首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
采用药膜法分别测定了增效醚(PBO)和磷酸三苯酯(TPP)两种增效剂对桔小实蝇抗敌百虫、高效氯氰菊酯和阿维菌素三个种群的抗药性产生的影响。结果表明,对这三种药剂分别产生的桔小实蝇抗性种群,PBO和TPP均能对其抗药性有一定的影响,但影响程度不同,对抗敌百虫、抗高效氯氰菊酯的两个桔小实蝇种群,TPP对敌百虫和高效氯氰菊酯的增效作用均高于PBO,且增效作用显著,增效比分别达3.98和2.43,PBO的增效比为1.71和1.66;对抗阿维菌素的桔小实蝇种群则略相反,PBO对阿维菌素的增效作用高于TPP,但增效作用均低于敌百虫与高效氯氰菊酯。  相似文献   

3.
Alterations of the structure and activity of the enzyme acetylcholinesterase (AChE) leading to resistance to organophosphate insecticides have been examined in the oriental fruit fly, Bactrocera dorsalis (Hendel), an economic pest of great economic importance in the Asia-Pacific region. We used affinity chromatography to purify AChE isoenzymes from heads of insects from lines showing the phenotypes of resistance and sensitivity to insecticide treatments. The AChE enzyme from a strain selected for resistance to the insecticide fenitrothion shows substantially lower catalytic efficiency for various substrates and 124-, 373- and 5810-fold less sensitivity to inhibition by paraoxon, eserine and fenitroxon, respectively, compared to that of the fenitrothion susceptible line. Using peptide mass fingerprinting, we also show how specific changes in the structure of the AChE enzymes in these lines relate to the resistant and sensitive alleles of the AChE (ace) gene characterized previously in this species (described in Hsu, J.-C., Haymer, D.S., Wu, W.-J., Feng, H.-T., 2006. Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem. Mol. Biol. 36, 396-402). Polyclonal antibodies specific to the purified isoenzymes and real-time PCR were also used to show that both the amount of the isoenzyme present and the expression levels of the ace genes were not significantly different between the R and S lines, indicating that quantitative changes in gene expression were not significantly contributing to the resistance phenotype. Overall, our results support a direct causal relationship between the mutations previously identified in the ace gene of this species and qualitative alterations of the structure and function of the AChE enzyme as the basis for the resistance phenotype. Our results also provide a basis for further comparisons of insecticide resistance phenomena seen in closely related species, such as Bactrocera oleae, as well as in a wide range of more distantly related insect species.  相似文献   

4.
The potential for populations to become resistant to a particular insecticide treatment regimen is a major issue for all insect pest species. In Hawaii, for example, organophosphate (OP)‐based cover sprays have been the chemical treatment most commonly applied against oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), populations since the 1950s. Moreover, bait spray treatments using spinosad were adopted as a major control tactic in the Hawaii area‐wide fruit fly pest management program beginning in the year 2000. To determine the current level of spinosad and OP tolerance of wild B. dorsalis populations, bioassays were conducted on flies collected from a range of geographic localities within the Hawaiian islands. Adult B. dorsalis flies were tested (1) for the level of susceptibility to spinosad using LC50 diagnostic criteria, and (2) for the presence of alleles of the ace gene previously shown to be associated with OP resistance. Regarding spinosad tolerance, only flies from Puna, the one area lacking prior exposure to spinosad, showed any significant difference compared to controls, and here the difference was only in terms of non‐overlap of 95% fiducial limit values. With respect to OP tolerance, specific mutations in the ace gene associated with resistance to these insecticides were found in only two populations, and in both cases, these alleles occurred at relatively low frequencies. These results suggest that at the present time, populations of B. dorsalis in Hawaii show no evidence for having acquired resistance to the insecticides widely used in control programs.  相似文献   

5.
Two acetylcholinesterase genes, Ace1 and Ace2, have been fully cloned and sequenced from both organophosphate-resistant and susceptible clones of cotton aphid. Comparison of both nucleic acid and deduced amino acid sequences revealed considerable nucleotide polymorphisms. Further study found that two mutations occurred consistently in all resistant aphids. The mutation F139L in Ace2 corresponding to F115S in Drosophila acetylcholinesterase might reduce the enzyme sensitivity and result in insecticide resistance. The other mutation A302S in Ace1 abutting the conserved catalytic triad might affect the activity and insecticide sensitivity of the enzyme. Phylogenetic analysis showed that insect acetylcholinesterases fall into two subgroups, of which Ace1 is the paralogous gene whereas Ace2 is the orthologous gene of Drosophila AChE. Both subgroups contain resistance-associated AChE genes. To avoid confusion in the future work, a nomenclature of insect AChE is also suggested in the paper.  相似文献   

6.
Acetylcholinesterase (AChE), encoded by the Ace gene, is the primary target of organophosphorous (OP) and carbamate insecticides. Ace mutations have been identified in OP resistants strains of Drosophila melanogaster. However, in the Australian sheep blowfly, Lucilia cuprina, resistance in field and laboratory generated strains is determined by point mutations in the Rop-1 gene, which encodes a carboxylesterase, E3. To investigate the apparent bias for the Rop-1/E3 mechanism in the evolution of OP resistance in L. cuprina, we have cloned the Ace gene from this species and characterized its product. Southern hybridization indicates the existence of a single Ace gene in L. cuprina. The amino acid sequence of L. cuprina AChE shares 85.3% identity with D. melanogaster and 92.4% with Musca domestica AChE. Five point mutations in Ace associated with reduced sensitivity to OP insecticides have been previously detected in resistant strains of D. melanogaster. These residues are identical in susceptible strains of D. melanogaster and L. cuprina, although different codons are used. Each of the amino acid substitutions that confer OP resistance in D. melanogaster could also occur in L. cuprina by a single non-synonymous substitution. These data suggest that the resistance mechanism used in L. cuprina is determined by factors other than codon bias. The same point mutations, singly and in combination, were introduced into the Ace gene of L. cuprina by site-directed mutagenesis and the resulting AChE enzymes expressed using a baculovirus system to characterise their kinetic properties and interactions with OP insecticides. The K(m) of wild type AChE for acetylthiocholine (ASCh) is 23.13 microM and the point mutations change the affinity to the substrate. The turnover number of Lucilia AChE for ASCh was estimated to be 1.27x10(3) min(-1), similar to Drosophila or housefly AChE. The single amino acid replacements reduce the affinities of the AChE for OPs and give up to 8.7-fold OP insensitivity, while combined mutations give up to 35-fold insensitivity. However, other published studies indicate these same mutations yield higher levels of OP insensitivity in D. melanogaster and A. aegypti. The inhibition data indicate that the wild type form of AChE of L. cuprina is 12.4-fold less sensitive to OP inhibition than the susceptible form of E3, suggesting that the carboxylesterases may have a role in the protection of AChE via a sequestration mechanism. This provides a possible explanation for the bias towards the evolution of resistance via the Rop-1/E3 mechanism in L. cuprina.  相似文献   

7.
Resistance to the organophosphate insecticide tetrachlorvinphos was examined in a house fly (Musca domestica L.) strain with an altered acetylcholinesterase (AChE) of decreased sensitivity to inhibition by the insecticide. Genetic tests showed that both resistance and the altered AChE were controlled by semidominant gene(s) on chromosome II. The gene for resistance was five crossover units from the mutant marker stubby wing (stw). A house fly strain was prepared in which resistance was introduced in to a susceptible stw strain by recombination. Biochemical assays revealed that the altered AChE was introduced along with resistance. Assays of the AChE of resistant and susceptible stw strains by two independent methods showed that the enzyme from resistant flies was 30 times more slowly inhibited by tetrachlorvinphos than the enzyme from susceptible flies.This work was supported in part by NIH Grant ES 00901.Technical Article 13340, Texas Agricultural Experiment Station.  相似文献   

8.
Jackson traps baited with male lures with or without insecticides are essential components of surveillance and monitoring programmes against pest tephritid fruit flies. The ability of a trap to capture a fly that enters, sometimes termed ‘trap efficiency’, is dependent on many factors including the trap/lure/toxicant combination. We tested the effects of three important components of Jackson traps on efficiency of capture of two important fruit fly species, using the ‘standard’ (i.e. as they are used in the state-wide surveillance programme in California) and alternative setups: Insecticide (Naled, DDVP or None), type of adhesive on the sticky panel (Seabright Laboratories Stickem Special Regular or Stickem Special HiTack) and use of a single or combination male lure (Methyl eugenol and/or cuelure). Experiments were conducted in large outdoor carousel olfactometers with known numbers of Bactrocera dorsalis and Zeugodacus cucurbitae and by trapping wild populations of the same two species. Lures were aged out to eight weeks to develop a comprehensive dataset on trap efficiency of the various combinations. Results indicate that the current liquid lure/naled combinations on cotton wicks used in California for surveillance of these flies can be effectively replaced by plastic polymer plugs for the lure and pre-packaged DDVP strips with no loss of trap efficiency for eight weeks of use or longer. The ‘high tack’ adhesive showed no advantage over the current standard against these flies, and both have low efficiency when used without an insecticide in the trap. Combination lure + DDVP varied when compared to the current standard liquid lure + naled: Olfactometer assays showed similar efficiency between them for B. dorsalis, but higher efficiency for the wafer against Z. cucurbitae. Field result showed similar or slightly higher performance of the wafer compared with the standard for B. dorsalis, but a much lower catch of Z. cucurbitae.  相似文献   

9.
Apple grain aphid, Rhopalosiphum padi (Linnaeus), is an important wheat pest. In China, it has been reported that R. padi has developed high resistance to carbamate and organophosphate insecticides. Previous work cloned from this aphid 2 different genes encoding acetylcholinesterase (AChE), which is the target enzyme for carbamate and organophosphate insecticides, and its insensitive alteration has been proven to be an important mechanism for insecticide resistance in other insects. In this study, both resistant and susceptible strains of R, padi were developed, and their AChEs were compared to determine whether resistance resulted from this mechanism and whether these 2 genes both play a role in resistance. Bioassays showed that the resistant strain used was highly or moderately resistant to pirimicarb, omethoate, and monocrotophos (resistance ratio, 263.8, 53.8, and 17.5, respectively), and showed little resistance to deltamethrin or thiodicarb (resistance ratio, 5.2 and 3.4, respectively). Correspondingly, biochemistry analysis found that AChE from resistant aphids was very insensitive to the first 3 insecticides (I50 increased 43.0-, 15.2-, and 8.8-fold, respectively), but not to thiodicarb (I50 increased 1.1-fold). Enzyme kinetics tests showed that resistant and susceptible strains had different AChEs. Sequence analysis of the 2 AChE genes cloned from resistant and susceptible aphids revealed that 2 mutations in Ace2 and 1 in Ace1 were consistently associated with resistance. Mutation F368(290)L in Ace2 localized at the same position as a previously proven resistance mutation site in other insects. The other 2 mutations, S329(228)P in Ace1 and V435(356)A in Ace2, were also found to affect the enzyme structure. These findings indicate that resistance in this aphid is mainly the result of insensistive AChE alteration, that the 3 mutations found might contribute to resistance, and that the AChEs encoded by both genes could serve as targets of insecticides.  相似文献   

10.
王波  韩英  黄居昌  陈家骅 《昆虫知识》2012,49(6):1547-1552
植物源引诱物质可显著提高橘小实蝇Bactrocera dorsalis(Hendel)蛋白饵剂的应用效果,本文测试了柑橘、番木瓜、芒果、番石榴、杨桃的叶片浸提物、果实以及已知植物次生物质对橘小实蝇的引诱效果。植物浸提物的生物测定结果表明,杨桃的二氯甲烷浸提物的引诱效果最佳,平均引诱率为20.83%,对于不同的萃取剂而言,二氯甲烷、乙醇浸提物效果明显优于石油醚,三者浸提的平均引诱率分别为15.67%、15.17%和10.50%;对于不同寄主植物而言,柑橘浸提物的效果最佳,3种有机溶剂浸提物的平均引诱率为18.33%,其中石油醚、二氯甲烷和乙醇浸提物的引诱率分别为20.00%、15.83%和19.17%,其他植物浸提物的引诱效果为杨桃>番木瓜>芒果>番石榴,3种有机溶剂浸提物的平均引诱率分别为17.22%、11.67%、11.11%和10.56%。寄主果实的生物测定结果表明,柑橘的平均引诱率为65.83%,其中雌虫和雄虫的引诱率分别为61.67%和70.00%,明显高于杨桃、番石榴和番木瓜,三者的引诱率分别为31.67%、31.67%和21.67%,与柑橘引诱率差异显著(P<0.05)。已知植物次生物质的生物测定结果表明,甲基丁香酚的引诱效果最佳,平均引诱率为45.00%,其中雄虫和雌虫的引诱率分别为86.67%和3.33%;乙酸乙酯和番石榴香精的引诱效果次之,平均引诱率分别为32.50%和28.33%,其中雌虫的引诱率均为36.67%;杨桃香精和柠檬酸的引诱效果较差,平均引诱率分别为25.00%和26.67%。  相似文献   

11.
《环境昆虫学报》2014,(5):737-743
为了明确成虫密度、日龄和性别对应用药膜法测定杀虫剂毒力结果的影响,本文测定了敌百虫、高效氯氰菊酯和阿维菌素三种药剂对不同密度、不同日龄条件下雌雄橘小实蝇Bactrocera dorsalis (Hendel)雌雄成虫的毒力。结果表明,3种杀虫剂处理后不同密度桔小实蝇成虫的死亡率最高为62%-72%,之后逐渐下降低至10%以下,并趋于稳定;阿维菌素处理死亡率总体呈高-低-高-低的S形变化,以30-50头/瓶最高;高效氯氰菊酯处理后死亡率5头/瓶使最低,其他9个密度稳定在35.5%-46.4%;建立了描述3种药剂处理后死亡率和成虫密度之间关系的模型。同一种药剂处理不同日龄成虫,其死亡率变化规律明显。敌百虫处理4日龄、74日龄雌虫死亡率最高,14日龄最低;4、54、64日龄雄虫死亡率较高,14日龄最低;其雌雄虫死亡率与日龄件均符合Johnson Schumacher模型。高效氯氰菊酯处理雌雄虫的死亡率均以4日龄最低,之后明显增大,24日龄后趋于稳定;死亡率与日龄间的关系均符合Quardratics Ratio模型。同一日龄雌雄虫死亡率比较,敌百虫处理无明显差异,高效氯氰菊酯处理雌虫大多高于雄虫。根据以上研究,提出测定杀虫剂毒力时桔小实蝇的合适密度为0.04-0.06头/mL(容器体积)或者27.4-18.2 c㎡/头(药膜面积)。  相似文献   

12.
Oriental fruit flies, Bactrocera dorsalis (Hendel), were treated with 10 insecticides, including six organophosphates (naled, trichlorfon, fenitrothion, fenthion, formothion, and malathion), one carbamate (methomyl), and three pyrethroids (cyfluthrin, cypermethrin, and fenvalerate), by a topical application assay under laboratory conditions. Subparental lines of each generation treated with the same insecticide were selected for 30 generations and were designated as x-r lines (x, insecticide; r, resistant). The parent colony was maintained as the susceptible colony. The line treated with naled exhibited the lowest increase in resistance (4.7-fold), whereas the line treated with formothion exhibited the highest increase in resistance (up to 594-fold) compared with the susceptible colony. Synergism bioassays also were carried out. Based on this, S,S,S-tributyl phosphorotrithioate displayed a synergistic effect for naled, trichlorfon, and malathion resistance, whereas piperonyl butoxide displayed a synergistic effect for pyrethroid resistance. All 10 resistant lines also exhibited some cross-resistance to other insecticides, not only to the same chemical class of insecticides but also to other classes. However, none of the organophosphate-resistant or the methomyl-resistant lines exhibited cross-resistance to two of the pyrethroids (cypermethrin and fenvalerate). Overall, the laboratory resistance and cross-resistance data developed here should provide useful tools and information for designing an insecticide management strategy for controlling this fruit fly in the field.  相似文献   

13.
The occurrence of resistance in Varroa mite populations is a serious threat to the beekeeping industry and to crops that rely on the honey bee for pollination. Integrated pest management strategies for control of this pest include the judicious use of insecticides. To monitor field populations of Varroa mite for insecticide resistance, a glass vial bioassay procedure was developed to use in the development of a resistance management strategy. Diagnostic concentrations needed to separate susceptible genotypes from resistant individuals were determined for cypermethrin (0.1 microg per vial), fluvalinate (5.0 microg per vial), malathion (0.01 microg per vial), coumaphos (10.0 microg per vial), diazinon (5.0 microg per vial), methomyl (0.5 microg per vial), propoxur (0.1 microg per vial), and endosulfan (2.5 microg per vial). Resistance to organophosphorus insecticides (malathion, coumaphos) and pyrethroids (cypermetrhrin, fluvalinate) was widespread in both La Media Ranch, TX, and Wewahitchka, FL, from 2007 to 2009. There was no resistance to endosulfan, diazinon, methomyl, and propoxur in field populations of Varroa mite in the two locations where resistance was monitored. The seasonal patterns of resistance in Wewahitchka were different from those of La Media Ranch. In the former location, the frequency of resistance to all insecticides tested decreased significantly from 2007 to 2009, whereas it increased in the latter location. Resistance levels were unstable, suggesting that resistance could be successfully managed. The results validate use of the glass vial bioassay to monitor for resistance in Varroa mite and provide the basis for the development of a resistance management strategy designed to extend the efficacy of all classes of insecticides used for control of Varroa mite.  相似文献   

14.
The gene para in Drosophila melanogaster encodes an α subunit of voltage-activated sodium channels, the presumed site of action of DDT and pyrethroid insecticides. We used an existing collection of Drosophila para mutants to examine the molecular basis of target-site resistance to pyrethroids and DDT. Six out of thirteen mutants tested were associated with a largely dominant, 10- to 30-fold increase in DDT resistance. The amino acid lesions associated with these alleles defined four sites in the sodium channel polypeptide where a mutational change can cause resistance: within the intracellular loop between S4 and S5 in homology domains I and III, within the pore region of homology domain III, and within S6 in homology domain III. Some of these sites are analogous with those defined by knockdown resistance (kdr) and super-kdr resistance-associated mutations in houseflies and other insects, but are located in different homologous units of the channel polypeptide. We find a striking synergism in resistance levels with particular heterozygous combinations of para alleles that appears to mimic the super-kdr double mutant housefly phenotype. Our results indicate that the alleles analyzed from natural populations represent only a subset of mutations that can confer resistance. The implications for the binding site of pyrethroids and mechanisms of target-site insensitivity are discussed.  相似文献   

15.
16.
This work presents a biosensor for organophosphorus pesticides based on immobilisation of a highly sensitive genetically engineered acetylcholinesterase (B394) by affinity interactions on metal chelate-functionalised magnetic microbeads. The developed sensor has been compared with those based on the widely used Electric eel cholinesterase and a classical entrapment procedure in a polyvinylalcohol-based matrix. The use of the B394 enzyme allowed lowering both IC50 and LOD by a factor of 100 when compared with Electric eel enzyme sensor. The oriented and site-specific immobilisation combined with the high specificity of the B349 mutant allows a more sensitive detection of insecticides, concentrations as low as 1.31(-11)M (IC10) being detected for both pesticides chlorpyriphos-oxon and chlorfenvinphos.  相似文献   

17.
橘小实蝇对不同硬度番石榴果实的产卵选择   总被引:1,自引:0,他引:1  
为了弄清番石榴果实的最佳套袋时间,室内试验研究番石榴果实硬度对橘小实蝇Bactrocera dorsalis(Hendel)产卵选择性的影响。结果表明,果实的硬度越小,对橘小实蝇雌虫的引诱作用越强,并且不同硬度范围的果实引诱的产卵量存在显著性差异。当番石榴果实硬度>11kg.cm-2时,橘小实蝇不会在其上面产卵,此时是最佳的果实套袋时期。  相似文献   

18.
Acetylcholinesterase from the heads of insecticide-resistant and -susceptible houseflies (Musca domestica L.) was studied in vitro. The enzymes could not be distinguished electrophoretically, and their behaviour on polyacrylamide-disc-gel electrophoresis was influenced by the presence of Triton X-100 in both the homogenate and the gels. In the absence of detergent, the acetylcholinesterase was heterogeneous, but behaved as a single enzyme when it was present. By analogy with studies of acetylcholinesterase from other sources, these observations were attributed to aggregation of the enzyme when not bound by membranes. The enzyme from resistant flies was more slowly inhibited than the susceptible enzyme, bimolecular rate constants (ki) differing by approx. 4-20-fold for a range of organophosphorus compounds. The kinetics of inhibition of acetylcholinesterase were consistent with the results of electrophoresis, i.e. they corresponded to those of a single enzyme in the presence of Triton X-100, but a mixture of enzymes in its absence. The susceptibility of the more sensitive components in these mixtures was determined.  相似文献   

19.
20.
Organophosphate resistance in the olive fly was previously shown to associate with two point mutations in the ace gene. The frequency of these mutations was monitored in Bactrocera oleae individuals of increasing resistance. In spite of the difference in resistance among the individuals, there was no correlation between mutation frequencies and resistance level, indicating that other factors may contribute to this variation. The search for additional mutations in the ace gene of highly resistant insects revealed a small deletion at the carboxyl terminal of the protein (termed Delta3Q). Significant correlation was shown between the mutation frequency and resistance level in natural populations. In addition, remaining activity of acetylcholinesterase enzyme (AChE) after dimethoate inhibition was higher in genotypes carrying the mutation. These results strongly suggest a role of Delta3Q in high levels of organophosphate (OP) resistance. Interestingly, the carboxyl terminal of AChE is normally cleaved and substituted by a glycosylphosphatidylinositol (GPI) anchor. We hypothesize that Delta3Q may improve GPI anchoring, thus increasing the amount of AChE that reaches the synaptic cleft. In this way, despite the presence of insecticide, enough enzyme would remain in the cleft for its normal role of acetylcholine hydrolysis, allowing the insect to survive. This provides a previously un-described mechanism of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号