurons with no autonomic input. In comparison to body muscles, the lymph heart has different sensitivity to neuromuscular junction blockers (sensitive only to decamethonium). Furthermore, its abundant bungarotoxin-positive acetylcholinesterase receptors are unique as they completely lack specific acetylcholinesterase activity. Several lines of evidence suggest that the lymph heart may possess an intrinsic pacing mechanism. Finally, we assessed the function of the lymph heart during embryogenesis and demonstrate that it is responsible for preventing embryonic oedema in birds, a role previously thought to be played by body skeletal muscle contractions.  相似文献   

19.
The formation of the body wall musculature in vertebrates is assumed to be initiated by direct ventral extension of the somites/myotomes. This contrasts to the formation of limb muscles and muscles involved in feeding or respiration/ventilation, which are founded by migratory muscle precursors (MMPs) distant to the somites. Here, we present evidence from morphology and expression of molecular markers proposing that the formation of the two muscle layers of the teleost body wall involves both of the above mechanisms: (1) MMPs from somites 5 and 6 found an independent muscle primordium–the so-called posterior hypaxial muscle (PHM)–which subsequently gives rise to the most anterior two segments of the medial obliquus inferioris (OI) muscle. (2) Direct epithelial extension of the hypaxial myotomes generates the OI segments from somite 7 caudalward and the entire lateral obliquus superioris (OS) muscle. The findings are discussed in relation to the evolution of hypaxial myogenic patterning including functional considerations. We hypothesise that the potential of the most anterior somites to generate migratory muscle precursors is a general vertebrate feature that has been differently utilised in the evolution in vertebrate groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号